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Atomized droplet size prediction 
for supersonic atomized water 
drainage and natural gas extraction
Chengting Liu 1,2 & Liang He 1,2*

In the later stage of natural gas reservoir exploration, the wellbore pressure is reduced and the liquid 
accumulation is serious, in order to solve the problem of liquid accumulation and low production in 
low-pressure and low-yield gas wells, the supersonic atomization drainage gas recovery technology 
is used to improve the recovery rate. By studying the influence of working condition parameters of 
downhole nozzle atomization drainage gas recovery on atomization effect and liquid carrying rate, a 
new physical model of atomization nozzle is established, the back propagation (BP) neural network 
atomization model and BP neural network atomization model optimized by genetic algorithm (GA) 
is established, and the Matlab is used to train the 45 groups of data sets before the experiment. After 
the model training, the normalized atomization parameters are trained for sensitivity analysis. The 
relationship between the strength and weakness of the factors affecting Sotel’s average droplet 
particle size (SMD) is as follows: gas flow (Qg) > liquid inlet diameter (d) > liquid phase flow (Ql). The 
last 15 sets of data sets outside the training samples were tested by BP model and BP neural model 
optimized by genetic algorithm (GA-BP), and the size of SMD was predicted. The experimental 
results show that the determination coefficient  R2 of the established GA-BP network model to the 
experimental parameters is 0.979 and the goodness of fit is high; the mean square error (MSE), mean 
absolute error (MAE) and mean absolute percentage error (MAPE) of the predicted value of GA-BP 
atomization model and the experimental value are 4.471, 1.811 and 0.031 respectively, the error is 
small, the prediction accuracy is high, and the establishment of the model is accurate. The GA-BP 
model can efficiently predict SMD under different operating conditions, at present, the new supersonic 
atomizing nozzle has been successfully applied to the Xushen gas field block of Daqing Oilfield, which 
can improve the recovery rate of natural gas by 4.5–8.6%, alleviate the problem of effusion near the 
end of oil exploration, and has certain guiding significance for solving the problem of wellbore effusion 
and improving production efficiency.

In the later stage of natural gas well production, the bottom hole pressure decreases, the gas flow velocity 
decreases, the liquid carrying rate decreases, the wellbore liquid accumulation increases, the liquid accumulation 
hinders the natural gas migration, and the production decreases. The liquid discharge efficiency of traditional 
technologies such as gas lift, bubble discharge, natural gas circulation and high pressure pump is  poor1–4. In 
order to solve the problem of serious fluid accumulation in wellbore, a new technology of nozzle atomization 
for drainage and gas recovery is  adopted5–7. The technology uses the energy of natural gas to atomize the liquid 
accumulated in the bottom hole through the nozzle, and the droplets are carried out of the wellbore along with 
the natural gas. This method reduces energy consumption, improves energy utilization, reduces the operation 
and maintenance cost of gas wells, and can effectively solve the problem of wellbore fluid accumulation.

Many scholars have carried out related research on nozzle atomization technology, carried out corresponding 
atomization  experiments8,9, and achieved ideal results. Han et al.10 designed a kind of internal mixing atomiza-
tion and dedusting nozzle. The flow field in the nozzle was simulated by FLUENT. The results show that with 
the increase of water supply pressure, the flow velocity in the nozzle increases, the air velocity decreases, and 
the gas–liquid relative velocity decreases. They carried out spray dust reduction experiments through atomizing 
nozzles. The experimental results show that when the water supply pressure increases, the range, droplet volume 
fraction and droplet size all increase, and the dust reduction efficiency of total dust and respirable dust increases 
at first and then decreases. KOMAG Mining Technology Research  Institute11 has developed a kind of water spray 
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nozzle, which can be effectively used to spray dust reduction at the transfer point of shearer, roadheader and 
conveyor.  Feng12 carried out atomization drainage tests on low-pressure and low-production gas wells using 
nozzles at the production site of West Sichuan gas field. The atomization effect of nozzles is good, the liquid 
carrying rate of wellbore is increased by 23.4%, and the liquid production is increased by 200  m3/d. Ni et al.13 
put the supersonic nozzle atomization device at the depth of 1000–2000 m to carry out field experiments, which 
shows that the outlet velocity is greatly higher than that of ordinary nozzles, and the liquid-carrying efficiency 
is increased by 41.3%.

In recent years, the experimental means have also been innovated due to the progress of science and technol-
ogy, through the in-depth study of spray experiments, in order to obtain better atomization effect, so as to achieve 
better economic value. Benjanin et al.14 studied the internal and external flow field of swirl nozzle. According to 
the experimental results, the model formulas of mass flow coefficient and droplet velocity were obtained. Seoksu 
et al.15 studied the internal structure and static pressure of swirl nozzle, and the study showed that there was 
backflow vortex in the swirl atomization process, and the pressure drop inside the nozzle was larger under high 
injection pressure. Lee et al.16 carried out experiments on pass nozzles, and optimized the pass nozzles by CFD 
simulation, optimizing four design variables: nozzle inlet length, outlet length, inlet diameter and radial position. 
The results show that the optimized nozzle reduces the total pressure loss and increases the mass flow, and the 
optimized pre-swirl system reduces the aerodynamic loss, increases the mass flow rate under a certain pressure, 
and satisfies the pressure margin of blade cooling. The supersonic atomization nozzle model was established by 
Los  Alamos17 laboratory in the United States, and the supersonic atomization combustion process of internal 
combustion engine was studied. The analysis of the complex motion of evaporation, fragmentation and turbulent 
diffusion of two-phase chemical fluid can effectively improve the efficiency of atomization combustion.

