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Machine‑learning‑based spectral 
methods for partial differential 
equations
Brek Meuris 1, Saad Qadeer 2* & Panos Stinis 2,3

Spectral methods are an important part of scientific computing’s arsenal for solving partial differential 
equations (PDEs). However, their applicability and effectiveness depend crucially on the choice of 
basis functions used to expand the solution of a PDE. The last decade has seen the emergence of 
deep learning as a strong contender in providing efficient representations of complex functions. In 
the current work, we present an approach for combining deep neural networks with spectral methods 
to solve PDEs. In particular, we use a deep learning technique known as the Deep Operator Network 
(DeepONet) to identify candidate functions on which to expand the solution of PDEs. We have 
devised an approach that uses the candidate functions provided by the DeepONet as a starting point 
to construct a set of functions that have the following properties: (1) they constitute a basis, (2) they 
are orthonormal, and (3) they are hierarchical, i.e., akin to Fourier series or orthogonal polynomials. 
We have exploited the favorable properties of our custom‑made basis functions to both study their 
approximation capability and use them to expand the solution of linear and nonlinear time‑dependent 
PDEs. The proposed approach advances the state of the art and versatility of spectral methods and, 
more generally, promotes the synergy between traditional scientific computing and machine learning.

In the last 70 years, scientific computing has made tremendous advancements in developing methods for solv-
ing partial differential equations (PDEs)1–3. Spectral methods constitute a significant part of scientific comput-
ing’s arsenal due to their inherent hierarchical structure, connections to approximation theory, and favorable 
convergence  properties4–7. Spectral methods generally proceed by expanding the solution of a PDE as a linear 
combination of basis functions and estimating the coefficients of the linear combination so that the underly-
ing PDE is satisfied in an appropriate sense. Even though spectral methods can be powerful, their effectiveness 
depends strongly on the choice of basis functions, which is far from obvious for many real-world applications. 
One source of complications can be the geometry of the domain in which the solution is to be approximated. For 
example, applications in fluid dynamics often involve complex domains while the frequently used basis functions, 
e.g., orthogonal polynomials, are suitable only for regular  domains7. Another source of complications can be 
the presence of extremely localized features in the solution, e.g., very steep gradients. For example, applications 
in phase field modeling include the approximation of the order function describing the evolving sharp phase 
 boundary8. Due to the global nature of the basis functions used in spectral methods, the resolution of such local-
ized features can decrease the efficiency of a spectral method, unless the particulars of the application are taken 
into consideration when constructing the basis functions.

In the last decade, due to advancements in algorithmic and computational capacity, machine learning – par-
ticularly deep learning – has appeared as a strong contender in providing efficient representations of complex 
 functions9. In addition, physics-informed deep learning holds the promise to become a viable approach for the 
numerical solution of PDEs (see, e.g.,10,11). In the current work, we propose a way to combine deep learning and 
spectral methods to solve PDEs. In particular, we put forth the use of deep learning techniques to identify basis 
functions to expand the solution of a PDE. These basis functions are custom-made, i.e., they are constructed 
specifically for a particular PDE and are represented through appropriately defined and trained neural networks.

Our construction starts with candidate functions that are extracted from a recently proposed deep learn-
ing technique for approximating the action of generally nonlinear operators, known as the Deep Operator 
Network (DeepONet)12. Due to the intrinsic structure of the DeepONet, the span of these candidate functions 
is custom-made for a particular PDE (including a class of problem data, e.g., initial/boundary conditions). We 
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have devised an approach to construct a hierarchical orthonormal basis for the candidate space, somewhat akin 
to Fourier series or orthogonal polynomials, and exploit their favorable properties to expand the solutions of 
linear and nonlinear time-dependent PDEs. This marks a contrast with methods such as Proper Orthogonal 
 Decomposition13 that extract basis functions directly from the data and hence require snapshots of the entire 
solutions at different time values.

