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Characteristics of immune 
clusters and cell abundance 
in patients with different subtypes 
of nonparoxysmal atrial fibrillation
Hangying Ying 1,2, Wenpu Guo 1,2, Pengcheng Yu 1,2, Hangyuan Qiu 1, Ruhong Jiang 1* & 
Chenyang Jiang 1*

Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice. Inflammation 
plays an important role in the initiation and perpetuation of AF. The present study was conducted 
to characterize immune clusters in nonparoxysmal AF and to distinguish immune subtypes of 
nonparoxysmal AF. Immune-related algorithms (CIBERSORT, ESTIMATE, and ssGSEA) were used to 
evaluate the immune cluster characterization and cell abundance, and multivariable logistics analysis 
was performed to determine the most relevant immune cells. We identified differentially expressed 
genes (DEGs) and used consensus clustering analysis to identify nonparoxysmal AF subtypes. 
Weighted gene coexpression network analysis (WGCNA) was used for finding highly correlated gene 
sets and attach to external sample traits. And it was conducted twice to identify the immune- and 
subtype- related modules. Finally, Metascape was used to compare the biological functions of the 
two nonparoxysmal AF subtypes we obtained. CytoHubba was used to identify the hub genes of these 
two subtypes. Based on the results of bioinformatics analysis, regulatory T cells, resting NK cells, 
active mast cells and neutrophils were considered to be closely related to nonparoxysmal AF. The 
brown module was identified as the most relevant module to the above immune cells by WGCNA. We 
identified two major nonparoxysmal AF subtypes by consensus clustering analysis and their enriched 
biological functions by Metascape. The hub genes are TYROBP, PTPRC, ITGB2, SPI1, PLEK, and CSF1R 
in permanent AF and JAM3, S100P, ARPC5, TRIM34, and GREB1L in persistent AF. This study revealed 
two major nonparoxysmal AF subtypes and eleven hub genes, which provide potential therapeutic 
targets for anti-inflammatory treatments of nonparoxysmal AF.

Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. AF affects 1–2% of the 
general population worldwide, and the lifetime risk in Europe is 37% (34.3% to 39.6%)1. The main pathogenic 
mechanisms of AF include electrical remodeling, structural remodeling, calcium handling abnormalities and 
autonomic nervous system  changes2. Recently, substantial evidence suggests that inflammation and its associ-
ated immune response are associated with the initiation and maintenance of AF, and the presence of AF could 
promote inflammation, leading to ‘AF begets AF’3. The infiltration of specific immune cells and the presence 
of inflammation markers could predict the onset and recurrence of AF in the general population, as well as in 
patients who undergo operative  surgery4. Excessive inflammation and its inflammatory response could alter 
atrial electrophysiology and structural  substrates5,6. Changes in calcium homeostasis caused by inflammation 
promote heterogeneous atrial  conduction3, and these mechanisms lead to increased susceptibility to AF. Although 
inflammation takes part in the initiation and perpetuation of AF, the efficacy of anti-inflammatory treatment in 
the clinic is far from satisfactory. Like the varied efficacy of immunotherapy for different immunophenotypes in 
tumors, we speculated that there is varied efficacy of anti-inflammatory drugs based on the presence of different 
immune-related subtypes in AF.

Therefore, we performed this study using comprehensive bioinformatics analysis to further explore the rela-
tionship between inflammation and AF. In this study, immune-related algorithms were used to evaluate immune 
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cluster characterization and cell abundance, and multivariable logistic regression analysis was performed to 
determine the most relevant immune cells. We identified differentially expressed genes (DEGs) and used con-
sensus clustering analysis to identify nonparoxysmal AF subtypes. Weighted gene coexpression network analysis 
(WGCNA) was conducted twice to identify the immune- and subtype-related modules. Finally, Metascape was 
used to compare the biological functions of the two AF subtypes we obtained. CytoHubba was used to identify 
hub genes of these two AF subtypes. The whole workflow of this study was shown in Fig. 1.

Figure 1.  The analytical workflow.
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Methods
Data availability and processing. The raw array data are available in the Gene Expression Omnibus 
database (GEO submission: GSE41177, GSE79768, GSE115574, and GSE31821, Table 1). In total, 41 left atrial 
appendage (LAA) samples and 21 right atrial appendage (RAA) samples from nonparoxysmal AF individuals 
were enrolled in this study. Forty-eight atrial appendages from sinus rhythm (SR) individuals served as controls. 
The raw data were preprocessed using the robust multi-array average (RMA) algorithm with the ‘affy’ package. 
The process includes background correcting, normalizing, and calculating expression (Supplemental Fig. 1B). 
The processed results were presented in log base 2 scale. The batch effect was removed using the ComBat func-
tion of the ‘sva’ package in R language (Supplemental Fig. 1C).