The atomization effect of the nozzle can be evaluated by studying the droplet size SMD and its distribution, 
which are the key parameters of the atomization performance. Lilan et al.18 studied the droplet size distribution 
in the flow field of external air atomizer through experiments. They divide the atomization field into several 
observation areas, and through the measurement of several local observation areas, the relationship of droplet 
size distribution in the whole atomization field is obtained, which provides a certain reference for the study of 
nozzle atomization field. it provides a basis for intuitively understanding the droplet size distribution of the nozzle 
atomization field. Yu et al.19 developed a new type of gasified coal water slurry nozzle and studied its atomiza-
tion performance. They discussed in detail the effects of nozzle working load and gas flow rate on atomization 
particle distribution, Sauter mean diameter SMD and nozzle atomization angle. Hyun Suh et al.20 studied the 
effect of cavitation flow on the atomization characteristics of diesel fuel in different size nozzles through the flow 
visualization system, and used the particle measurement system to determine the atomization characteristics 
such as SMD and droplet average velocity. The results show that the cavitation in the nozzle enhances the fuel 
atomization performance, and the longer the nozzle orifice length is, the more fuel atomization is. Xia et al.21 
used laser particle size system to measure the droplet diameter of different spray fields. It was found that the 
droplet size in the spray center was the smallest and the SMD at the spray edge increased.

The influence of working condition parameters on atomization effect was studied, and the experimental stud-
ies on the influence factors of different operating parameters on droplet diameter were carried out, some scholars 
have established corresponding mathematical models to predict SMD to improve atomization  efficiency22,23. 
Nonnenmacher et al.24 studied the hollow cone pressure swirl nozzle based on the theory of internal and external 
flow field of the nozzle, and established the simulation program model of flow coefficient and droplet diameter. 
According to the simulation program, the Sauter average diameter SMD of the nozzle can be predicted. Other 
scholars have built deep learning models that can quickly predict spray  SMD25, Wang et al.26 established the pre-
film atomization model by using neural network algorithm, and concluded that with the increase of oil pressure 
difference, the pre-film device appeared anti-fog effect, and the atomization effect was poor. According to the 
similarity of droplet breakup, Liu et al.27 constructed a finite random fragmentation model (FSBM) for the blast 
atomization process before film formation. The droplet size distribution is simulated by using this model, and 
the simulation results are consistent with the experimental results of the pre-film blast atomizer. This model can 
accurately determine the nonlinear relationship between the average droplet diameter SMD and the size distri-
bution of the blast spray. Kaiser et al.28 established the suction pressure model of the closed coupled atomization 
(CCA) nozzle, and applied the machine learning algorithm based on artificial neural network to the prediction 
of the suction pressure in the tightly coupled HPGA nozzle. The  R2 of the neural network model is 0.98. Accord-
ing to the parameter research and sensitivity test, the SMD predicted by different working condition parameters 
can facilitate the conceptual design and operation of the CCA nozzle to minimize the suction pressure. Zhang 
et al.29 used artificial neural network technology to test the prediction accuracy of large eddy simulation (LES) 
of spray combustion. The results show that the current artificial neural network model can well replicate most 
species mass fraction tables, which can predict the spray flame of the simulated engine combustion network well.

According to the previous research and analysis of nozzle atomization experiments, there are many studies on 
the factors affecting the droplet diameter of atomization parameters, and the current nozzle atomization research 
is limited to the simple relationship and law among atomization parameters, Some people have established the 
empirical formula atomization model of the traditional nozzle, and the accuracy of the traditional mathematical 
model is not high, and the error of predicting SMD is large; Few people have established a complex machine 
learning atomization model for the traditional nozzle atomization parameters, and no one has used supersonic 
atomization nozzles to establish a machine learning model to predict SMD, and the predecessors have a large 
prediction error of SMD, and the correlation analysis of SMD influencing factor parameters is more trouble-
some, we use the neural network algorithm to normalize the data and use the Pearson correlation principle to 
analyze the speed is faster, time-saving and labor-saving, and the influence weight between each factor can be 
clearly calculated.
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Therefore, in this paper, a new algorithm-BP neural network optimized by genetic algorithm is used to 
establish an atomization model for the new nozzle atomization parameter droplet average diameter SMD, and 
compared with the traditional BP neural learning network, a reliable and accurate atomization model is estab-
lished, which can quickly predict the atomization target parameter SMD, improve the prediction efficiency and 
accuracy, and adjust the SMD of droplets according to different working conditions. When there is more liquid 
accumulation at the bottom of the well, the gas flow in the atomization device is less, the liquid flow is more, 
that is, the gas–liquid ratio is small, the liquid discharge outside the well increases, the drainage efficiency is 
improved, the liquid accumulation at the bottom of the well decreases, and the natural gas flow channel increases. 
Drainage and natural gas recovery is greatly improved; when the bottom-hole fluid is less, the natural gas is more, 
the gas–liquid ratio in the atomizing device is larger, and the recovery rate is improved. The established GA-BP 
model has certain significance for the setting of downhole nozzle operating parameters and the improvement 
of drainage efficiency.