The Universal Approximation Theorem (UAT) of Chen and  Chen14 guarantees the existence of a pair of 
two-layer neural networks, termed branch and trunk nets, such that the inner products of their outputs can 
approximate the action of a continuous nonlinear operator to arbitrary accuracy. This powerful theoretical 
result was made computationally viable  in12 by employing deep branch and trunk nets {bk}1≤k≤w and {γk}1≤k≤w , 
respectively, and combined via

Here, y is an evaluation point and g is a vector containing the problem data sampled at a finite number of sensor 
points (see Methods for more details). The resulting architecture, named DeepONet, enables us to solve PDEs 
by approximating operators that map the given data (e.g., initial conditions, boundary data, forcing terms, or 
diffusivity coefficients) to the solutions. Strikingly, the technique is agnostic to the nature of the spatial domain 
and operates at a much lower computational cost than conventional numerical methods. In addition, comple-
mentary error  analyses15,16 provide upper bounds for the approximation error in terms of network size, operator 
type, and data regularity, while practical performance demonstrates the low generalization and optimization 
errors associated with this architecture.

Figure 1 shows the results for a DeepONet trained to solve the periodic advection-diffusion problem 
ut + ux − 0.1uxx = 0 for x ∈ [0, 2π] , applied to the initial condition u0(x) = sin2 (x/2) . The training was per-
formed for t ∈ [0, 1] , and the number of epochs increased up to 105 . While Fig. 1a shows that the errors are in 
check for time values in the training domain, the approximate solution quickly loses accuracy outside the training 
interval, as can be seen in Fig. 1b. This should not be seen as an indictment of the DeepONet approach because it 
clearly performs satisfactorily on the domain it is designed for. Nevertheless, it leaves room for developing tools 
that can utilize a trained operator neural network to compute solutions accurately outside the training domain.

In the current work, we present a procedure that harnesses the DeepONet machinery to compute solutions 
beyond the temporal training interval. Broadly speaking, our approach relies on extracting a hierarchical spatial 
basis from a trained DeepONet and employing it in a spectral method to solve the PDE of interest (see Methods 
for further details). By explicitly using the given problem, we expect to be able to generalize beyond the training 
regime, thus overcoming a limitation associated with small input-output datasets. At the same time, our basis 
functions inherit the many favorable properties of a trained DeepONet, including excellent representational 
capability on complex spatial domains and the promise of overcoming the curse of dimensionality. We emphasize 
that the procedure we propose can, in principle, complement any operator regression technique that can fur-
nish high-quality spatial functions, e.g.,17–19. Our technique can also be seen in the context of several important 
methodologies developed recently combining deep learning methods with variational formulations of  PDEs20–22.

Results
In this section, we assess the effectiveness of our approach by applying it to a number of time-dependent problems 
that possess significantly different qualitative features. For each problem, we take the domain to be � = [0, 2π] , 
impose periodic boundary conditions, and denote the initial condition by u0 . For the advection-diffusion equa-
tion, we also assess our approach for the case of Dirichlet boundary conditions. For each equation, we train a 

(1)GNN[g](y) =

w
∑

k=1

bk[g]γk(y)

Figure 1.  Relative errors for the periodic advection-diffusion problem on [0, 2π] using a DeepONet trained for 
0 ≤ t ≤ 1 , shown for the initial condition u0(x) = sin2 (x/2) , with the number of training epochs going up to 
105 ; time-averaged errors are displayed in the legend. The errors are well under 1% as long as we remain inside 
the training interval, as seen in (a). Extrapolating beyond this interval, however, may lead to large errors, as 
shown in (b) for 0 ≤ t ≤ 10.
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DeepONet to approximate the solution operator that maps u0  → u(t, ·) for t ∈ [0, 1] (see Sect. 1 in Supplement 
for details on the training).

The custom basis functions {φk} are extracted from the trunk net function space using a singular value 
decomposition (SVD) based method. The singular values accompanying each basis function serve as a measure 
of the contribution of the functions to the trunk net space (see Methods and Sect. 2 in Supplement for more 
details). We choose a threshold for the singular value magnitude (typically 10−13 for our numerical experiments) 
and keep all the basis functions whose corresponding singular values are above the threshold. The rapid decays 
of the singular values, shown in Fig. 2a for all the systems, are indicative of the hierarchical structure of the 
basis functions. Moreover, the variation in rates across different problems reflects the intuitive notion that the 
richness of the trunk net space, measured by its effective dimension, is closely linked with the complexity of the 
dynamics. As a result, more basis functions are generally allowed for the higher-order problems for the same 
singular value threshold.