Immune cluster characterization and cell abundance. Bioinformatics algorithms (CIBERSORT, 
ESTIMATE, and ssGSEA) were used to evaluate the immune cluster characterization and cell abundance. CIB-
ERSORT, a deconvolution algorithm, was used to assess the abundance of immune-related cells for each  sample7. 
Pearson’s correlation was performed to assess the correlations between immune cell subsets. The correlation 
results are presented only for P < 0.05 in the correlation heatmap. The ESTIMATE algorithm was applied to 
compute the proportion of immune and stromal components in the immune microenvironment. Three parts of 
the scores were positively correlated with the proportion of stromal and immune cells and the sum of the first 
 two8. Single sample gene-set enrichment analysis (ssGSEA) was used to classify gene sets with similar immune 
biological  roles9. And ssGSEA was conducted by using ‘GSVA’  package9. A total of 681 immune-related genes 
were divided into 25 gene sets based on a well-known  article10. The immune cluster characterization we applied 
consisted of innate immunity and adaptive immunity. The ssGSEA scores of each immune cell type were stand-
ardized, and pairwise comparisons were performed among the three groups.

Logistics regression analysis. The presence of AF was designated a dependent variable, and the relative 
expression of immune cells was identified by CIBERSORT as an independent variable to conduct univariate 
logistic regression analysis. To prevent the influence of confounding factors, the variables with p ≤ 0.2 in the 
univariable logistics regression analysis were included in the follow-up multivariable logistics regression analysis 
with p < 0.05.

Differential analysis of expressed genes. The ‘limma’ package in the R language was utilized to iden-
tify differentially expressed genes (DEGs) with an adjusted P < 0.05 and | logFC |> 0.5 among the three con-
trast matrices (LAA vs. SR, RAA vs. SR, and LAA vs. RAA)11. The results were visualized by heatmaps (‘pheat-
map’ package) and volcano plots (‘limma’ package and ‘ggrepel’ package). To screen credible genes for further 
research, we merged the reliable gene lists (with only an adjusted P value < 0.05) of two contrast matrices (LAA 
vs. SR, RAA vs. SR).

Consensus clustering analysis and principal component analysis (PCA). Clustering analysis algo-
rithms were performed with the goal of exploring hidden groupings in a large dataset. To dissect nonparoxysmal 
AF heterogeneity, unsupervised consensus clustering analysis, performed by ‘ConsensusClusterPlus’ package, 
was applied in all AF samples to define the subtype of nonparoxysmal AF patients and repeated 1000 times to 
evaluate the stability of results. The key operating parameters included 80% item resampling and a maximum 
evaluated k of 9. The PCA was used to assess the distinction between LAA, RAA, and SR and to validate the 
cluster results.

Weighted correlation network analysis. The reliable gene lists (4790 genes) and the top 25% (5548 
genes) of the variance in the merged database were selected for coexpression network analysis for immune clus-
ter characterization and unsupervised clustering characterization. We used the ‘WGCNA’ package to select an 
appropriate soft-thresholding power β to achieve scale-free  topology12. Then, the selected genes were clustered 
into modules, and each module was marked with different colors using the average linkage hierarchical cluster-
ing method. The minimum number of genes in each module was 100, and the threshold for module merging 
was 0.15 in immune cluster analysis and 0.25 in AF cluster analysis. In the first immune-related WGCNA, we 
used Pearson’s correlation method to calculate the correlation between each module and the relative expression 
of immune cells identified by CIBERSORT. The modules that are indicated by logistics results were selected for 

Table 1.  Detail information for GEO databases.

Accession Platform Type of RNA Organism Number of samples Time Country PMID

GSE115574 GPL570 Expression profiling by array Homo sapiens LAA and RAA from 15 persistent AF patients and 15 SR 
patients (30/30) 2018.6.11 Turkey NA

GSE79768 GPL570 Expression profiling by array Homo sapiens LAA and RAA from 7 persistent AF patients and 6 SR 
patients (14/12) 2016.3.31 China Taiwan 27,494,721

GSE41177 GPL570 Expression profiling by array Homo sapiens 16 LAA from persistent AF patients/3 left atrial append-
ages from SR patients (16/3) 2012.9.26 China Taiwan 23,183,193

GSE31821 GPL570 Expression profiling by array Homo sapiens 4 AF auricle tissues/2 control auricle tissue (4/2) 2011.9.11 France NA
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further analyses. In the second WGCNA of AF subtypes, we used Pearson’s correlation method to calculate the 
correlation between each module and clinical cluster generated by consensus cluster analysis.

Functional enrichment analysis. The ‘clusterProfiler’ package was used to perform Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment  analyses13,14. Metascape (http:// 
metas cape. org/) was applied to investigate different biological functions between AF subtypes and to perform 
enrichment analysis among different gene  sets15. An adjusted p < 0.05 was considered statistically significant.