Test method
Simulation. Geometric models. A new type of atomization nozzle based on Laval tube can realize super-
sonic atomization. The traditional Laval tube is improved and a three-dimensional atomization nozzle model is 
established as shown in Fig. 1. Figure 1a shows a three-dimensional geometric model of the nozzle, which con-
sists of one gas inlet, four spatially symmetrical liquid inlet and mixing outlet. The downhole natural gas enters 
from the gas phase inlet of the nozzle and accelerates through the throat, and the flow velocity of the gas reaches 
supersonic speed. The accumulated fluid enters the cavity from the entrance of the liquid phase and is sheared 
and broken by the impact of high-speed air flow and atomized. Then it is carried out of the wellbore with the 
rising natural gas. Figure 1b shows the size of the nozzle model. The gas–liquid inlet diameters are 25.0 mm and 
6.0 mm, the mixing outlet diameter is 34.0 mm and the total length is 100.0 mm.

Control equations. In this paper, based on the supersonic flow of gas–liquid two-phase flow, the VOF turbulent 
Realizable k-ε model is used to consider the turbulent eddy current effect. Atomization nozzle makes natural 
gas produce supersonic flow, high-speed airflow impact liquid flow shear atomization, the continuity equation 
of mass inflow equal to outflow is:

In the formula, ρ is the fluid density, ux, uy and uz are the velocity vectors of x, y and z axes respectively.
When the resultant force of the fluid in the cavity is zero, the momentum remains unchanged before and after 

the momentum. The product of fluid mass and velocity is equal to the time product of the resultant force acting 
on the fluid, which satisfies the momentum conservation:

According to the first law of thermodynamics, the internal flow of the cavity satisfies the law of conservation 
of energy:

In the formula: μ is the dynamic viscosity; Su, Sv and Sw are generalized source terms of momentum conser-
vation equation, S is volume heat source term; p is the flow field pressure, E is the total energy of fluid micelles; 

(1)
∂ρ

∂t
+

∂(ρux)

∂x
+

∂(ρuy)

∂y
+

∂(ρuz)

∂z
= 0

(2)











∂(ρu)
∂t +∇(ρuxu) = div

�

µgradu
�

− ∂p
∂x + Su

∂(ρu)
∂t +∇

�

ρuyu
�

= div
�

µgradu
�

− ∂p
∂y + Sv

∂(ρu)
∂t +∇(ρuzu) = div

�

µgradu
�

− ∂p
∂z + Sw

(3)
∂(ρE)

∂t
+∇ ·

�

u
�

ρE + p
��

= ∇ ·



keff�T −
�

j

hjJj + τeff u



+ S

(a) (b)

0 10 20 30 40 50 60 70 80 90 100 110
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

Output/34mmGas inlet/24mm
Liquid inlet/6mm

Y
m

m/

X/mm

Figure 1.  Supersonic atomizing nozzle model. (a) Three-dimensional model. (b) Model size.
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keff is the effective thermal conductivity; hj and Jj are the enthalpy and diffusion flux of component j; τeff is the 
effective stress tensor; ΔT is the fluid temperature gradient.

Realizable k-ε model:

Of which: C1 = max
(

0.43 η
η+5

)

, η = S k
ε

In the equation: K is turbulent kinetic energy, ε is turbulent dissipation rate; Gk is the turbulent kinetic energy 
term produced by the laminar velocity gradient; Gb is the turbulent kinetic energy term caused by buoyancy; 
YM is the effect of compressible turbulent expansion on the total dissipation rate; C1, C2 are constants; σK and 
σε are the Prandtl numbers corresponding to k equation and ε equation respectively; Sk and Sε are user-defined 
turbulent kinetic energy terms and turbulent dissipation source terms.

Boundary conditions and parameter settings. 

1. Solution method setting
  The VOF gas–liquid two-phase flow model and the turbulence Realizable k-e model are used in the 

simulation calculation. The implicit solver is selected and the pressure-based solver is used. The transient 
calculation, the time step is 0.0001 s, the solution time is 50 s, and the coupling of velocity and pressure is 
SIMPLEC algorithm. The monitor monitor monitors the changes of various physical quantities at the outlet. 
The residual is set to  10–6, and the convergence is more reliable.

2. Boundary condition setting
  The gas inlet is the mass flow inlet, the gas material is air, the initial value is 3000  m3/d, converted to a mass 

flow rate of 42.535 g/s; the liquid nozzle inlet is set as the mass flow inlet, the material is set as liquid water, 
the initial value is 0.6  m3/d, and the mass flow rate is 6.932 g/s. Nozzle outlet end face is set to pressure outlet, 
the value is an atmospheric pressure − 101,325 Pa, the rest of the wall is set to wall, wall smooth; liquid inlet 
diameter (d), aperture d 6.0 mm.

