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Vickers hardness prediction 
from machine learning methods
Viviana Dovale‑Farelo 1*, Pedram Tavadze 1, Logan Lang 1, Alejandro Bautista‑Hernandez 2 & 
Aldo H. Romero 1,2

The search for new superhard materials is of great interest for extreme industrial applications. 
However, the theoretical prediction of hardness is still a challenge for the scientific community, given 
the difficulty of modeling plastic behavior of solids. Different hardness models have been proposed 
over the years. Still, they are either too complicated to use, inaccurate when extrapolating to a wide 
variety of solids or require coding knowledge. In this investigation, we built a successful machine 
learning model that implements Gradient Boosting Regressor (GBR) to predict hardness and uses 
the mechanical properties of a solid (bulk modulus, shear modulus, Young’s modulus, and Poisson’s 
ratio) as input variables. The model was trained with an experimental Vickers hardness database of 
143 materials, assuring various kinds of compounds. The input properties were calculated from the 
theoretical elastic tensor. The Materials Project’s database was explored to search for new superhard 
materials, and our results are in good agreement with the experimental data available. Other 
alternative models to compute hardness from mechanical properties are also discussed in this work. 
Our results are available in a free‑access easy to use online application to be further used in future 
studies of new materials at www. hardn essca lcula tor. com.

Hardness is a measure of the resistance of a material to localized plastic deformation. Over the years, several 
hardness-testing techniques (like Brinell, Vickers, Knoop and Rockwell) have been developed, and each one 
has its own scale. However, the basic principle to measure hardness is to force an indenter into the surface to be 
tested under controlled load conditions. The larger the indentation, the softer the material. The depth and size 
of the indentation are then converted into a hardness number. In this work we will focus on Vickers hardness, 
which is one of the most popular techniques given that it is experimentally easy to calculate and can be used for 
all materials regardless of hardness. Vickers hardness test uses a very small diamond indenter with a pyramidal 
geometry that has an angle of 136◦ between the plane faces of the indenter tip. The Vickers hardness measure-
ment is determined by the following ratio:

where F is the applied force (kgf) and d is the average length of the diagonal left by the indenter (mm).
The search for new materials with superior hardness has generated considerable interest in the scientific com-

munity for many  years1–3. These materials are needed in extreme industrial applications, such as hard cutting 
tools, abrasion, and wear-resistant coatings. Traditionally, diamond, titanium nitride, and cubic boron nitride 
(c-BN) are the preferred materials for these applications. However, they have limitations due to the difference in 
the chemical bonding character and chemical reactivity. For example, diamond reacts with iron, and the synthesis 
process of the first two materials requires high-pressure and high-temperature conditions making them  costly4.

First principle methods have demonstrated to be viable for predicting many physical properties of materi-
als. Among many existing techniques, density functional theory (DFT) stands out for its practical and helpful 
approach to solving condensed matter systems. DFT has become a primary tool for calculating crystal struc-
tures and elastic properties of a wide range of materials with remarkable success when comparing the results to 
 experiment5. However, predicting hardness from ab initio calculations is not a trivial task. Hardness is a measure 
of the resistance of a solid to plastic  deformation6. Despite its success in calculating elastic properties, DFT cannot 
predict a solid’s plastic behavior directly.

In recent years, correlations between the elastic properties and the plastic behavior of materials have been 
established to evaluate the hardness from a theoretical  approach4,7,8. A hard material will exhibit a slight indenta-
tion. The observed shape can be correlated to the elastic response a hard material should have: be incompressible 

(1)Hv = 1.854F/d2,
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(high bulk modulus), not deform in a direction different from the applied load (high shear modulus), and not 
distort plastically (strong directional bonds that prevent the creation and motion of dislocations)4. The Poisson’s 
ratio relates the bulk modulus and the shear modulus. A high shear modulus requires a high bulk modulus and 
a small Poisson’s ratio. A low value for the Poisson’s ratio results from directional bonds in the  crystal4,8. For 
example, the Poisson’s ratio for diamond is 0.07, 0.1 for a typical covalent material, and 0.3 for an ionic  one8. On 
the other hand, the resistance of a material to plastic deformation depends on the chemical environment of the 
crystal; a material with short covalent bonds will minimize the activation and mobility of dislocations enhanc-
ing the hardness. Thus, covalent materials are generally harder than ionic or  metallic4. Given the complexity of 
the problem, there is no universal method that predicts hardness accurately from previously known properties 
of a material.

With these ideas in mind, several semi-empirical relations between hardness and elastic properties of materi-
als have been proposed over the  years7,9–12. Usually, these correlations reasonably agree with the experiment for 
a specific set of materials, but they would not hold when extrapolating to a wide variety of solids.

In this investigation, we proposed various models to compute hardness using the mechanical properties of 
a solid. The mechanical properties (bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio) were 
obtained from the theoretical elastic tensor. As shown in Fig. 1, we used two approaches: classic and machine 
learning (ML).