Consider first the advection-diffusion problem

with the parameters set at α = 1 and ν = 0.1 . In Fig. 2b, the first few custom basis functions can clearly be seen 
to be ordered by increasing oscillatory behavior. An a priori indicator of the suitability of these basis functions 
for use in a spectral method is the rate of decay of the expansion coefficients 〈φk , u0〉 for smooth functions u04,7. 
In Fig. 2c, we assess these rates empirically for a number of smooth functions to be exponential, as for Fourier 
bases and orthogonal polynomials, suggesting that the custom basis functions are indeed appropriate for use in a 
spectral procedure. The relative errors from using these example functions as initial conditions to solve (2) using 
59 custom basis functions are shown in Fig. 2d. The evolution errors are not only an improvement on Fig. 1a 
but also decrease rapidly outside the temporal training interval due to an accurate rendering of the diffusion 
mechanism. Note that these features also hold for the two initial conditions drawn from outside the training 
distribution. The relative errors from using the 59 custom basis functions identified for the periodic advection-
diffusion problem to evolve the advection-diffusion equation with Dirichlet boundary conditions are shown in 
Fig. 2e. Figure 2f shows the relative errors for the advection-diffusion equation with Dirichlet boundary condi-
tions from using the 73 custom basis functions explicitly identified for the Dirichlet problem.

Next, we consider three PDEs that share a common nonlinear term and are distinguished by different regu-
larization mechanisms. These additional terms prevent the formation of corners or discontinuities and lead to 
notably different qualitative properties. The viscous Burgers equation

for example, relies on a diffusive term to smooth over any shocks, with the result that the solution eventually 
approaches a constant steady state. We set ν = 0.1 and employ 91 basis functions for the results shown in Fig. 3. 
While the spatiotemporal plots illustrate that our numerical procedure accurately captures the smoothed-out 
shock and rarefaction waves, the consistently low relative errors in Fig. 3c demonstrate its effectiveness well 
outside the training regime.

The Korteweg–de Vries equation

in contrast, employs dispersion to counteract the formation of shocks and famously possesses solutions com-
prising nonlinearly interacting  solitons23. Setting δ = 0.1 and using 106 basis functions, we obtain the results 
shown in Fig. 4. The solitons are represented by the light-colored streaks in the spatiotemporal plots in Fig. 4a 
and b; their intersections depict the aforementioned nonlinear interactions that are accurately captured by our 
numerical method. Observe that the errors remain well in check again for time values well beyond the training 
interval, including for the two initial conditions drawn from outside the training distribution.

The Kuramoto–Sivashinsky equation

includes a destabilizing anti-diffusion term that is countered by fourth-order dissipation. This system can exhibit 
chaotic behavior and is a popular model for front  propagation24. In Fig. 5, we present the results with β = 0.085 
using 105 basis functions for the spectral method. As for the earlier problems, the complicated dynamics are 
faithfully captured by our spectral method, with the evolution errors kept in control well beyond the training 
interval and distribution.

Finally, omitting all regularization mechanisms, we end up with the inviscid Burgers equation

The solutions of this problem can form shocks in finite time. In the absence of a mechanism to eject the energy 
that is being consumed by the shock, any spectral approach applied to this problem is prone to large inaccuracies. 
To accurately capture the evolution of the energy in time, we would need to augment the system with a memory 
 term25. This serves to highlight the inherent difficulties of this application and to place the capabilities of the pro-
posed approach without specialized treatment in the larger context of multiscale modeling and model reduction.

(2)ut + αux − νuxx = 0,

(3)ut + uux − νuxx = 0,

(4)ut + uux + δ2uxxx = 0,

(5)ut + uux + uxx + βuxxxx = 0,

(6)ut + uux = 0.
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(a) The singular values (b) The custom basis functions

(c) Initial condition expansion coefficients (d) Relative error evolution

(e) Relative error evolution for Dirichlet
boundary conditions when using custom
basis functions identified for the periodic
problem

(f) Relative error evolution for Dirichlet
boundary conditions when using custom
basis functions explicitly identified for the
Dirichlet problem.