Grid independence verification. According to the complex irregular model in this paper, the tetrahedral and 
boundary layer refinement grid model is adopted, which has high adaptability and grid quality. In general, the 
more the number of grids, the higher the calculation accuracy, but it will also increase the computational burden. 
These two factors should be balanced before grid generation. In this paper, three different types (different quanti-
ties) of grids are generated, and the independence of the generated grids is tested, as shown in Fig. 2.

During the test, the gas–liquid two-phase velocity of the upstream, middle and downstream four sections of 
the nozzle x = 14.2 mm, x = 30 mm, x = 60 mm, x = 100 mm were compared. The results show that the velocity 
simulation results using three different grids have similar trends. The speed of sampling points using better grids 
is very close to the value using fine grids, and the speed using medium grids is very different from the speed 
using the other two grids. Therefore, it can be considered that the better grid has met the requirements of grid 
independence and ensured the simulation accuracy. Using ’ better ’ grids can effectively shorten the simulation 
cycle and ensure that the flow field calculation error is small. The final information of mesh ‘better’: the total 
number of elements is 1,227,661, the total number of nodes is 351,415.

Simulation results. Based on Fluent, the simulation is carried out. The initial value of the gas inlet flow is 3000 
 m3/d, the initial value of the liquid inlet flow is 0.6  m3/d, the initial value of the liquid inlet diameter is 6.0 mm, 
and the outlet pressure is an atmospheric pressure of 101325 Pa. The calculated internal cloud diagram of the 
nozzle is shown in Fig. 3. The maximum velocity of the throat is 501.0 m/s to reach supersonic speed, and the 
maximum turbulent kinetic energy is 2819.5  m2/s2.

According to the internal flow field of the atomizing nozzle, a transverse central axis is established inside the 
atomizing nozzle. The transverse velocity distribution inside the nozzle is shown in the figure. When the throat 
velocity reaches a maximum of 501.0 m/s, it is 18.97 mm from the gas inlet. Similarly, the longitudinal axis data 
of the liquid inlet are shown in the Fig. 4. The calculated axial velocity at the liquid inlet of the liquid flow is 
0.24 m/s, and the maximum longitudinal velocity is 256.73 m/s. It collides with the supersonic airflow and shears. 
The turbulence is severe, the gas–liquid phase interaction improves the atomization effect.

Experimental study. Experimental system. According to the simulated supersonic nozzle model, the su-
personic atomization working nozzle is improved and established by Solidworks software, and then the porous 
symmetrical working atomizer is made by 3D printing technology, as shown in Fig. 5. Figure 5a shows the work-
ing atomizer, made of stainless steel, with a total length of 130 mm. Figure 5b shows the internal profile of the 
working atomizer.

A spray experimental system is established as shown in Fig. 6. Figure 6a shows a manual experimental plat-
form, including high-pressure water pump, liquid Flowmeter, air compressor, high-pressure gas cylinder, gas 
Flowmeter, high-speed camera, laser particle size analyzer, computer and so on.
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Among them, the gas flowmeter model is HL-LWQ, measuring range is 1–10,000  (m3/h), working temperature 
0–60 °C; the model of liquid flowmeter is LWGY-FMT, measuring range is 0.6–800  (m3/h), working tempera-
ture is − 20 to 120 (°C), pressure gauge model is YTZ-150, measuring range is − 0.1 to 0–60 (MPa), working 
temperature is − 10 to 80 (°C).

Figure 6b shows a laser particle size analyzer. The droplet size was measured by HELOS/VARIO-KR laser 
particle size analyzer in Germany. The laser particle size meter has a wide range of droplet size measurement, and 
can cover the parallel optical path design of 0.1–3500 μm dynamic range according to the selection of different 
lenses, and can realize wide spray plume particle size measurement.

The particle size analyzer is connected with the computer, and the data is processed by the computer. The 
droplet diameter measured by the laser particle size analyzer was statistically analyzed by using Sotel’s average 
particle size SMD. SMD is represented by D32, and the calculation equation is:

where, D32 is the average particle size of Sauter, and N is the number of droplets with diameter D.

(6)D32 =
∫max
min D3dN

∫max
min D2dN

Figure 2.  The comparison of the velocity at various cross-sections among three meshing cases.

Figure 3.  Internal cloud map of supersonic nozzle. (a) Velocity cloud map. (b) Turbulent kinetic energy cloud 
map.
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Figure 6c shows KJ series industrial air compressors. The air compressor has a discharge capacity of 0.36–0.9 
 m3/min, maximum exhaust pressure 2.5 Mpa, maximum motor power 7.5 KW, safe and reliable, and long service 
life.

Experimental scheme. In order to simulate the gas–liquid atomization flow state of low-pressure and low-yield 
gas wells, the gas volume flow (Qg) is 3000  m3/d, 3500  m3/d, 4000  m3/d, 4500  m3/d and 5000  m3/d, and the liquid 
volume flow (Ql) is 0.6  m3/d, 1.0  m3/d, 1.4  m3/d, 1.8  m3/d, and 2.2  m3/d. The diameter of the liquid phase nozzle 
d is 6.0 mm, 6.6 mm, 7.2 mm, 7.8 and 8.4 mm. The orthogonal test of 3 factors and 5 levels was designed. The 
level factors are shown in Table 1.