In the classic approach we studied the six different macroscopic relations for hardness nicely presented by 
Ivanovskii in Ref.13, listed in Eqs. (2)–(7), with a database of more than 140 materials. These relations depend 
solely on mechanical properties. We calculated the Vickers hardness ( Hv ) using the six relations and compared 
the results with the experiment to evaluate which method is more suitable for each material kind. We observed 
the correlation between the six different hardness relations and some physical properties of solids (crystal system, 
bandgap, and density). From this approach, we developed The Classic Calculator, a selection model of the best 
relation to compute hardness based on simple properties of a solid.

Given the exponential growth in computing power and the development of highly efficient algorithms, 
machine learning is used today to solve numerous kinds of  problems14. In the second part of this study, we 
built a successful machine learning regression model (GBR) to predict the value of hardness directly using the 
mechanical properties of a solid as input variables. This model demonstrated the highest predicting power among 
all proposed models in this work. However, given that many scientists use machine learning with hesitation, 
we also created a classification ML model (GBC) that predicts the best relation to compute hardness with the 
same data and input variables. This method allows users to select the best relation to compute hardness using 
the robustness of modern ML algorithms without losing track of the physics behind the calculation. Both ML 
models, GBR and GBC, are referred to as The Machine Learning Calculator in this work.

Both, classic and ML schemes, are discussed, compared to each other, and used successfully to predict new 
hard and superhard materials. In general, The Machine Learning Calculator has proven to be more accurate than 
The Classic Calculator. However, both schemes have demonstrated superior predicting power. The most accurate 
model was proven to be the machine learning GBR, followed by GBC, and the classic model that uses crystal 
system and density simultaneously.

This investigation aims to provide valuable tools for the theoretical prediction of hardness. The Hardness 
Calculator, which includes classic and ML predictors, is presented in a free access online application for users to 
discriminate between the different available results. We believe The Hardness Calculator stands out among other 
methods proposed in the past because: (1) it can be used for a wide variety of solids, (2) it’s easy to use, (3) it is 
available for everyone as a free-access website that does not require any coding knowledge, (4) and it provides 
different hardness models simultaneously. Even though GBR is the recommended model in this work, users have 
the option to consider GBC or any of the classic calculators instead.

Methods
For most of the database, the elastic tensor was extracted from the Materials Project’s  database15, while for a few 
materials (18), it was calculated using first principles. The latter materials were added to the database to ensure a 
wide variety of materials for the study. The subsequent elastic properties: bulk modulus (B), shear modulus (G), 
Young’s modulus (Y), and Poisson’s ratio ( ν ) were calculated using the MechElastic  package16. The detailed 
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Figure 1.  Conceptual diagram of the hardness calculator.
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database used in this investigation, including the experimental hardness and the mechanical properties, is pre-
sented in the supplemental information.

The first-principles calculations were performed within the framework of  DFT17. The exchange and cor-
relation effects were treated using the Generalized Gradient Approximation (GGA) with the parameterization 
of Perdew–Burke–Ernzerhof (PBE)18. The valence electrons wave functions were described by the projector 
augmented-wave method (PAW)19. The cutoff energy and the gamma-centered k-point  mesh20 were converged 
in each case to assure a maximum error of 1 meV/atom. The self-consistent electronic loop was set to a maxi-
mum total energy difference of 10−6 eV. The calculations were performed using the Vienna Ab initio Simulation 
Package (VASP)21–24.

Semi‑empirical relations for hardness. For each material, the Vickers hardness was estimated using the 
following six different semi-empirical relations:

Each result was compared to the experimental value in order to determine the absolute error in each calcula-
tion. The absolute error was defined as the absolute value of the difference between the experimental ( Hexp ) and 
the predicted ( Hpred ) Vickers hardness as shown in the following equation.

For example, diamond is known as the hardest bulk material with an experimental Vickers hardness of 96 
GPa. From the elastic tensor provided in the Materials Project’s database (mp-66), we calculated its theoretical 
bulk modulus ( B = 435 GPa), shear modulus ( G = 521 GPa), Young’s modulus ( Y = 1117 GPa), and Poisson’s 
ratio ( ν = 0.07 ). Using these results, it’s possible to estimate the hardness of diamond using the six relations 
listed in Eqs. (2)–(7) as follows: H1a = 76.8 GPa, H1b = 67.8 GPa, H2 = 89.3 GPa, H3 = 70.9 GPa, H4 = 58.3 
GPa and H5 = 93.0 GPa. As observed, some relations work better than others. The absolute error (Eq. 8) reveals 
the accuracy of each relation when predicting hardness of a given material. For the case of diamond, the best 
relation to estimate hardness is H5 because it exhibits the lowest absolute error (3.0 GPa).

To determine which hardness calculation method is more suitable for each type of material, they were clas-
sified by crystal system, electronic bandgap ( �E ), and density ( ρ ). According to the bandgap, materials were 
defined as insulators ( �E > 2eV  ), semiconductors ( �E < 2eV  ) and metals ( �E = 0 ). Additionally, the com-
pounds were arranged by low ( ρ < 4 g/cm3 ), medium (4 g/cm3 ≤ ρ ≤ 9 g/cm3 ) and high density ( ρ > 9 g/
cm3 ). Each of these models was analyzed and compared to each other to establish which is more effective in 
minimizing the mean absolute error (MAE) in the hardness calculation. The MAE is defined in Equation 9, 
where N is the number of samples.