Construction of PPI network and hub gene identification. The intersection of selected mod-
ules (MEbrown and MEturquoise) was imported into the Search Tool for the Retrieval of Interacting Genes 
(STRING, v11.0) to generate the PPI  network16. The results were visualized through Cytoscape software (v3.8.2). 
The CytoHubba plug-in was used to identify the hub genes through five local- or global-based  algorithms17. The 
intersections of the five algorithms in CytoHubba were considered the hub genes in the PPI network.

Statistical analysis. Most bioinformatic analyses were conducted in R software (4.0.5) with default statisti-
cal settings and cutoff values specified in the individual method sections. Data are expressed as the mean ± stand-
ard deviation. Statistical analyses were performed using GraphPad Prism software (version 9.0.0) and R software 
(4.0.5), and P < 0.05 was considered significantly different.

Ethics statements. This article does not contain any studies with human participants performed by any of 
the authors. All methods were performed in accordance with the relevant guidelines and regulations.

Results
Immune cluster characterization and cell abundance. As shown in Fig. 2A,C, 17 types of immune 
cell subtypes were estimated in the included samples using CIBERSORT. M2 macrophages and T cells accounted 
for the majority of all types of immune abundances. B cells, NK cells and neutrophils represented a small minor-
ity. Further analyses showed that the abundance of regulatory T cells and activated mast cells gradually increased 
in the LAA, RAA and SR. Gamma delta T cells, resting mast cells, and neutrophils gradually decreased in the 
same location (Fig. 2D). Notably, resting NK cells were eliminated in AF samples (LAA and RAA), and it could 
be inferred that NK cells were not expressed in AF samples. As presented in Supplemental Fig. 2C, neutrophils 
were positively correlated with gamma delta T cells and negatively correlated with T regulatory cells. Activated 
mast cells were negatively correlated with resting mast cells. Analyses using ESTIMATE showed the distribution 
of immune/stromal scores at each site in AF and SR samples. The LAA samples from AF individuals had higher 
immune/stromal scores and reached statistical significance. There were no obvious differences between the RAA 
and SR groups (Fig. 2E–G). Interestingly, we found no differences in each immune cell type using ssGSEA (Sup-
plemental Fig. 2A,B). AF samples (LAA and RAA) and SR samples were not clearly clustered into two categories 
but were evenly distributed in the two clusters. AF samples in these two categories have different immune char-
acteristics (Fig. 2B). It is assumed that there are two different subtypes of nonparoxysmal AF.

Logistics regression analysis. In univariate logistics regression analysis, CD8 T cells (p = 0.06), regula-
tory T cells (p = 0.01), gamma delta T cells (p = 0.01), resting NK cells (p = 0.01), M2 macrophages (p = 0.01), 
resting mast cells (p = 0.11), activated mast cells (p = 0.01) and neutrophils (p < 0.01) were included in the next 
multivariable logistics regression analysis. Regulatory T cells (p = 0.0495), resting NK cells (p = 0.039), and acti-
vated mast cells (p = 0.016) were negatively associated with AF, and neutrophils (p = 0.010) were significantly 
positively correlated with AF in multivariable logistics regression analysis (Table 2).

Principal component analysis and differential analysis of expressed genes. As presented in 
Fig. 3A, there was no appreciable difference between RAA and SR. In differential expression analysis, we identi-
fied 251 DEGs in the ‘LAA vs. SR’ matrix, 101 DEGs in the ‘RAA vs. SR’ matrix and 30 DEGs in the ‘LAA vs. 
RAA’ matrix. There were no common DEGs among these three contrast matrices (Fig. 3C). DEGs are presented 
as a heatmap (Fig. 3D–F) and volcano diagram (Supplemental Fig. 3A–C). Similarly, AF samples (LAA and 
RAA) and SR samples were not clearly clustered into two categories and were evenly distributed in the two 
clusters (Fig. 3F). It could be speculated that differential analysis of the expression of genes is not an appropriate 
method for distinguishing nonparoxysmal AF subtypes. Significant differences in PITX2, BMP10, and HAMP 
are shown in Supplemental Fig. 3C. We obtained a reliable gene list by merging two contrast matrices for further 
research (Fig. 3B).