Figure 2.  (a) The exponentially decaying singular values for all the systems reveal that the basis functions form 
a hierarchy in terms of their contributions to the trunk net spaces. In addition, the decrease in decay rates for 
more complex problems suggests that the trunk net spaces for these systems are more descriptive. (b) Successive 
basis functions derived for the advection-diffusion problem (2) can be seen to possess a greater number of 
zeros and oscillate more frequently. (c) The hierarchical structure is also demonstrated by the rapidly decaying 
expansion coefficients for some smooth example functions, two of which are drawn from outside the training 
distribution. (d) Relative errors from using the custom basis functions to solve the advection-diffusion equation 
with the initial conditions from (c). (e) Relative error from using the 59 custom basis functions obtained for 
the periodic advection-diffusion problem to evolve the advection-diffusion equation with Dirichlet boundary 
conditions. (f) Relative error from using the 73 custom basis functions explicitly identified for the advection-
diffusion equation with Dirichlet boundary conditions.
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Discussion
We have presented a general framework for using DeepONets to identify spatial functions that can be trans-
formed into a hierarchical orthonormal basis and subsequently used to solve PDEs. We illustrated this framework 
and its interpolation and extrapolation capabilities by solving five one-dimensional PDEs of varying complexity 
and exhibiting different qualitative properties. We note that our work should not be construed as an alternative 
to Fourier methods which possess many favorable properties that make them the optimal choice on periodic 
domains. Instead, it should be seen as a proof-of-concept that promises to generalize well to complex domains 
where we do not have classical bases to rely on but can call upon deep learning methods to provide us with 
candidate basis functions.

The results for the advection-diffusion, viscous Burgers, Korteweg–de Vries, and Kuramoto–Sivashinsky equa-
tions with periodic boundary conditions show strong agreement with the Fourier solutions over the entire tem-
poral domain. Additionally, the results for the advection-diffusion equation with Dirichlet boundary conditions 

(a) The Fourier solution (b) Custom basis solution (c) Relative error evolution

Figure 3.  (a) Spatiotemporal plot of the solution for the viscous Burgers Eq. (3) using a Fourier expansion 
for a random in-distribution initial condition. (b) Spatiotemporal plot of the solution using the custom basis 
functions. (c) Evolution of relative errors for various initial conditions.

(a) The Fourier solution (b) Custom basis solution (c) Relative error evolution

Figure 4.  (a) Spatiotemporal plot of the solution for the Korteweg–de Vries Eq. (4) using a Fourier expansion 
for a random in-distribution initial condition. (b) Spatiotemporal plot of the solution using the custom basis 
functions. (c) Evolution of relative errors for various initial conditions.

(a) The Fourier solution (b) Custom basis solution (c) Relative error evolution

Figure 5.  (a) Spatiotemporal plot of the solution for the Kuramoto–Sivashinsky Eq. (5) using a Fourier 
expansion for a random in-distribution initial condition. (b) Spatiotemporal plot of the solution using the 
custom basis functions. (c) Evolution of relative errors for various initial conditions.
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show good agreement with the Legendre discontinuous Galerkin solutions over the entire temporal domain 
when using either the custom basis functions identified for the periodic or the Dirichlet problem (refer to Sup-
plementary Sect. 10 for the results of the advection-diffusion Dirichlet problem trained using non-periodic rather 
than periodic initial conditions). In particular, the fact that errors remain low for time values well beyond the 
temporal training interval of the DeepONet demonstrates the temporal extrapolation capabilities of the presented 
framework. Our approach also performs satisfactorily with initial conditions and parameters different from the 
training regimes (see Sect. 6 in Supplement for additional results, including for the advection problem). This 
illustrates the effectiveness of scientific machine learning  techniques26 because the presented framework consists 
of embedding the information gleaned from a neural network, which is purely data driven, into the PDE and 
solving it using conventional techniques.

Results were also presented for the inviscid Burgers equation, which, unlike the other examples whose solu-
tions remain smooth over time when initialized from a smooth initial condition, can develop shocks in finite 
time. For the time values before the shock, we obtain strong agreement between the custom basis function 
solution and the ground truth MUSCL solution (see Sect. 6 in Supplement for additional results). However, as 
evidenced by Fig. 6, around the time instant when the shock forms, the approximate solution becomes more 
inaccurate and ultimately plateaus at the elevated level of error. This increased level of inaccuracy should not be 
construed as a shortcoming of the presented framework; instead, this is an issue commonly encountered when 
using spectral methods for the evolution of singular  PDEs6. This fact motivated the use of a MUSCL solution 
to generate the ground truth for training the DeepONets because the use of a Fourier expansion also provides 
inaccurate results. The inaccuracies occur due to the unavailability of a mechanism to eject the energy that is 
being consumed by the shock. To account for the ejection of energy and to accurately capture the evolution 
of the energy in time, we need to augment the system with a memory term (e.g.,25). In the case of the inviscid 
Burgers equation, the inclusion of a memory term allows for energy to be drained from the scales resolved by 
the  simulation27. Combining the presented framework with the methods developed  in25 is an active area of 
investigation and will appear in a future publication.