Further correlations, including two variables simultaneously (Crystal System + Bandgap, Crystal System + Density, 
and Bandgap + Density), were also studied.

Machine learning. To find a methodology that predicts the hardness based on different elastic properties, 
we have used diverse supervised learners, where hardness is the expected output, and the user needs to provide 
the mechanical properties of a solid (B, G, Y, ν ) as input variables. There are two types of supervised learning 
techniques: classification and regression. In this study, the classification algorithms target the best hardness cal-
culation relation ( H1a , H1b , H2 , H3 , H4 , or H5 ), while the regression algorithms aim to predict the value of hard-
ness directly. Therefore, to generate and compare different algorithms, the created experimental database of 143 
materials was split into train and test sets, where the train set has 80% of the data, and the test set the remaining 
20%. This approach is essential to have an out-of-sample accuracy.

Classification. Supervised learning classification algorithms such as K-Nearest Neighbors (KNN), Decision 
Trees (DT), Logistic Regression (LR), Support Vector Machines (SVM), Random Forest (RF), AdaBoost (ADA), 

(2)H1a = 0.1475× G → Ref .7

(3)H1b = 0.0607× Y → Ref .7

(4)H2 = 0.1769× G − 2.899 → Ref .9

(5)H3 = 0.0635× Y → Ref .10

(6)H4 =
(1− 2ν)B

6 (1+ ν)
→ Ref .11

(7)H5 = 2(k2G)0.585 − 3; k = G/B → Ref .12.

(8)Absolute Error = |Hexp −Hpred |.

(9)MAE =
1

N

∑

N

|Hexp −Hpred |.
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and Gradient Boosting Classifier (GBC) were used to generate algorithms capable of predicting the best hard-
ness calculation relation given the mechanical properties of a material (B, G, Y, and ν ) as an  input25.

KNN finds the k closest training examples (k is the number of nearest neighbors) and assigns the new object 
with the most common class among its k nearest neighbors. DT is an algorithm that splits the data according to 
certain parameters, in this case the mechanical properties. LR works with the probability of an object belonging 
to a certain class. SVM is an algorithm that classifies cases by finding a separator or a boundary. RF is built by a 
multitude of decision trees, and the output is the class selected by most trees. ADA is built by a multitude of weak 
learners each one with a different weight, and the output is the class that gets the most points in the weighted 
sum. Gradient boosting (GBC for classification tasks) is an ensemble of decision trees that are built subsequently 
based on the errors of the previous tree. All trees have equal saying in the final output.

The KNN algorithm was optimized for a k-parameter of three neighbors. The DT classifier was defined for 
a maximum tree depth of three. The inverse of regularization strength for LR was set to 0.01, and the solver 
liblinear was used given it is the best for small datasets. The SVM was trained with the Radial Basis Function 
kernel. The RF was built with a maximum tree depth of two and a random seed of zero. The ADA classifier was 
set with a maximum number of estimators equal to 100 and a zero random seed. The GBC was parameterized 
with 100 estimators, a maximum depth of the individual regression estimators of 1, a learning rate of 0.6, and a 
random seed of zero. The rest of the parameters have default values in all cases.

The different classifiers were compared using out-of-sample accuracy and Jaccard index. These metrics are 
defined as follows:

where N is again the number of samples, ŷ are the predicted labels, and y are the actual labels. The MAE was 
also computed in each case.

Regression. Gradient boosting can be used in regression and classification tasks. To predict the hardness 
directly, the Gradient Boosting Regressor (GBR) was  implemented25. GBR is a supervised learning regression 
technique that creates a prediction model with the same input variables used before (B, G, Y, ν ). The algorithm 
was only parameterized with a random seed of zero. All the other parameters have default values. The MAE was 
also computed to measure the accuracy of the model.

Results and discussion
Comparing different relations of hardness. We started by defining the best hardness calculation rela-
tion based on the crystal system. As observed in Table 1, for the 143 structures considered in this study, relation 
H1a is the most accurate, with an MAE of 3.3 GPa. This relation is also the preferred one for cubic structures. 
Nevertheless, some crystal systems work better with other approximations. The hexagonal, monoclinic, and 
tetragonal groups prefer the H4 relation, while the orthorhombic and trigonal types minimize their MAE by 
using H2 . The triclinic group works better with the H5 relation. Calculating the hardness with the selected rela-
tion for each crystal type reduces the general MAE from 3.3 to 3.0 GPa.

As observed, systems with all lattice parameters equal to each other (cubic and trigonal) work successfully 
with relations of hardness that depend solely on the shear modulus ( H1a and H2 respectively). On the other 
hand, systems with all angles equal to 90◦ (cubic, orthorhombic and tetragonal) do not display such a clear 
trend. While cubic and orthorhombic systems also work better with the shear modulus ( H1a and H2 ), tetragonal 
systems prefer a combination of the bulk modulus and Poisson’s ratio ( H4 ), and the shear modulus appears as the 
second-best option ( H1a ). Nevertheless, the latter results suggest that, in general, for high-symmetry systems, 

(10)Accuracy =
1

N

∑

N

1(ŷi = yi),

(11)Jaccard index =
y ∩ ŷ

y ∪ ŷ
,

Table 1.  Hardness MAE (GPa) for various materials classified by crystal system, using six different semi-
empirical relations. Materials specifies the number of compounds considered for each crystal system. The Min 
Error value corresponds to the method that minimizes the error in each case.