Identification of nonparoxysmal AF subtypes and their immune environment. Consensus clus-
tering analysis was performed to identify the subtypes of nonparoxysmal AF. According to the cumulative distri-
bution function (CDF) plots (Fig. 4A) and delta area plot (Fig. 4B), we clustered AF samples into 3 groups. The 
boundaries of these 3 clusters were clear. Clusters 1 and 3 accounted for the vast majority of nonparoxysmal AF 
samples (Fig. 4C,D), and we turned our attention to these two clusters. As demonstrated previously in Fig. 2C, 
M2 macrophages and T cells accounted for the majority of all types of immune abundance. B cells, NK cells and 
neutrophils represented a small minority (Fig. 4E). Further analyses of immune cluster characterization revealed 
no significant differences in neutrophils and resting mast cells among clusters 1 and 3. Gamma delta T cells 
were higher in cluster 1 than in cluster 3 (Fig. 4G). For the ESTIMATE scores, the cluster 1 samples had higher 
immune/stromal scores than the cluster 3 samples and reached statistical significance (Fig. 4F).

http://metascape.org/
http://metascape.org/
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Construction of the weighted coexpression network and identification of key modules. In this 
study, WGCNA was conducted twice for different purposes. In the first analysis, based on the reliable gene lists 
and cutoff value (cutHeight = 40, Fig. 5A), a total of 104 samples and 4790 genes were included in the WGCNA. 
Soft-threshold β = 5 was applied to construct a gene coexpression network (Fig. 5B). According to logistics results 
and the correlation between module eigengenes (MEs) and immune cluster characterization, the brown and tur-
quoise modules are thought to be closely related to the presence of AF (Fig. 5D). Because of the larger number of 
genes in the turquoise module (2748 genes, Fig. 5C), brown module genes were included in subsequent analyses. 
The brown modules showed a high positive correlation with T cells gamma delta (cor = 0.62; P = 5.2 ×  10−85, 
Fig. 5E) and T cells regulatory (cor = 0.76; P = 1.1 ×  10−112, Fig. 5F). In the second WGCNA, the top 25% (5548 
genes) of the variance in the 62 AF samples was included in the WGCNA. Soft-threshold β = 5 was applied to 
construct a gene coexpression network (Fig. 6B) and most of genes are in turquoise module (Fig. 6C). As shown 
in Fig. 6A, most samples from AF individuals were split into two different clusters, namely, clusters 1 and 3. It is 
striking that all samples included in cluster 3 come from individuals with permanent AF, and samples included 
in cluster 1 belong to all persistent AF and very few permanent AF patients. Most modules in cluster 1 showed 
a high positive correlation with the generated cluster, and most modules in cluster 3 were negatively associated 
with the generated cluster. Notably, the correlation in the green and turquoise modules was completely opposite 
between cluster 1 and cluster 3 (Fig. 6D). The turquoise module showed a high positive correlation with cluster 
1(cor = 0.92; P < 1.0 ×  10−200, Fig. 6E) and green module was associated with cluster 3 (cor = 0.76; P = 3.0 ×  10−116, 
Fig. 6F). These data suggest that gene sets from these two modules might perform distinct biological functions.

Figure 2.  Immune cluster characterization and cell abundance. (A) Relative expression of 17 immune 
cell abundance stacked column charts in each sample estimated using CIBERSORT. (B) Immune cluster 
characterization heatmap using ssGSEA (‘GSVA’ package). (C) Immune cell abundance histogram of all 
included samples estimated using CIBERSORT. (D) Immune cell abundance histogram of different groups 
estimated using CIBERSORT. (E) Stromal score of three different groups using ESTIMATE. (F) Immune score 
of three different groups using ESTIMATE. (G) ESTIMATE score of three different groups using ESTIMATE. 
Data are presented as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.
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Functional enrichment analysis. Functional enrichment analysis of the brown module in the first 
WGCNA offered an immune-related biological understanding of AF. The GO terms (Supplemental Fig. 4A) 
for biological processes (BP) were enriched mainly in leukocyte cell–cell adhesion, leukocyte proliferation and 
mononuclear cell proliferation. The molecular functions (MF) included immune receptor activity, antigen bind-
ing, and cytokine receptor activity (Supplemental Fig. 4B). The cellular components (CC) included the external 
side of the plasma membrane, secretory granule membrane and membrane raft (Supplemental Fig. 4C). For 

Table 2.  Logistics regression analysis.

Univariate logistics regression Multivariate logistics regression analysis

Cell type P value OR OR (95%CI) P value

B cells naive 0.67

B cells memory 0.94

Plasma cells 0.24

T cells CD8 0.06 3.07 ×  10−4 (3.89 ×  10−8, 1.20) 0.06343

T cells CD4 memory resting 0.65

T cells follicular helper 0.66

T cells regulatory Tregs 0.01 2.09 ×  10−8 (1.73 ×  10−16, 8.02 ×  10−1) 0.04954*

