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A neuro swarm procedure to solve 
the novel second order perturbed 
delay Lane‑Emden model arising 
in astrophysics
Zulqurnain Sabir 1, Salem Ben Said 1*, Qasem Al‑Mdallal 1 & Mohamed R. Ali 2,3

The current work provides a mathematical second order perturbed singular delay differential model 
(SO-PSDDM) by using the standard form of the Lane-Emden model. The inclusive structures based 
on the delay terms, singular-point and perturbation factor and shape forms of the SO-PSDDM are 
provided. The novel form of the SO-PSDDM is numerically solved by using the procedures of artificial 
neural networks (ANNs) along with the optimization measures based on the swarming procedures 
(PSO) and interior-point algorithm (IPA). An error function is optimized through the swarming PSO 
procedure along with the IPA to solve the SO-PSDDM. The precision, substantiation and validation are 
observed for three problems of the SO-PSDDM. The exactness of the novel SO-PSDDM is observed by 
comparing the obtained and exact solutions. The reliability, stability and convergence of the proposed 
stochastic algorithms are observed for 30 independent trials to solve the novel SO-PSDDM.

The solutions of the singular models always a big challenge for the scientists due to the reason of the singular 
point that arise at origin. These systems become stiffer and complicated by using the perturbed terms with the 
boundary layer performance. The singular types present the speedy disparities to conduct the thin boundary 
layers. There are some typical techniques that present the perturbation form of the singularity, but these schemes 
fail to achieve the appropriate solutions due to the small perturbation factors. Consequently, it is the need of the 
time to design some reliable numerical schemes for such models1–7. A computing scheme using the finite differ-
ence and the exponential fitting is explored to achieve the performances of the singular perturbed form of the 
models8–10. Some other schemes presented to solve the convection–diffusion second order perturbed singular 
delay differential model (SO-PSDDM)11. The mesh approach using several simulations has been used to solve 
the reaction–diffusion models9,12 and the diffusion reaction semi-linear based models have been solved in13.

The use of delay factor is considered very important due for the researchers due to its enormous applica-
tions in the biological sciences, ships controlling, number theory, light absorption in the stellar matter, medical 
field, chemistry, electronics, infectious diseases, physical systems, quantum mechanics, economics, engineer-
ing, electrodynamics and control systems14. The researchers are always interested to solve these models due to 
these mentioned applications. Perko15 designed the linear and nonlinear types of the differential models using 
the dynamical constructions. Lasalle16 and Kuang17 investigated the solution methods together with the delay 
form of the models. Forde18 presented the delay biological systems and Beretta et al.19 introduced the geometric 
dependability using the terms based on delay dependent.

The differential singular models have a variety of applications in quantum mechanics, gas cloud and 
astrophysics20–23. There are many scientists that are interested to solve the singular differential models, as these 
models are always challenging to handle for the researchers. Most of the traditional schemes do not work to solve 
such singular models, so different approximations have been applied to solve these singular models. Therefore, 
artificial neural networks (ANNs) optimized by the global and local search schemes are a better choice to solve 
the singular models, because it gives solutions at exact singularity without any approximation. One important 
singular model is known as Lane-Emden model that is famous due to the historical aspects. The mathematical 
form of this historical model is written as24,25:
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where ω represents the shape factor, the singular point is at u = 0 , r(z) and v(u) are the functions of z and u. 
The purpose of these investigations is to present the numerical solutions of the novel SO-PSDDM by using the 
artificial neural networks (ANNs) along with the optimization measures of the swarming procedures (PSO) and 
interior-point algorithm (IPA). The novel features for solving the new designed SO-PSDDM are provided as:

•	 A novel mathematical singular kind of system is constructed with the perturbed, standard Lane-Emden and 
delay terms.

•	 Soft computing approaches using the process of ANNs process along with the optimal structures of the 
swarming scheme and interior-point algorithm have been presented for solving the novel SO-PSDDM.

•	 The computing competence of the ANNs procedure using the optimal structures of the swarming scheme 
and IPA is provided for three different problems of the novel SO-PSDDM.

•	 The obtained and exact results have been compared to prove the correctness of the computational stochastic 
approach.

•	 The absolute error (AE) measures are provided in good actions, which validates the precision of the swarming 
computational scheme.

•	 The dependability and reliability of proposed ANNs procedure using the optimization structures of the 
swarming scheme and IPA are observed for solving the novel SO-PSDDM by using the statistical presenta-
tions of the semi-interquartile range (SIR), Theil inequality coefficient (TIC) and mean square error (MSE).