The 3-factor 5-level orthogonal experimental model was set to 60 groups, and the experimental orthogonal 
table combined the levels of each influencing factor with equal probability, the sequence of orthogonal experi-
ment is shown in Table 2.

The experiment is carried out indoors, the indoor environment is stable, the temperature is 25 °C at room tem-
perature, the working principle of the experimental system is: the high-pressure air flow enters the contraction 
section of the atomization nozzle from the gas phase inlet through the gas flow meter, the water flows through 
the liquid phase inlet into the expansion section, and the high-speed air flow accelerated to the expansion section 
by the throat collides with the water flow and shears atomization and sprays out through the mixing outlet; At 
the same time, the spray flow field is ingested by a high-speed camera, and the particle size distribution of the 
droplets is measured by the laser particle size meter at the monitoring point at the uniform atomization place, 
and the data of the atomized droplet diameter under different working condition parameters is collected. After 
the experiment, first turn off the power, then turn off the air compressor and water pump, then close the pressure 
valve, and finally perform data output preprocessing.

The specific operation of the test is as follows:

1. First, connect each experimental equipment in order, place the laser particle size detector at the exit of the 
atomization nozzle, connect it to the computer, and check whether the safety and stability of the system are 
normal;

2. Secondly, open the switch of the pressure control valve and pressure gauge, start the laser particle size tester, 
and then turn on the air compressor and other nozzles after stabilizing and then open the water pump, in 
which the air is compressed and stored in the high-pressure gas cylinder, and the parameters required by 
the air compressor and water pump experiment are set;

Figure 4.  Internal cloud map of supersonic nozzle. (a) Transverse central axis. (b) Longitudinal axis velocity.

Figure 5.  Working atomizing nozzle model. (a) Nozzle physical object. (b) Internal cross section of nozzle.
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3. The laser particle size tester is placed at 50 cm of the nozzle outlet, and the atomization droplet data collec-
tion and data output are carried out after the atomization nozzle spray is stabilized;

4. Record the changes of the pressure gauge flowmeter in real time, monitor and record the pressure gauge and 
flowmeter;

5. After the experiment is completed, first turn off the power supply, then turn off the air compressor and water 
pump, then close the pressure valve, and finally carry out data output preprocessing.

Atomization model establishment. BP neural network. Neural network prediction is widely used in 
production practice, has strong learning and adaptive ability, and can effectively connect input and output infor-
mation in series. BP neural network is a "universal model + error correction function". It is a model which can 
compare the error between the training results and the expected results, modify and find the optimal weight and 
threshold, and gradually get the model which is consistent with the expected output results. BP neural network 
consists of input layer, hidden layer and output layer. The diagram of the network structure is shown in Fig. 7.

Each neuron is stimulated by other neurons. All the signals received by each neuron model are transmitted 
through a weighted connection. The neuron accumulates these signals to a total input value, and then compares 

Figure 6.  Atomization experiment work platform. (a) Experiment platform. (b) Laser particle size analyzer. (c) 
Air compressor.

Table 1.  Test factor level table.

Factor Qg-(m3/d) Ql-(m3/d) d-mm

Level 1 3000 0.6 6.0

Level 2 3500 1.0 6.6

Level 3 4000 1.4 7.2

Level 4 4500 1.8 7.8

Level 5 5000 2.2 8.4
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the total input value with the threshold value of the neuron (simulated threshold potential), which is processed 
by the "activation function" and transmitted to the next neuron. The activation function is a nonlinear map-
ping function. The effect of activation function is to increase the nonlinear ability of the model, make it form 
nonlinear mapping, and enhance the adaptability and reliability of the model. The activation function applies to 
the weighted sum of inputs called z for each node in the hidden and output layers (where the input can be either 
the original data or the output from the previous layer). The sigmoid function converts its input to a probability 
value between 0 and 1. It converts large negative values to 0 and large positive values to 1.

The activation function equation is:

where, the number of nodes in the hidden layer of BP network affects the accuracy of model training. The 
more the number of nodes, the more reliable the training quality. Hidden nodes can be calculated according to 
empirical equation:

where, n is the number of nodes in the input layer; m is the number of hidden layer nodes; l is the number of 
output layer nodes; a is a constant between 0 and 10.

The input node and target output parameters of BP neural network are shown in Table 1. The input nodes 
are gas flow rate, liquid phase flow rate and liquid phase inlet diameter, and the target output layer is droplet 
diameter SMD.

Genetic algorithm. Genetic algorithm is a computational model that simulates the biological evolution process 
of Darwin’s biological evolution theory, and it is a method to search the optimal solution by simulating the natu-
ral evolution process. Genetic algorithms start by representing the potential solution set of the problem, while 
a population is made up of a certain number of individuals encoded by genes. At the beginning, many feasible 

(7)sigmoid(z) =
1

1+ e−z

(8)m =
√
n+ l + a

Table 2.  Orthogonal experiment sequence table.