For all test PDEs, results were shown for three different initial conditions, one that was randomly selected 
from within the training distribution and two that were outside the training distribution, u0(x) = sin(x) and 
u0(x) = esin(x) . Referencing Figs. 2d–f, 3c, 4c, 5, and 6, strong agreement is shown with the M = 128 mode 
Fourier, L = 127 Legendre polynomial, M = 512 mode Fourier, or MUSCL solution for all three initial condi-
tions (in advance of the shock in the case of inviscid Burgers). For the viscous Burgers and Korteweg–de Vries 
equations, we find an increase in the average error over the temporal interval for the out-of-distribution initial 
conditions compared to the in-distribution initial condition; however, the presented results demonstrate the 
opportunity to extrapolate not only temporally, but also in terms of the input function space when utilizing the 
presented framework.

The presented general framework provides many interesting future research directions in addition to those 
already noted in this section. First, we need to perform meticulous optimization of DeepONet parameters to 
improve the quality of the custom basis functions. Second is developing a fast custom basis function inverse trans-
form. Preliminary work is underway to develop a fast inverse custom basis function transform using DeepONets. 
These networks take as the inputs to the branch and trunk nets the expansion coefficients and spatial locations, 
respectively. Once trained, they will approximate the functions corresponding to the expansion coefficients. In 
addition, we can train a DeepONet to compute fast the custom basis function forward transform. In particular, 
we can consider a DeepONet whose trunk net is fixed to output the custom basis functions and the branch net 
can be trained to output the expansion coefficients. Used together, the forward and inverse transforms will enable 
the use of a fast pseudo-spectral transform technique so that nonlinear terms can be computed efficiently in 

(a) Evolution of the energy (b) Relative error evolution

Figure 6.  Results for the inviscid Burgers Eq. (6).  (a) and (b)  The evolution of the energy depicted on a log-log 
plot in (a) is obtained for the initial condition u0(x) = e

sin(x) , computed for t ∈ [0, 250] . The temporal relative 
error profiles in (b) are qualitatively similar, with high accuracy while the solutions are smooth giving way to 
much larger errors on the onset of the shocks, followed by plateauing at the elevated levels.
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real space. Third, as explained in Methods and in Sect. 2 in the Supplement, to preserve the good conditioning 
of the operations in our construction and enable evaluation away from the quadrature nodes, we perform a 
final projection of the custom basis functions on Legendre polynomials. As we move to problems on complex 
domains in higher dimensions, obvious generalizations of Legendre expansions are not available. However, the 
development of alternative interpolation approaches, based on local spline-based interpolation, partition of 
unity  networks28,29, or extension  algorithms30–32, is an active area of investigation (see the discussion at the end 
of Sect. 2 in the Supplement). Fourth, the candidate functions (before orthonormalization) were obtained by 
evaluating the DeepONet trunk net functions at time t = 0 (see Methods). However, there is nothing precluding 
the use of candidate functions obtained by evaluating the trunk net functions at times other than t = 0. Thus, 
a more thorough investigation of the time-sampling approach is warranted (see Sect. 7 in the Supplement for 
preliminary results). Fifth, it is interesting to investigate if the custom-made basis functions developed for one 
PDE can be used to accurately expand the solution of another PDE (see Sect. 8 in the Supplement for preliminary 
results). Sixth is a detailed investigation into enforcing the boundary conditions during training using feature 
expansions and hard  constraints33. The use of a feature expansion for periodic problems can produce custom 
basis functions that individually satisfy the boundary conditions so that a purely Galerkin approach may be 
utilized for evolving the PDEs (see Sect. 9 in the Supplement for preliminary results for the advection equation).