T cells gamma delta 0.01 2.59 ×  10−1 (1.51 ×  10−7, 7.01 ×  105) 0.85340

NK cells resting 0.01 7.52 ×  10−13 (6.31 ×  10−26, 1.22 ×  10−2) 0.03856*

NK cells activated 0.80

Macrophages M1 0.67

Macrophages M2 0.06 1.79 ×  101 (3.42 ×  10−3, 1.23 ×  105) 0.51019

Dendritic cells resting 0.84

Dendritic cells activated 0.90

Mast cells resting 0.11 1.52 ×  10−3 (3.51 ×  10−10, 2.88 ×  103) 0.38579

Mast cells activated 0.01 2.49 ×  10−7 (2.05 ×  10−13, 1.43 ×  10−2) 0.01566*

Neutrophils 0.00 1.08 ×  1012 (5.53 ×  103, 1.24 ×  1022) 0.00967*

Figure 3.  Principal component analysis and differential analysis of expressed genes. (A) Principal component 
analysis. (B) Venn plot of two contrast matrices (LAA vs. SR, RAA vs. SR). The numbers shown in circles are the 
adjusted P value < 0.05. (C) Venn plot of DEGs of three contrast matrices (LAA vs. SR, RAA vs. SR, and LAA vs. 
RAA). (D–F) Heatmap of DEGs (‘pheartmap’ package). (D) LAA vs. SR. (E) RAA vs. SR. (F) LAA vs. RAA.
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KEGG pathway enrichment analysis (Supplemental Fig.  4D), the brown module was significantly related to 
cytokine-cytokine receptor interactions, chemokine signaling pathways and Epstein-Barr virus infection.

Metascape analysis. To disclose the biological functional properties associated with the AF subtypes (clus-
ter 1, cluster 3), Metascape was conducted with the green and turquoise modules. As presented in Fig. 7B, blue 
links indicate the amount of functional overlap among these two gene lists. There are several common biologi-
cal functions between the green and turquoise modules. In the turquoise module, which is strongly positively 
correlated with cluster 1 and negatively correlated with cluster 3, the GO terms GO:0060326: cell chemotaxis, 
GO:0019221: cytokine-mediated signaling pathway, GO:0050801: ion homeostasis and the WikiPathways term 
WP: TYROBP causal network were enriched among the top 20 terms with the smallest p value. Similar pathways 
were not enriched in the green module (Fig. 7C). For better concise presentation of the correlation between 
the green and turquoise modules, the subset of representative terms was selected and visualized within Cyto-
space. Consistent with Fig. 7C, the top 20 biological functions with the smallest p value enrichment network 
were found in the turquoise module results (Fig. 7E,F). The major enrichment pathways were cell chemotaxis, 
cytokine-mediated signaling pathways, ion homeostasis and the TYROBP causal network (Fig. 7D).

Based on some understanding of the biological function of the turquoise module, we next focused on the 
green module. The PPI network of the green module was constructed, and the significant clusters were identified 
via the MCODE plugin. A total of 275 nodes and 730 edges were generated with the PPI network (Fig. 8A), and 
6 clusters were screened out (Fig. 8B). In addition, we performed PPI enrichment analysis from full nodes and 
only MCODE nodes. In full node enrichment analysis, the GO terms GO:0008380: RNA splicing, GO:0006397: 

Figure 4.  Identification of nonparoxysmal AF subtypes and their immune environment. (A) Cumulative 
distribution function (CDF) plots. (B) Delta area plot. (C) Consensus matrix plot (‘ConsensusClusterPlus’ 
package). (D) Principal component analysis of AF samples. (E) Immune cell abundance histogram in AF 
samples estimated using CIBERSORT. (F) Stromal/immune scores in three different clusters using ESTIMATE. 
(G) Immune cell abundance histogram of different clusters of AF samples estimated using CIBERSORT.
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mRNA processing, and GO:0000398: mRNA splicing via spliceosome were enriched (Fig. 8C), and the results 
of MCODE node analysis are shown in Fig. 8D.

Construction of the PPI network and hub gene identification. To identify the hub genes in two 
different AF subtypes. A Venn diagram was applied to locate the intersection of the three modules selected from 
the WGCNA. No gene was found in the intersection, and only five genes were found in common in the green and 
brown modules (Fig. 7A). Therefore, five common genes (JAM3, S100P, ARPC5, TRIM34, and GREB1L) were 
considered hub genes in one AF subtype. The intersection of selected modules (MEbrown and MEturquoise) 
was used to construct the PPI network. Altogether, 176 nodes and 1741 edges were generated with the PPI 
network (Fig. 9A). Five algorithms of CytoHubba, including Degree, MNC, EPC, Betweenness, and Stress, were 
used to identify the top ten hub genes in each algorithm (Fig. 9C). TYROBP, PTPRC, ITGB2, SPI1, PLEK, and 
CSF1R were identified as hub genes in the other subtype (Fig. 9B).