Experimental sample Qg/m3/d Ql/m3/d d/mm

1 3000 0.6 6.0

2 3000 1.0 6.6

3 3000 1.4 7.2

4 3000 1.8 7.8

5 3000 2.2 8.4

… … …

57 5000 1.8 7.8

58 5000 2.2 8.4

59 5000 1.0 7.2

60 5000 1.4 7.8

Figure 7.  Schematic diagram of BP neural network.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22192  | https://doi.org/10.1038/s41598-022-26597-x

www.nature.com/scientificreports/

solutions are randomly selected (to form a population), each individual is composed of a chromosome contain-
ing only two genes (0 or 1), and the chromosomes of different individuals are different. but they can be crossed 
with each other, or mutated and crossed, and then the initial parameters are evaluated and screened.

1. Population initialization
  The initial population is randomly generated by the data parameters, and the population size directly affects 

the chromosome diversity. Chromosomes are made up of arrays and data strings. Initialization randomly 
generates N initial string structure data, and N individuals form a group. GA began to evolve with these N 
string structure data as the starting point.

2. Fitness function
  Fitness function is also called evaluation function. The effect of genetic algorithm evaluation of algorithm 

convergence depends on the fitness value, not on the structure of the solution. The size of the fitness value 
determines the advantages and disadvantages of the individual. The larger the fitness value is, the better the 
individual is. Therefore, our criteria for selecting individuals are selected by the size of the fitness value. The 
fitness function is used to calculate the fitness value of each individual, and the results are provided to the 
selection operator.

where, n is the number of output nodes of the network,  yi is the expected value of the i node of the BP neural 
network,  xi is the actual output of the i node, and k is the coefficient.

3. Selection operation
  The selection operation is to select relatively excellent individuals in the population to prepare for the 

next operation. When the roulette method is used in the selection operation of genetic algorithm, it is a 
selection strategy based on fitness ratio to select some data with high fitness value. The higher the adaptive 
performance, the higher the output precision. The probability of an individual being selected, pi, is:

where,  Fi is the fitness value of i individual, and the reciprocal of fitness degree before individual selection 
is fi; k is the coefficient.

4. Crossover operation
  Crossover operation refers to the selection of two individuals from all individuals, by using the cross-

combination of two chromosomes to check the excellent individuals. In the crossover process, two chromo-
somes are randomly selected from the population, and one or more unknown chromosomes are randomly 
selected for exchange. Because the individual uses real number coding, the real number crossing method is 
used in the crossover operation method. The crossover operation of the k-th chromosome akj and the i-th 
chromosome aij at position j is as follows:

where, b is a random number between [0,1].
5. Mutation operation
  Mutation operation means to select an individual from the population, select a point of the chromosome 

to mutate to produce a better individual, and mutate the individual gene of the population. The mutation 
operation function using the j-th gene aij of the i individual is as follows:

where, amax is the upper bound of gene aij , amin is the lower bound of gene aij , g is the current evolutionary 
algebra, Gmax is the maximum evolution value of 20, r is the random number of [0,1].

GA‑BP neural network. BP algorithm has a good effect on the fitting of nonlinear systems, but it has some 
limitations. The weights and thresholds of network training are unstable, and the effect of each training is not 
fixed. Although it has a strong ability of nonlinear mapping, it takes more time in the process of approaching the 
predicted value, which leads to slow convergence and easy to fall into local optimization. In the study of practi-
cal problems, genetic algorithm has better global search ability and can obtain the global optimal solution with 
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fast convergence speed. In order to improve the training effect of the network, genetic algorithm is introduced 
to reduce the possibility that the BP neural network is easy to fall into local optimization. BP neural network 
optimized by genetic algorithm can preliminarily screen the random weights of neural network and optimize 
the network structure, which greatly improves the learning and adaptive performance of BP neural network, and 
can achieve the best prediction effect. The flow of BP neural network optimized by genetic algorithm is shown 
in Fig. 8.

Model evaluation. In this paper, mean square error (MSE), average absolute error (MAE) and average 
absolute percentage error (MAPE)are used to evaluate the performance of the prediction model, and the qual-
ity of model prediction is determined by these three indexes. The smaller the MSE is, the closer the MAE and 
MAPE are to 0, indicating that the relative error of the model prediction is smaller and the overall prediction 
accuracy is higher.
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Figure 8.  The processing flow of GA-BP neural network.
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where, xi is the i predicted value; yi is the i actual value。
The determination coefficient  R2 was used to evaluate the fitting degree between the predicted experimental 

values of SMD and the simulated values. The closer  R2 is to 1, the better the model is. The equation for  R2 is:

where, xexp is the experimental value, xpred is the predicted value,X̄expexp is the average value of the experimental 
value.

Data normalization. Because of the large dimension gap between different dimensions in the original data, 
it is necessary to normalize the data in order to make different types of data at the same latitude and interval. 
This can effectively reduce data differences, improve adaptability, reduce data redundancy, and improve data 
parameter operation accuracy and convergence efficiency. In this paper, 60 groups of experimental values are 
selected as the sample set, the data are normalized, and mapped to the range of [0,1]. Use the Premnmx function 
to normalize the original data as follows:

The formula xmax and xmin are the maximum and minimum values of SMD for what experimental samples.