Another interesting avenue for exploration is analyzing the basis functions obtained from DeepONets trained 
on time-independent problems. Our machinery can be deployed on solution operators for static equations that 
map, e.g., boundary data, forcing terms, or diffusivity coefficients to the solutions to yield promising custom 
bases. Eliminating the temporal dimension implies that, along with a possible reduction in the network train-
ing cost, the ambiguity associated with using the trunk net functions at t = 0 as candidate functions would be 
removed.

We note that the presented framework was initially based off the DeepONet  architecture12, which is why we 
explicitly reference the trunk functions; however, there is reason to believe that this framework could be readily 
extended to other operator neural network architectures, e.g.,17–19.

Finally, in the current work we have explored the application of the machine-learning-based spectral meth-
ods to partial differential equations that describe prototypical physical mechanisms like advection, diffusion, 
hyperdiffusion, dispersion and convective nonlinearity with very promising results. Since these mechanisms are 
prevalent in real-world applications, we are optimistic about the effectiveness of our approach in such settings 
and is the subject of further investigation.

Methods
Architecture of a DeepONet. Let K1 ⊂ R

d0 and K2 ⊂ R
d1 be compact, and denote by C(Kj) the space of 

continuous real-valued functions on Kj . Let V be a compact subset of C(K1) and suppose G : V → C(K2) is a 
continuous, possibly nonlinear, operator. A DeepONet GNN is a deep neural architecture designed to approxi-
mate G12. It takes as inputs a discrete representation g = (g(zj))1≤j≤m of any g ∈ V  , where z1, z2, ..., zm ∈ K1 are 
pre-selected sensor points, and an output location y ∈ K2 . The DeepONet comprises deep branch and trunk 
networks {bk}1≤k≤w and {γk}1≤k≤w , merged together in a dot product layer as in (1):

where θ denotes the trainable parameters. Given input-output function pairs 
{(

g (j), s(j)
)}

1≤j≤Nf
 , where 

s(j) = G[g (j)] , and corresponding evaluation points 
{

y
(j)
i

}

1≤i≤Np ,1≤j≤Nf

 , this architecture is trained with respect 

to the loss function

Construction of custom‑made basis functions. Let G be the solution operator for a time-depend-
ent problem on spatial domain � that maps the initial condition to the solution at later times. A DeepONet 
GNN of the form (1) is then trained to approximate G with the initial condition u0 , sampled at sensor locations 
{zj}1≤j≤m ⊂ � , as the input data, and output location (t, x) ∈ [0,T] ×� , where [0, T] is the temporal training 
interval (for more details, see Sects. 1 and 2 in Supplement). We denote the collection of “frozen-in-time” trunk 
net functions by {τk}1≤k≤p , e.g., by evaluating the trunk net functions {γk} at t = 0 (so that p = w , where w is the 
number of trunk net functions used in the DeepONet representation, as in (1)), and normalizing them.

Denote by �·, ·� the L2 inner product on � and let {(xi ,ωi)}1≤i≤M be a quadrature rule on � so that 
�h1, h2� ≈

∑M
i=1 h1(xi)h2(xi)ωi . The eigenfunctions {φk}1≤k≤p of the covariance operator

ordered by decreasing eigenvalues, form an orthonormal basis for S = span
(

{τk}1≤k≤p

)

 with the following 
property: for every r ≥ 1 , if we set Sr = span

(

{φk}1≤k≤r

)

 , then

(7)Gθ
NN[g](y) =

w
∑

k=1

bk[g]γk(y),

(8)L(θ) =
1

Nf Np

Nf
∑

j=1

Np
∑

i=1

(

s(j)
(

y
(j)
i

)

− Gθ
NN

[

g(j)
](

y
(j)
i

))2
.

(9)C =

p
∑

k=1

τk ⊗ τk =

p
∑

k=1

τk�τk , ·�,
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for any r-dimensional subspace Vr of S . In other words, successive eigenfunctions underpin the optimal lower-
dimensional subspaces of the trunk net space, thus making them suitable for use as a custom basis.