Discussion
Inflammation and its immune response play a significant role in the initiation and perpetuation of AF. Inflam-
mation pathways are associated with cardiac structural and electrical remodeling and  thrombogenesis3. However, 
the situation differs among atria. In a prospective-analysis study, the left atrial function index was associated 
with the incidence of AF. AF is considered a left atrial disease with subsequent changes occurring in the right 
 atrium18. Similarly, recent transcriptomic and proteomic analyses revealed that the expression program in the 
left atrium had undergone a significant change compared with that in the right  atrium19. Although inflamma-
tion has been closely correlated with AF, the efficacy of anti-inflammatory treatments in the clinic is far from 
satisfactory. Cortisol is the most widely prescribed drug and is a dose-dependent anti-inflammatory  medicine20. 

Figure 5.  Construction of the weighted coexpression network and identification of key modules (‘WGCNA’ 
package). (A) Sample dendrogram and trait heatmap. (B) The selection of the soft-thresholding power β. 
The red line was set at 0.85, and the soft-thresholding power β was 5. (C) Dendrogram of all the differentially 
expressed genes. (D) Module-trait relationships in the constructed network. According to the logistics results, 
the brown and turquoise modules are thought to be closely related to the presence of atrial fibrillation. (E,F) 
Scatter diagrams for module membership vs. gene significance of the disease state in the brown module.
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Low-dose hydrocortisone could prevent AF recurrence after radiofrequency catheter  ablation21. However, high-
dose cortisol did not bring more benefits but rather side  effects20. Statins, which serve as anti-inflammatory drugs 
inhibiting NOX2-NADPH oxidases, are similarly effective in preventing AF recurrence but are not currently 
used in treatment and  management22. Like the varied efficacy of immunotherapy for different immune subtypes 
in tumors, we speculated that the varied efficacy of anti-inflammatory drugs was due to the presence of different 
immune-related subtypes in nonparoxysmal AF. Therefore, we performed this study using comprehensive bio-
informatics analysis to further explore the relationship between inflammation and AF and identify the subtypes 
of nonparoxysmal AF. Interestingly, two nonparoxysmal AF subtypes we obtained are permanent and persistent 
AF. Samples included in cluster 1 belong to all persistent AF and very few permanent AF patients, and all samples 
included in cluster 3 come from individuals with permanent AF. In clinical practice, anti-arrhythmic drugs and 
ablation are applied in persistent AF, and rate control is only conducted in permanent  AF23. It is well known that 
there might be a longer duration of AF, and a worse cardiac state who suffer permanent  AF23. We speculated that 
the heart tissue in permanent AF exhibited a greater degree of inflammation than persistent patients. However, 
further analyses revealed that gamma delta T cells were higher in cluster 1 than in cluster 3, and the cluster 1 
samples had higher immune/stromal scores than the cluster 3 samples in ESTIMATE. It indicated that there 
was more active inflammation during the course of persistent AF. According to results of Metascape, cluster 1 
(persistent AF) was strongly positively correlated the GO terms GO:0060326: cell chemotaxis, GO: 0019221: 
cytokine-mediated signaling pathway, GO:0050801: ion homeostasis. And the cluster 3 (persistent AF) was 
associated with GO:0008380: RNA splicing, GO:0006397: mRNA processing, and GO:0000398: mRNA splicing. 
In conclusion, our results demonstrated that active inflammation promoted electrical and structural remodeling 
in progression of AF. However, when persistent AF turned to permanent AF, the inflammation remained a low 
and steady level.