Test results and analysis
Simulation test parameters. The input parameters of BP neural network are gas flow rate, liquid phase 
flow rate, liquid phase inlet diameter and average droplet size SMD. In the experimental study, 60 groups of 
parameters were trained and tested, as shown in Table 3. All the experimental data are attached.

The GA-BP network model first normalizes the experimental data, and then debugs the simulation program. 
The initial parameters of the selected model are shown in Table 4:

Model training. In this paper, according to BP neural network and BP network optimized by genetic algo-
rithm (GA-BP), the training set can be accurately predicted and tested by sample data. Here, the first 45 sets of 
experimental data sets are used to learn and train the atomization model.

(18)R2 = 1−
∑n

i=1

(

xexp − xpred
)2

∑n
i=1

(

xexp − xe×p

)2

(19)x′ =
x − xmin

xmax − xmin

Table 3.  Experimental parameters and results.

Qg/m3/d Ql/m3/d d/mm SMD/μm

3000 0.6 6.0 148.00

3000 1.0 6.6 164.91

3000 1.4 7.2 177.89

3000 1.8 7.8 188.66

3000 2.2 8.4 198.27

… … … …

5000 1.8 7.8 74.45

5000 2.2 8.4 84.06

5000 1.0 7.2 56.65

5000 1.4 7.8 70.15

Table 4.  GA-BP neural network simulation initial parameters.

Data name Data parameter

Population size 20

Learning rate 0.05

Crossover probability 0.2

Mutation probability 0.1

Number of training 1000

Maximum evolution algebra 20

Parameter dimension 4

BP network structure 3-7-1
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Genetic algorithm is used to optimize the structure of BP neural network 3-7-1 in simulation. Genetic algo-
rithm can transfer the optimal threshold and weight to BP neural network. The changes of the best fitness and 
the average fitness of the population are shown in Fig. 9. In the initial stage of iteration, the individual of the 
population is far from the expected value. In the later stage of iterative optimization, with the continuous iterative 
convergence of network calculation, the search speed of the optimized genetic algorithm increases, the range 
of fitness value decreases, and the decline speed is accelerated. The average fitness of the population decreases 
with the evolutionary algebra, and the individual of the population gradually approaches the optimal fitness.

The BP network is trained by using the weight threshold optimized by GA. The training results of the learn-
ing model are shown in Fig. 10. The training effect of SMD atomization model is good. The SMD training values 
of GA-BP and BP are in good agreement with the experimental values. The training error of GA-BP is smaller 
than that of BP network, because the BP network optimized by genetic algorithm has stronger adaptability and 
more stable network structure.
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Figure 9.  GA-BP fitness response curve.

Figure 10.  Model training error.
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Sensitivity analysis. According to the atomization model trained by BP network, the gas flow rate, liquid 
phase flow rate and liquid phase inlet diameter are input variables, and droplet size is output variables. The rela-
tionship between the normalized SMD and the normalized input parameters is shown in Fig. 11.

In Fig. 11a, the normalized SMD decreases with the increase of the supply flow rate Qg. Because of the 
increase of air supply, the kinetic energy in the nozzle cavity increases rapidly, the shear crushing effect is 
strengthened, and the atomization performance is better; SMD tends to increase with the increase of liquid sup-
ply. Because the total number of droplets increases, the total volume of droplets increases, the effective surface 
area of droplets decreases, and the average particle size of droplets increases; With the increase of liquid inlet 
diameter, SMD increases the liquid flow rate and the average droplet size.

Figure 11b shows the Pearson correlation coefficient thermal map generated by the normalized parameters 
of the BP network. There is a negative correlation between Qg and SMD, and the sensitivity is the strongest, and 
the correlation is − 0.93, which is consistent with the change trend of Qg and SMD in Fig. 10a. There is a positive 
correlation between Ql, d and SMD, and the correlation values are 0.20, 0.29, respectively. The d has a stronger 
effect on SMD than Ql. To sum up, the relationship of sensitivity to SMD is Qg > d > Ql.

Model testing. The model training is more accurate. The model is tested by using the data outside the train-
ing sample, and the atomization model is tested by the test set data. When the network training results meet cer-

Figure 11.  Sensitivity of each input parameter to the normalized SMD of the BP network. (a) Standard 
normalization. (b) Correlation coefficient matrix plot.
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tain accuracy requirements, the remaining 15 groups of data are used to test the GA-BP network. The predicted 
results of the model are shown in Fig. 12, the specific experimental prediction data are shown in Table 5. The 
prediction error of BP network is larger than that of GA-BP network, and the prediction error of GA-BP network 
is smaller. The predicted values are in good agreement with the experimental values.

The prediction result of GA-BP network is closer to the real SMD value than that of unoptimized BP network, 
and the prediction accuracy of GA-BP is better than that of BP, and the prediction accuracy of BP network needs 
to be improved. This is because: 1. The sample data set is not infinite, and the network does not fully study the 
fluctuation trend of SMD. 2. The average droplet size is not only related to the experimental input variables, but 
also related to the changing factors of the laboratory environment, such as temperature, humidity, noise and so 
on, so the output signal distortion may occur in BP network prediction. While GA-BP selects and optimizes the 
random values of the network through selection, mutation and crossover, and the prediction output accuracy 
is greatly improved.