Cubic Hexagonal Monoclinic Orthorhombic Tetragonal Triclinic Trigonal General

Materials 55 18 8 27 15 5 15 143

Error H1a 2.9 3.6 3.3 4.6 2.2 1.4 4.3 3.3

Error H1b 3.3 3.4 3.5 5.0 2.4 1.5 5.0 3.7

Error H2 3.0 5.2 2.9 4.5 2.9 1.9 3.2 3.5

Error H3 3.3 4.1 3.9 5.2 2.7 1.6 4.9 3.9

Error H4 4.3 2.8 2.3 5.4 1.6 1.3 6.4 4.0

Error H5 3.1 5.2 3.9 5.5 3.7 1.2 5.0 4.1

Min Error 2.9 2.8 2.3 4.5 1.6 1.2 3.2 3.0
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the shear modulus is a good descriptor of hardness. Perhaps, it is simple to capture the overall rigidity of a solid 
in a single parameter if the system is highly-symmetric.

On the other hand, systems with two of their lattice parameters equal to each other and well-defined angles 
(hexagonal and tetragonal) exhibit an inclination toward a combination of the bulk modulus and Poisson’s ratio 
( H4 ). Notably, having an expression that depends simultaneously on these two parameters provides significant 
flexibility in describing the rigidity of a solid in these cases.

Finally, low-symmetry systems, with all lattice parameters different from each other and at least one angle 
different from 90◦ (monoclinic and triclinic), exhibit a preference for the combination of the bulk modulus with 
another property. Monoclinic structures work better with the combination of bulk modulus and Poisson’s ratio 
( H4 ), while triclinic structures prefer the combination of bulk and shear modulus ( H5).

Similar to the previous discussion, additional analyses were performed but now considering different elec-
tronic bandgaps (insulators, semiconductors, and metals) and density (low, medium, and high) as criteria to 
distinguish the elastic response. The general MAE was 3.0 GPa and 2.6 GPa, respectively.

Table 2 displays the details for the bandgap classification. The best approach for insulators is H2 , while for 
semiconductors is H1a , and for metals H4 . These results indicate that for insulators and semiconductors, the 
shear modulus is a better descriptor of hardness, while metallic systems work better with a combination of bulk 
modulus and Poisson’s ratio. The latter result suggests that the shear modulus can capture a solid’s overall rigidity 
when it is composed of strong directional atomic bonds.

Table 3 presents the details for the density analysis. Materials with a low density behave better with the H2 
approximation, while materials with medium or high-density incline for H4 . This observation aligns with the 
previous findings, given that low-density materials usually have strong directional bonds and small packing 
factors, while high-density materials have metallic bonds and close-packed crystal structures.

A similar exercise including two variables simultaneously was executed to minimize the absolute error. Table 4 
presents the results for the different single and combined methods. The first row presents the best possible result; 
when the hardness of each material is calculated with the relation ( H1a , H1b , H2 , H3 , H4 , or H5 ) that minimizes 
the absolute error in each case. The MAE column suggests that the best mode to reduce the hardness calculation 
error is to simultaneously consider the Crystal System and Density classification (CLA2 ). This model exhibits 
the lowest MAE of 2.2 GPa with a standard deviation of 2.2 GPa. The second best combination is Crystal System 
and Bandgap (CLA1 ) followed by Bandgap and Density (CLA3).

The classic calculator. Even though the combination of Crystal System and Density exhibits the best result, 
the data presented in Table 4 reveals no statistical significant difference among the three combined methods 

Table 2.  Hardness MAE (GPa) for various materials classified by bandgap (Insulators, Semiconductors and 
Metals), using six different semi-empirical relations. Materials specifies the number of compounds considered 
in each classification. The Min Error value corresponds to the method that minimizes the error in each case.

Insulator Semiconductor Metal General

Materials 22 53 68 143

Error H1a 3.9 3.3 3.1 3.3

Error H1b 4.9 3.6 3.3 3.7

Error H2 2.6 3.4 3.9 3.5

Error H3 4.7 3.7 3.7 3.9

Error H4 7.5 4.1 2.8 4.0

Error H5 4.5 3.8 4.2 4.1

Min error 2.6 3.3 2.8 3.0

Table 3.  Hardness MAE (GPa) for various materials classified by density (High, Medium and Low), using 
six different semi-empirical relations. Materials specifies the number of compounds considered in each 
classification. The Min Error value corresponds to the method that minimizes the error in each case.

Low Medium High General

Materials 26 94 23 143

Error H1a 5.3 2.9 2.8 3.3

Error H1b 6.7 3.0 2.9 3.7

Error H2 3.5 3.4 4.1 3.5

Error H3 6.1 3.4 3.4 3.9

Error H4 11.4 2.3 2.7 4.0

Error H5 4.6 4.1 3.5 4.1

Error H5 4.6 4.1 3.5 4.1

Min Error 3.5 2.3 2.7 2.6
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(CLA1 , CLA2 and CLA3 ). Based on the latter observation, The Classic Calculator was developed as a selection 
model considering simple properties of a solid like crystal system, bandgap, and density.