Figure 6.  Construction of the weighted coexpression network and identification of key modules (‘WGCNA’ 
package). (A) Sample dendrogram and trait heatmap. The vast majority of samples were split into clusters 1 
and 3. (B) The selection of the soft-thresholding power β. The red line was set at 0.80, and the soft-thresholding 
power β was 5. (C) Dendrogram of all the differentially expressed genes. (D) Module-trait relationships in the 
constructed network. The correlation in the green and turquoise modules was completely opposite between 
cluster 1 and cluster 3. (E) Scatter diagrams for module membership vs. gene significance of the disease state in 
the turquoise module. (F) Scatter diagrams for module membership vs. gene significance of the disease state in 
the green module.
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Similarly, our results shed new light on the extent of inflammation and AF. In the immune characterization 
evaluation among different atria, we first identified the most relevant immune cell types by using CIBERSORT 
and logistics analysis (Table 2). We found that regulatory T cells (p = 0.0495), resting NK cells (p = 0.039), acti-
vated mast cells (p = 0.016), and neutrophils (p = 0.010) were significantly correlated with AF. These results 
supported the previous evidence. Activated mast cells exert structural remodeling actions by releasing profi-
brotic  mediators24, and activated mast cells take part in electromechanical remodeling of myocytes mediated 
by platelet-derived growth  factor25. Neutrophils, especially polymorphonuclear neutrophils, are believed to be 
causal factors for AF development and  maintenance4. Peroxidases such as myeloperoxidase (MPO) and reactive 
oxygen species (ROS) mainly come from neutrophils and have been shown to propagate atrial  remodeling26. 
Regulatory T cells were reported to attenuate ventricular remodeling induced by Angiotensin II in  mice27. 
However, the role of natural killer cells in AF has not been reported thus far. Natural killer cells are proposed to 
be proinflammatory immune cells and are associated with immune activation and cytokine  production28. Using 
the quantitative algorithm ESTIMATE, we found that LAA samples from AF individuals had higher immune/
stromal scores and reached statistical significance. There were no obvious differences between the RAA and SR 
groups (Fig. 2E–G). Similarly, in the PCA among atria, we found that there was no significant difference between 
RAA and SR (Fig. 3A). This finding provides supporting evidence that AF is a left atrial disease with subsequent 
changes occurring in the right atrium. Overall, no significant difference was detected between AF (LAA and 
RAA) and SR samples (Fig. 3A). This result supports the views that distinct molecular changes occur rapidly in 
progression to the early stage of persistent AF, and subtle molecular changes occur 1 year after persistent  AF19. 
As shown in Fig. 2 and Supplemental Fig. 2, we found that most major immune cells were present in both the 
LAA, RAA, and SR. Interestingly, we found no differences in each immune cell type using ssGSEA (Supplemental 
Fig. 2A,B). AF samples (LAA and RAA) and SR samples were not clearly clustered into two categories but were 

Figure 7.  Pathway enrichment analysis of AF subtype (Metascape (http:// metas cape. org/)). (A) Venn diagram 
of the three modules. Five common genes (JAM3, S100P, ARPC5, TRIM34, and GREB1L) were considered 
hub genes in one AF subtype. (B) Circos plot of the green and turquoise modules. Blue lines link the different 
genes and where they fall within the same ontology term. (C) Pathway enrichment analysis of the green and 
turquoise modules. Biological functions that were enriched in the top 20 genes with the smallest p value. (D–F) 
The enrichment network of the green and turquoise modules. (D) The nodes of the network are displayed as 
pies, and each pie sector is proportional to the number of hits originating from a gene list. (E) Different colors 
represent various enrichment pathways of the gene list in the turquoise module. (F) Different shades of color 
represent the degree of enrichment, the darker the color represents the higher the degree of enrichment.
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evenly distributed in the two clusters. AF samples in these two categories have different immune characteristics 
(Fig. 2B). We speculated that there might be two major subtypes in nonparoxysmal AF. Then, we obtained the 
most relevant gene module by using the WGCNA (Fig. 4D, brown module).

Likewise, a uniform distribution was similarly observed in the differential analysis of expressed genes 
(Fig. 3F). This finding further supported our hypothesis of the presence of subtypes in nonparoxysmal AF. 
Meanwhile, we identified PITX2, BMP10, and HAMP as significant DEGs with |logFC|> 2.0 in the ‘LAA vs. 
RAA’ matrix. PITX2 is one of the most important genes associated with AF by genome-wide association studies 
(GWAS), and its expression is largely limited in the left  atrium29. BMP10 is mainly regulated by PITX2 and is 
confined to the right atrium. The plasma concentrations of PITX2 and BMP10 could predict the risk of recurrent 
AF after  ablation30. The hepcidin gene (HAMP) is involved in the regulation of iron homeostasis, and mutation 
of HAMP causes cardiomyopathy and heart  failure31. Although there is no direct clinical evidence to prove the 
relationship between HAMP and AF, it has been stated that the risk of AF increased stepwise with increasing 
ferritin  concentration32.

Here, we conducted consensus clustering analysis and first obtained two major subtypes of nonparoxysmal 
AF. Cluster 1 and cluster 3 showed opposite gene profiles in the WGCNA modules. In particular, the correlation 
in the green and turquoise modules was completely opposite between cluster 1 and cluster 3 (Fig. 7D). These data 
suggest that gene sets from these two modules might perform distinct biological functions. Therefore, Metascape 
was used to disclose the biological functional properties associated with the AF subtypes (cluster 1 and cluster 3). 
We did not find enrichment of the same biological functions based on the top 20 genes with the smallest p values 
(Fig. 7C). In the turquoise module, cell chemotaxis, cytokine-mediated signaling pathways, ion homeostasis and 
the TYROBP causal network were enriched (Fig. 7D). In the green module, the pathways were associated with 
RNA splicing and mRNA processing (Fig. 8). In addition to the identification of subtypes, we also identified hub 
genes associated with both nonparoxysmal AF subtypes and immune cluster characterization. We obtained five 
common genes (JAM3, S100P, ARPC5, TRIM34, and GREB1L) as hub genes in the permanent AF subtype, and 
TYROBP, PTPRC, ITGB2, SPI1, PLEK, and CSF1R were determined to be hub genes in the persistent AF subtype.