Error analysis. Figure 13A shows the average error response curve of GA-BP network training. The experi-
mental results show that the BP network improved by genetic algorithm can adaptively adjust the crossover 
and mutation rate of individuals in the number of populations, accelerate its convergence speed, and effectively 
reduce the number of training steps. The optimal evolution algebra is the 9th generation, and the minimum 
convergence value of MSE is 1.1128 ×  10–5.
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Figure 12.  GA-BP test results.

Table 5.  GA-BP neural network predicts droplet size SMD results.

Experimental value BP predicted value BP error GA-BP predicted value GA-BP error

92.64 93.74 1.104 93.86 1.224

66.25 65.27 − 0.981 65.64 − 0.614

79.23 77.88 − 1.355 79.71 0.475

58.63 69.49 10.857 56.86 − 1.776

45.25 50.27 5.013 42.43 − 2.821

57.72 62.20 4.479 55.72 − 1.997

67.98 72.18 4.198 67.57 − 0.409

77.08 81.90 4.822 79.18 2.093

33.78 38.76 4.977 32.48 − 1.299

50.70 55.52 4.821 47.36 − 3.339

63.68 67.69 4.015 61.55 − 2.124

74.45 78.54 4.089 74.44 − 0.003

84.06 86.20 2.141 87.16 3.094

56.65 61.79 5.133 53.01 − 3.657

70.15 74.74 4.595 67.91 − 2.234
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Figure 13b is a matrix data graph with 2 rows and 2 columns. The abscissa is the target value, the ordinate is 
the output value of the network, and the diagonal line (-Fit) is the best adaptive fitting curve of the target value 
and the network output value. In order to prevent over-fitting, the method used by MATLAB is to divide the data 
into three parts. Training is the training data, validation and test are the validation data and test data respectively. 
The correlation between the trained network output value and the training target value is 0.99997, (b upper 
left). As the training progresses, the error between the training output data and the training target data becomes 
smaller and smaller, and the validation and test data are the same. The error is getting smaller and smaller. The 
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Figure 13.  Training results. (a) Model training MSE. (b) Correlation coefficient of GA-BP model.
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correlation between all network output values and all target values in the fourth figure (lower right) is 0.98865, 
and finally a perfect regression is formed.

The error between the predicted output value and the experimental value based on BP and GA-BP network 
is shown in Fig. 14. The error analysis of the prediction model is shown in Table 5. The prediction of  R2 by BP is 
0.897 and the prediction of  R2 by GA-BP is 0.979. The fitting degree of GA-BP model is higher and the prediction 
effect is better. The prediction error of BP network in the model test of the last 15 groups of data is large, and the 
prediction errors of MSE, MAE and MAPE are 22.729, 4.172 and 0.072 respectively, as shown in Table 6. After 
optimization by genetic algorithm, the errors of MSE, MAE and MAPE are greatly reduced to 4.471, 1.811 and 
0.031 respectively, indicating that the SMD atomization model based on GA-BP network is successful.

Conclusion

1. Based on GA-BP model training, the relationship between normalized SMD and normalized input param-
eters is obtained. SMD decreased with the increase of Qg, showing a positive correlation, while SMD increased 
with the increase of d and Ql, showing a negative correlation. The relationship between the normalized 
parameters of model training and the sensitivity of SMD is as follows: Qg > d > Ql.

2. Through the input parameter gas phase flow rate, the liquid phase flow rate, liquid phase inlet diameter and 
output parameters are trained and tested. The  R2 predicted by BP model is 0.897, while that of GA-BP is 
0.979, which shows strong learning and adaptive performance and high goodness of fit. The mean square 
error (MSE), average absolute error (MAE) and average absolute percentage error (MPE) of GA-BP predic-
tion are 4.471, 1.811 and 0.031 respectively. Compared with the prediction of BP network, it decreased by 
18.258 and 0.041 respectively. GA-BP can effectively improve the prediction accuracy.

3. The weight and threshold of BP neural network are improved by genetic algorithm, the global intelligent 
adaptability of the network is improved, the convergence of BP network calculation is faster and more 
accurate, and the droplet size SMD can be predicted quickly. The SMD prediction model of droplet size 
constructed by GA-BP network greatly improves the prediction speed and accuracy. It is of great significance 
to quantitatively guide the setting of gas–liquid phase parameters and the improvement of liquid carrying 
rate in downhole supersonic atomization drainage.

Figure 14.  Model prediction error.

Table 6.  Atomization model error parameters.

Test model R2 MSE MAE MAPE

BP 0.897 22.729 4.172 0.072

GA-BP 0.979 4.471 1.811 0.031
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The supersonic atomizing nozzle is used for drainage and gas recovery. The supersonic atomizing is uniform, 
which effectively reduces the gas–liquid phase velocity slip loss, improves the liquid carrying efficiency and 
enhances the recovery rate. At present, the new supersonic atomizing nozzle designed by us has been success-
fully applied to the Xushen gas field block of Daqing Oilfield, and has achieved good results. It can improve the 
natural gas recovery rate by 4.5–8.6% and alleviate the problem of liquid accumulation near the final stage of 
oil exploration.

Data availability
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