Table 5 summarizes the results considering the crystal system and the bandgap simultaneously. This table 
presents the relation that minimizes the error in the hardness calculation based on these two criteria. Figure 2a 
compares the experimental with the theoretical data calculated using this method. Most data points lie close 
to the red line, indicating that the calculated values greatly resemble the experimental data. The coefficient of 
determination ( R2 = 0.95 ) between the observed and estimated values also shows a strong correlation validat-
ing the model.

Similarly, Table 6 presents the results of simultaneously considering the crystal system and density, and Table 7 
the bandgap and density. Any of the three different approaches of the The Classic Calculator can be used to select 
a proper relation for calculating hardness depending on the available information.

For example, diamond is a low-density ( ρ = 3.5 g/cm3 ) insulator ( �E = 4.3 eV) with a cubic crystal system 
( ρ and �E correspond to theoretical values extracted from the Materials Project’s database). Table 5 displays the 
classic calculator considering crystal system and the bandgap simultaneously (CLA1 ). In the case of diamond, the 
latter suggests using relation H2 (89.3 GPa) to estimate the hardness of diamond. Table 6 is the classic calculator 
considering crystal system and density simultaneously (CLA2 ). For diamond, CLA2 suggests using relation H5 
(93.0 GPa) to compute hardness. Table 7 shows the classic calculator built upon bandgap and density (CLA3 ). In 
the case of diamond CLA3 recommends using relation H2 (89.3 GPa) for hardness. As observed the three classic 
models display very similar results, but one can be more accurate than the other. Given the experimental Vick-
ers hardness of diamond is 96 GPa, CLA2 exhibits the best prediction, which agrees with the results presented 
in Table 4. However, any of the classic models may be used to estimate hardness depending on the available 
information.

The machine learning calculator. 
Table 8 displays the performance of different supervised machine learning techniques when trying to solve the 
hardness problem. The results for seven different classification methods and one regression algorithm are shown 
and compared to each other.

Classification. The classification algorithms target the best calculation relation in each case. As observed 
in Table 8, GBC (31%) and DT (31%) have the highest accuracy, followed by KNN (21%). The Jaccard index 
reflects, almost identically, the same behavior. At first glance, 31% accuracy may suggest a low performance. 
However, this not necessarily means the classifier did a poor job because some materials can work successfully 
with two, three, or four hardness relations. Therefore, to keep a more balanced measure of the performance of 
the different classifiers, we have selected the best by minimizing the MAE. GBC presented the lowest MAE (1.4 
GPa), followed by KNN (2.3 GPa), DT (2.9 GPa) and SVM (2.9 GPa). Also, GBC (1.9 GPa) exhibited the lowest 
standard deviation, followed by KNN (2.9 GPa) and SVM (3.2 GPa). Based on the latter results, it is indisputable 
that GBC is the best classifier, given its higher accuracy and low MAE.

GBC is a very sophisticated technique, so it is not surprising that it outperforms KNN or DT. However, it is 
remarkable to observe that even though KNN has a lower accuracy, its MAE is smaller than DT. This confirms 

Table 4.  Comparison of the hardness MAE (GPa) and standard deviation σ (GPa) for various classification 
methods. Accuracy was calculated with respect to the best possible result.

Classification method MAE σ Accuracy

Best possible result 1.0 1.2 100%

Crystal system 3.0 3.2 23%

Bandgap 3.0 3.7 24%

Density 2.6 2.7 31%

Crystal system + bandgap (CLA1) 2.3 2.7 34%

Crystal system + density (CLA2) 2.2 2.2 34%

Bandgap + density (CLA3) 2.5 2.9 36%

Table 5.  The Classic Calculator considering crystal system and bandgap simultaneously (CLA1 ). Bandgap 
( �E ) was calculated theoretically. Materials are classified as insulators ( �E > 2eV  ), semiconductors 
( �E < 2eV  ) and metals ( �E = 0).

Cubic Hexagonal Monoclinic Orthorhombic Tetragonal Triclinic Trigonal

Insulator H2 H1b H2 H2 H4 H5 H2

Semiconductor H5 H1a H4 H2 H1a H5 H2

Metal H1a H4 H4 H4 H4 H4 H2
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Figure 2.  Comparison of the experimental Vickers hardness with the predicted values using: (a) The Classic 
Calculator as presented in Table 5 (CLA1 ), (b) The Machine Learning Calculator using GBC and (c) GBR.

Table 6.  The Classic Calculator considering crystal system and density simultaneously (CLA2 ). Materials are 
classified by density ( ρ ) as low ( ρ < 4 g/cm3 ), medium (4 g/cm3 ≤ ρ ≤ 9 g/cm3 ) and high density ( ρ > 9 g/
cm3).

Cubic Hexagonal Monoclinic Orthorhombic Tetragonal Triclinic Trigonal

Low H5 H1b H1b H2 H2 H5 H2

Medium H1a H4 H4 H4 H4 H4 H4

High H1a H4 H1a H3
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the fact that materials with similar mechanical properties will work adequately with the same relation to estimate 
hardness ( H1a , H1b , H2 , H3 , H4 , or H5 ). On the other hand, DT had the same accuracy as GBC, but its MAE is 
very high, implying that for the unsuccessful samples the algorithm had a poor performance.