Discretizing C and performing its eigendecomposition to compute the basis functions, however, is infeasible 
in practice because the complexity scales cubically with the size of the quadrature grid. Instead, we define the 
M × p matrix B by Bik = ω

1/2
i τk(xi) and perform its SVD B = QSV∗ . In principle, we can use V =

(

v1 ... vp
)

 
and S = diag(σ1, ..., σp) to construct

However, because this prescription relies on division by singular values that may rapidly decay, the corresponding 
orthonormal basis calculations can suffer from large errors in practice (see Sect. 2 in the Supplement). Instead, 
we note that the entries of W−1/2Q provide the values of {φk} at the quadrature points via

This information about the basis functions needs to be complemented with a suitable procedure to recover their 
functional forms, enable interpolation away from the quadrature grid, and allow their usage in a spectral method. 
Of the various alternatives available to us, an orthogonal polynomial expansion is particularly well-suited in the 
case � is a one-dimensional interval due to our knowledge of the basis functions at Gauss quadrature nodes. For 
any L < M , let {qj}0≤j≤L be the orthonormal Legendre polynomials on � and define the functions {φ̃k}1≤k≤p by

This projection enables the evaluation of basis functions away from the quadrature grid. By choosing a suf-
ficiently large L, the {φ̃k} serve as good approximations to {φk} while for L = M − 1 , we obtain the exact inter-
polating polynomials in PM−1 . More significantly, the procedure only uses (12) and (13), both of which are 
well-conditioned operations (see Sects. 2 and 3 in the Supplement for more details). We reiterate that our choice 
of this procedure is motivated primarily by the particular discrete representation of the custom basis functions 
obtained from (12) and that alternative strategies can also be employed in other settings (see Discussion and 
Sect. 2 of the Supplement for more details).

The singular values {σk} allow us to gauge the contribution of each basis function to S . Once the singular 
values fall below a certain value, the basis functions are more or less noise and do not contribute significantly 
to the solution. As a result, we set a threshold, typically 10−13 , and only utilize basis functions corresponding to 
singular values greater than this cutoff. This leads not only to significant computational savings but also more 
robust solutions as the noisy functions are weeded out.

The spectral approach. Without loss of generality, consider a time-dependent partial differential equation

with initial condition u|t=0 = u0 and appropriate boundary conditions. Here, N  is a (possibly nonlinear) dif-
ferential operator. Given an orthonormal basis {φj}rj=1 , a Galerkin method proceeds by discretizing the solution 
as ur(t, x) =

∑r
j=1 aj(t)φj(x) and imposing the constraints

This yields the system of ordinary differential equations (ODEs)

complemented by the initial condition al(0) = �φl , u0� for 1 ≤ l ≤ r . For our numerical experiments, we have 
primarily focused on periodic boundary conditions in the interval [0, 2π], but this does not limit the applica-
bility of our construction. In the case of periodic boundary conditions, if the basis functions are periodic by 
construction (e.g., Fourier basis), the boundary conditions are satisfied by default. This is the recipe followed for 
constructing the ground truth solutions uG for the periodic problems used for training and error computation 
purposes. On the other hand, if the basis functions are not periodic, e.g., the custom basis functions, we simplify 
(16) further by performing integration by parts and assigning values to the boundary terms that suitably convey 
information across the interface, as is done for discontinuous Galerkin methods (see Sect. 4 in the Supplement 
for more details). For all nonlinear examples, the quadratic terms are computed in modal space, while the 
necessary triple product integrals are pre-computed. The ODE systems of the form (16) are integrated in time 
using suitable adaptive schemes (see Sect. 5 in the Supplement for additional details). The relative errors in the 
numerical solution are then computed by

(10)
p

∑

k=1

min
hk∈Sr

�τk − hk�
2 ≤

p
∑

k=1

min
vk∈Vr

�τk − vk�
2,

(11)φk = σ−1
k

p
∑

l=1

(vk)lτl .

(12)φk(xi) = (W−1/2Q)ik for 1 ≤ i ≤ M and 1 ≤ k ≤ p.

(13)φ̃k =

L
∑

j=0

(

M
∑

i=1

qj(xi)φk(xi)ωi

)

qj .

(14)ut +N [u] = 0, t > 0, x ∈ (b1, b2),

(15)
〈

φl , u
r
t +N [ur]

〉

= 0, for 1 ≤ l ≤ r.

(16)a′l(t) = −

�

φl ,N





r
�

j=1

aj(t)φj





�

,
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Data availability
The codes used for generation of the data used in this article, along with the development documentation, are 
available on https:// github. com/ brekm euris/ DrMZ. jl. The generated datasets are available from the correspond-
ing author on request.
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