Figure 8.  Pathway enrichment analysis of the green module (Metascape (http:// metas cape. org/)). (A) Protein–
protein interaction (PPI) network of the green module. (B) GO enrichment analysis for PPI network and its 
MCODE network components. (C) Top three best p-value terms retained from GO enrichment analysis for 
original PPI network and its MCODE network. (D) Top biological terms etained from GO enrichment analysis 
for only MCODE nodes network.
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In permanent AF subtype, five hub genes are closely related to cardiac structure, cytokine signaling in immune 
system, and ion homeostasis. JAM3 (junctional adhesion molecule 3) is a protein coding gene, playing a cru-
cial role in the hypoplastic left  heart33 and Tetralogy of  Fallot34. JAM3 is associated with extracellular matrix 
organization and responses to elevated platelet cytosolic  Ca2+33,34. S100P (s100 calcium binding protein p) is a 
member of the S100 family of proteins which relates to calcium ion binding and calcium-dependent protein 
 binding35. S100P serves as a calcium sensor and contribute to cellular calcium  signaling35. As for ARPC5 (actin 
related protein 2/3 complex subunit 5), it takes part in actin filament binding and serves as a structural constitu-
ent of cytoskeleton. When face to DNA damage, ARPC5 mediates the formation of branched actin networks 
in the cytoplasm and promote the movement of double-strand  breaks36. TRIM34 (tripartite motif containing 
34) is a member of the tripartite motif (TRIM) family. The expression of TRIM34 is up-regulated by interferon 
and it is believed in joining the defense against  infections37. GREB1L (GREB1 like protein) is a protein-coding 
gene, which is involved in early metanephros and genital. Recent study revealed that GREB1L is correlated with 
immune cell infiltration in lung  cancer38.

In persistent AF subtype, six hub genes are strongly correlated to immune signaling pathway. TYROBP 
is mainly expressed on immune cells, and it affects the immune response by modulating the immune cell 
 functions39. Similarly, PTPRC (CD45) is a common antigen of leucocytes and is expressed on almost all hae-
matopoietic cells except for mature erythrocytes. Disruption of CD45 would lead to immunodeficiency, auto-
immunity, or  malignancy40. ITGB2 (CD18) encodes an integrin beta chain and the encoded protein plays an 
important role in immune response. Loss of ITGB2 results in leukocyte adhesion  deficiency39,41. Previous study 
found activated ITGB2 transcription regulated macrophage trafficking and contributed to the pathogenesis of 
cardiac hypertrophy in mice  heart41. SPI1(Spi-1 proto-oncogene) encodes a transcription factor that activates 
gene expression during myeloid and B-lymphoid cell development. Interestingly, active SPI1 binds to RNA and 
may modulate pre-mRNA  splicing42. CSF1R (CD115) is the receptor for colony stimulating factor 1. The CSF1 
is a cytokine which controls the production, differentiation, and function of macrophages. Deletion of a CSF1R 
enhancer disrupts development of tissue macrophage  populations43. As for PLEK (Pleckstrin), it is a protein 
coding gene involved in response to elevated platelet cytosolic  Ca2+ and TYROBP causal network in microglia. 
PLEK is served as a substrate for protein kinase C (PKC) enzymes, and it takes part in cytoskeletal reorganiza-
tion, promoting cell–cell adhesion, and  migration44.

Our concerted use of these bioinformatics analyses identified two subtypes of nonparoxysmal AF and hub 
genes in each subtype. The findings might help predict the rate of nonparoxysmal AF progression and improve 
the efficacy of anti-inflammatory treatments in AF.

Figure 9.  Identification of hub genes. (A) Visualization of the protein–protein interaction (PPI) network of 
the coincident part of two modules (MEbrown and MEturquoise) and visualization results of five algorithms 
of CytoHubba (STRING (v11.0) and Cytoscape software (v3.8.2)). (B) Venn diagram among five algorithms 
of CytoHubba. The intersection presented the hub genes (TYROBP, PTPRC, ITGB2, SPI1, PLEK, and CSF1R) 
determined by five algorithms. (C) Top ten hub genes identified by five algorithms, including Degree, MNC, 
EPC, Betweenness, and Stress.
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Conclusions
This study revealed two major nonparoxysmal AF subtypes and eleven hub genes, which provide potential 
therapeutic targets for anti-inflammatory treatments of nonparoxysmal AF.

Data availability
The raw array data are available in the Gene Expression Omnibus database (GEO submission: GSE41177, 
GSE79768, GSE115574, and GSE31821).
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