Figure 2b shows the experimental and predicted values of hardness using GBC. As observed, there is a clear 
linear trend corroborated by the coefficient of determination ( R2 = 0.98 ). Also, the dispersion of the data points 
in Fig. 2b is less than the one observed in Fig. 2a, suggesting that the GBC provides a better model for future 
forecasts than The Classic Calculator.

Regression. The results in the previous section show that the Gradient Boosting Classifier (GBC) is the best 
algorithm to select the hardness calculation relation given the properties of a solid. Gradient boosting is a robust 
algorithm used for regression or classification tasks. Given that the classifier did such an outstanding job, the 
Gradient Boosting Regressor (GBR) was implemented to predict the value of hardness directly in this study. As 
observed in Table 8, the performance of the regressor is better than the classifier. While the regressor displays 
a MAE of 1.3 GPa, the classifier shows 1.4 GPa, a small difference of 0.1 GPa that favors the regressor over the 
classifier. Additionally, the standard deviation of the regressor and the classifier have the same value, suggesting 
an overall better prediction by the regressor.

Comparing the MAE of GBR (1.3 GPa) with the best possible result (1.0 GPa) shown in Table 4, it is clear that 
the GBR works effectively predicting the value of hardness, followed by the GBC (1.4 GPa) and KNN (2.3 GPa). 
Also, GBR (1.9 GPa) and GBC (1.9 GPa) display the lowest standard deviation among all the ML techniques 
explored in this work, followed by KNN (2.9 GPa) and SVM (3.2 GPa). The standard deviations of GBR and 
GBC are only 0.7 GPa above the best possible result (1.2 GPa), a small value compared to the results exhibited by 
other methods. The latter results demonstrate that GBR has the best performance among all the ML algorithms 
evaluated in this work. Consequently, GBC holds second place, followed by KNN.

In the case of diamond, the classification algorithms KNN, DT, LR, SVM, RF, and GBC predicted the best 
relation is H5 (93.0 GPa), while ADA inclined towards H2 (89.3 GPa). On the other hand, the regressor GBR 
directly predicts a value of 95.9 GPa.

Figure 2c displays the experimental and predicted values of hardness using GBR. As observed most of the 
data points lie very close to the red line, minimizing the dispersion of the data. The coefficient of determination 
in this case ( R2 = 0.99 ) is very close to 1.0, indicating that the statistical model predicts hardness successfully. 
In Fig. 2c we can observe that GBR manages to correct some data points that were not predicted correctly nei-
ther by CLA or GBC. Given these observations, we recommend GBR as the most reliable method for predicting 
hardness, among all the different techniques proposed in this study.

Prediction of hard and superhard materials. The Materials Project’s database was explored for com-
pounds with the computed elastic tensor. Approximately 12,000 materials meet the criteria. The mechanical 
properties (B, G, Y, ν ) were calculated for each one of them using the MechElastic  package16. The materi-
als were further classified (by crystal system, density, and bandgap) using the theoretical data provided by the 

Table 7.  The Classic Calculator considering bandgap and density simultaneously (CLA3 ). Materials are 
classified by bandgap ( �E ) as insulators ( �E > 2 eV), semiconductors ( �E < 2 eV) and metals ( �E = 0 ); and 
by density ( ρ ) as low ( ρ < 4 g/cm3 ), medium (4 g/cm3 ≤ ρ ≤ 9 g/cm3 ) and high density ( ρ > 9 g/cm3).

Low Medium High

Insulator H2 H2

Semiconductor H5 H4 H3

Metal H2 H4 H4

Table 8.  Machine learning for hardness prediction. Out-of-sample accuracy and Jaccard index for different 
machine learning algorithms. The MAE (GPa) and standard deviation σ (GPa) consider the entire dataset. 
Classification algorithms (C) target the best calculation relation, and the regression algorithms (R) the 
hardness value directly.

Algorithm Type Accuracy Jaccard MAE σ

KNN C 21% 12% 2.3 2.9

DT C 31% 18% 2.9 3.7

LR C 14% 7% 3.5 4.4

SVM C 14% 7% 2.9 3.2

RF C 14% 7% 3.3 4.3

ADA C 7% 4% 3.9 4.0

GBC C 31% 18% 1.4 1.9

GBR R n/a n/a 1.3 1.9
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Materials Project. The hardness was estimated using the Classic and the Machine Learning Calculator. Figure 3 
presents the histogram for the predicted values of hardness for the Materials Project’s database. As observed, 
most materials (78.2%) exhibit hardness values below 10 GPa, and 18.2% have hardness values between 10 and 
19 GPa. Hard materials, with values between 20 and 39 GPa, represent only 3.5% of the database. Superhard 
materials, those that exhibit Vickers hardness above 40  GPa41, are very scarce; only 0.2% of the materials in the 
database are candidates to be superhard.

Table 9 presents some of the materials predicted to be hard and superhard using The Hardness Calculator. 
From this list, we found that five materials have experimental hardness measurements, ten have been predicted 
to be hard by other authors, and the remaining sixteen are predicted to be hard within this work.

The compounds BN, Be2C , Si3N4 , VB2 and HfB2 have been previously synthesized and were predicted to be 
superhard at least by one of the methods presented in Table 9. Even though, in general, the experimental values 
are slightly below the predictions, BN is experimentally superhard, and the rest of the materials are hard, cor-
roborating the goodness of the methods implemented in The Hardness Calculator.

In agreement with our predictions, other theoretical studies have suggested that C3N4 , BC2N and CN2 are 
excellent candidates to be superhard materials. From first-principles calculations, Teter et al. predicted a cubic 
form of C3N4 with a zero-pressure bulk modulus exceeding that of diamond. The authors suggested that this 
phase could potentially be synthesized for use as a superhard  material31. Also, Hong Sun et al. studied different 
cubic BC2N structures from ab initio  methods32. The authors stated that the two hardest c-BC2N structures have 
bulk and shear moduli comparable to or slightly higher than c-BN, suggesting these compounds are superhard. 
They also believe these structures are similar to c-BC2N synthesized by Knittle et al.42. However, the experimen-
tal hardness of this compound is still unknown. Finally, Quan Li et al. predicted the body-centered tetragonal 
structure of CN2 from first  principles33. The authors simulated a hardness of 77 GPa for this compound, indicating 
that it has excellent incompressible and superhard properties. Similarly, other authors have suggested that BeCN2 , 
B2CN , ReN2 , TcOs3 , CrC, TcB2 , and ReC are good candidates for hard materials. All these observations suggest 
that the methods implemented in The hardness calculator are coherent with the findings in previous studies.

To our knowledge, the remaining sixteen materials proposed to be hard in this work have not yet been studied 
for hardness. We hope this work motivates the experimental study of these compounds.

Website. The Hardness Calculator is a standalone online application created for simple analysis of hardness 
(available at https:// www. hardn essca lcula tor. com). It is a user-friendly interface that requires mechanical prop-
erties as an input to compute the hardness of a material. The program displays the hardness values calculated by 
The Machine Learning Calculator ( HGBC and HGBR ) as well as all the other values of hardness estimated by the six 
different relations described in Sect. 2.1 ( H1a , H1b , H2 , H3 , H4 , and H5 ). If the user provides the crystal system, 
density and/or bandgap, the program will also indicate the preferred relation to estimate hardness according to 
The Classic Calculator.

Conclusions
In this study, we have discussed several methodologies to compute hardness using the mechanical properties 
of a solid (bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio) as input variables. We have 
approached the hardness estimation problem from two different perspectives.

In the first approach, we investigated the correlation between different hardness relations ( H1a , H1b , H2 , H3 , 
H4 , and H5 ) and some physical properties of solids, such as crystal system, bandgap, and density. From this first 
part, we developed The Classic Calculator, which is a selection model based on the simple properties of a solid. 
The best results were observed considering two properties simultaneously: Crystal System + Bandgap, Crystal 
System + Density, or Bandgap + Density. The MAE (standard deviation) in the hardness calculation for each one 
of these methods is 2.3 GPa (2.7 GPa), 2.2 GPa (2.2 GPa), and 2.5 GPa (2.9 GPa), respectively. Even thou the 
combination of Crystal System + Density exhibits the better performance among the three approaches, there is 

Figure 3.  Histogram of the hardness values estimated using The hardness calculator for the Materials Project’s 
 database15.

https://www.hardnesscalculator.com
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no significant statistical difference between these methods; any of them can be used to select the proper relation 
to calculate hardness depending on the available information.

The second approach is based on Machine Learning and is referred to as The Machine Learning Calculator. 
We proposed two models to compute hardness using ML: a classifier (GBC) and a regressor (GBR). The classi-
fier targets the best relation to calculate the crystal hardness using the mechanical properties of a solid as input 
variables. On the other hand, the regressor directly predicts the hardness value using the same input variables 
as the classifier. GBC and GBR display a MAE (standard deviation) of 1.4 GPa (1.9 GPa) and 1.3 GPa (1.9 GPa), 
respectively. GBR displays the best performance among all the different techniques studied in this work.

The Hardness Calculator, composed of classic and ML schemes, was used to search for hard and superhard 
materials within the Materials Project’s database. This exploration demonstrated that The Hardness Calculator 
shows great predictive power as our results match other experimental or theoretical studies. As a result, sixteen 
materials were proposed as new hard or super hard candidates by this work.

The Hardness Calculator is available as a free access online application for users to discriminate between the 
different results at https:// www. hardn essca lcula tor. com.

Data availability
The authors declare that all data that support the findings of this study are included in the paper and/or its sup-
plementary information files.

Table 9.  Prediction of hard and superhard materials using The Hardness Calculator. Materials Project’s 
database identification number, chemical formula, crystal system (CS), bandgap ( �E in eV), density ( ρ in 
g/cm3 ), bulk modulus (B in GPa), shear modulus (G in GPa), Young’s modulus (Y in GPa) and Poisson’s ratio 
( ν ) are shown. Vickers hardness (in GPa) was calculated using The Classic Calculator (HCLA1

 ) according to 
Table 5, and the The Machine Learning Calculator using the GBC (HGBC ) and the GBR (HGBR ). The comments 
specify whether the material was predicted to be hard by this work, by this work and other authors or if the 
hardness has been previously measured experimentally. a Ref.26; bRef.27; cRef.28; dRef.29; eRef.30; fRef.31; g Ref.32; 
hRef.33; iRef.34; jRef.35; kRef.36; lRef.37; m Ref.38; nRef.39; oRef.40.

Material ID Formula CS �E ρ B G Y ν HCLA1
HGBC HGBR Comment

mp-2653 BN Hexag 5.4 3.5 373 383 856 0.12 52 ( H1b) 64 ( H5) 68 Hexp =  46a

mp-1569 Be2C Cubic 1.4 2.5 201 231 501 0.09 54 ( H5) 54 ( H5) 44 Hexp >  34b

mp-2075 Si3N4 Cubic 3.3 3.9 294 249 582 0.17 41 ( H2) 28 ( H4) 27 Hexp =  35c

mp-1491 VB2 Hexag 0 5.1 286 241 565 0.17 27 ( H4) 27 ( H4) 27 Hexp = 27.5d

mp-1994 HfB2 Hexag 0 11.1 251 242 550 0.13 27 ( H4) 33 ( H1b) 30 Hexp = 31.5e

mp-2852 C3N4 Cubic 3.0 3.8 416 380 874 0.15 64 ( H2) 64 ( H2) 69 TW &  othersf

mp-1008523 BC2N Tetra 1.6 3.3 347 397 862 0.09 58 ( H1a) 74 ( H5) 72 TW &  othersg

mp-1009818 CN2 Tetra 0.2 3.6 404 288 697 0.21 42 ( H1a) 48 ( H2) 29 TW &  othersh

mp-15703 BeCN2 Tetra 3.9 3.3 316 292 669 0.15 32 ( H4) 32 ( H4) 32 TW &  othersi

mp-1008527 B2CN Tetra 0 3.1 324 261 617 0.18 29 ( H4) 29 ( H4) 31 TW &  othersj

mp-1019055 ReN2 Tetra 0 13.8 380 254 622 0.23 28 ( H4) 37 ( H1a) 31 TW &  othersk

mp-867212 TcOs3 Hexag 0 19.3 378 244 602 0.23 27 ( H4) 36 ( H1a) 31 TW &  othersl

mp-1018050 CrC Hexag 0 6.4 342 244 591 0.21 27 ( H4) 27 ( H4) 28 TW & others m

mp-1019317 TcB2 Hexag 0 7.3 283 244 568 0.17 27 ( H4) 27 ( H4) 27 TW &  othersn

mp-1009735 ReC Hexag 0 16.2 412 233 589 0.26 26 ( H4) 38 ( H2) 33 TW &  otherso

mp-571653 C3N4 Cubic 2.8 3.7 394 382 866 0.13 65 ( H2) 42 ( H4) 71 This work

mp-1985 C3N4 Hexag 3.3 3.5 409 313 747 0.20 45 ( H1b) 52 ( H2) 29 This work

mp-999498 N2 Cubic 4.0 3.4 276 241 561 0.16 40 ( H2) 27 ( H4) 30 This work

mp-1019740 GaB3N4 Cubic 3.7 4.5 329 229 558 0.22 38 ( H2) 25 ( H4) 28 This work

mp-1008630 WC Cubic 0 15.9 358 231 571 0.23 34 ( H1a) 34 ( H1a) 30 This work

mp-1002105 VN Cubic 0 6.5 264 231 536 0.16 34 ( H1a) 26 ( H4) 29 This work

mp-999549 WN2 Hexag 1.5 12.1 353 226 559 0.24 33 ( H1a) 33 ( H1a) 30 This work

mp-1330 AlN Cubic 4.6 4.0 255 217 508 0.17 36 ( H2) 31 ( H1b) 28 This work

mp-1010 MnB4 ortho 0 4.4 261 240 551 0.15 27 ( H4) 27 ( H4) 31 This work

mp-2305 MoC Hexag 0 8.5 350 240 586 0.22 27 ( H4) 27 ( H4) 30 This work

mp-644751 BN Ortho 5.7 3.0 303 215 521 0.21 35 ( H2) 24 ( H4) 26 This work

mp-1082 VIr3 Cubic 0 18.4 320 215 527 0.23 32 ( H1a) 32 ( H1a) 29 This work

mp-265 TaIr3 Cubic 0 20.8 325 213 524 0.23 31 ( H1a) 31 ( H1a) 29 This work

mp-1009471 NbN Cubic 0 8.5 316 210 517 0.23 31 ( H1a) 31 ( H1a) 29 This work

mp-1459 TaN Hexag 0 14.8 338 238 578 0.21 26 ( H4) 26 ( H4) 28 This work

mp-12083 CrIr3 Cubic 0 18.6 307 214 521 0.22 32 ( H1a) 32 ( H1a) 27 This work

https://www.hardnesscalculator.com
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Code availability
The codes comparing the performance of the different machine learning algorithms as well as the classifications 
by crystal system, bandgap and density available at https:// github. com/ vdova le29/ Hardn ess- Calcu lator. The 
code performing the calculations for The Hardness Calculator are available at https:// github. com/ vdova le29/ 
Hardn ess- Calcu lator.
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