•	 Beside the detailed structure of the mathematical model and designing of the stochastic scheme, constancy, 
robustness, smooth actions, inclusive pertinency and ease of understanding are other noteworthy perks.

A novel SO-PSDDM is proposed in this study, which becomes stiffer and more complex by using the delay 
and perturbed factors. Therefore, a stochastic ANNs computing framework using the optimal structures of the 
particle swarm optimization (PSO) and IPA is presented to solve the novel SO-PSDDM. Recently, the compu-
tational stochastic solvers have notable submissions to solve the fractional and integer kinds of systems. Some 
important applications of the stochastic solvers are coronavirus model26, stomach model27, dengue fever model28, 
the mosquito form of the spreading ecosystem29, food supply chain nonlinear systems30,31, HIV anticipation 
model32, HIV infection system33 and medical smoking system34,35.

The other parts of this study are presented as: Section "A novel design of SO-PSDDM" shows the design 
of the novel SO-PSDDM. Section "Methodology:" indicates the stochastic methodology. Section "Results and 
Simulations" shows the results of the novel SO-PSDDM, and the concluding remarks are listed in the last Section.

A novel design of SO‑PSDDM
This section shows the novel design of the SO-PSDDM by using the terminology of the Lane-Emden, delay model 
and perturbed terms. Recently, many systems that have been designed with the terminology of the Lane-Emden 
model. Few of them are the singular 2nd and 3rd pantograph model, 4th, 5th order and 6th kinds of functional 
singular systems, prediction, delay and pantograph form of the singular models36–44. Based on these applications, 
the authors are inspired to construct a novel SO-PSDDM. The perturbed delay form of the singular differential 
model is mathematically given as:

where ε is the perturbed terms and ω is taken as positive. For the SO-PSDDM, χ and η values are provided as:

By using the above values, the Eq. (2) takes the form as:
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)
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Equation (6) represents the novel SO-PSDDM, ε is the perturbed factor and ϕ shows the delay term. The 
perturbed and delay terms appear twice, while single singularity and shape factor is noticed in the Eq. (6). The 
detailed descriptions of the flow-chart based on the design of novel SO-PSDDM is presented in Fig. 1.

Methodology
The current section represents the ANNs process using the optimal structure of the swarming scheme and 
interior-point algorithm for the SO-PSDDM. The computational structure for the novel design of the SO-PSDDM 
is shown in Fig. 2.

Formulations of the ANNs procedure.  For the solutions of the novel SO-PSDDM, the proposed results 
are indicated as ẑ(u) , given as:

(7)ẑ(u) =

p
∑

k=1

mkR(wku+ yk),

Figure 1.   Description of Flow-chart for solving the novel SO-PSDDM.
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here [mk ,wk , yk] represent the kth components of [m,w, y] and p is the neuron. An activation log-sigmoid func-
tion R(u) = (1+ e−u)−1 is used in the Eq. (7) as:

An error function ( εf  ) is provided as:

d(n)ẑ

du(n)
=

p
∑

k=1

mk
d(n)

du(n)
R(wku+ yk),

(8)

ẑ(u) =

p
∑

k=1

mk

(

1+ e−(wku+yk)
)−1

,

dẑ

du
=

p
∑

k=1

mkwk
e−(wku+yk)

(

1+ e−(wku+yk)
)2

,

.

.

.

d(n)ẑ

du(n)
=

p
∑

k=1

mkwk

(

e−(wku+yk)

(

1+ e−(wku+yk)
)n+1

−
e−(n+1)(wku+yk)

(

1+ e−(wku+yk)
)n · · ·

)

.

(9)εf = εf−1 + εf−2,

Figure 2.   Designed stochastic procedure for solving the novel design of the SO-PSDDM.
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where, εf−1 and εf−2 shows the error functions based on the novel SO-PSDDM presented in the Eq. (6). The 
values of the εf  are presented as:

where Nh = 1, ẑ(uk − ϕ) = z(u− ϕ), r(ẑ) = r(z) and v(uk) = v(u).

Performance indices.  The statistical SIR, TIC and MSE operators for the novel design of the SO-PSDDM 
using the stochastic scheme, given as:

where ẑ and z are the proposed and true solutions.

Network optimization.  The optimization parameters for solving the novel design of the SO-PSDDM 
using the ANNs procedures based on the optimization structures of the swarming scheme and IPA.

PSO is a computational Neuro swarming global search scheme that is used as an optimization algorithm. 
PSO provides the solutions of the various complex models to adjust the accurate population through the opti-
mal training procedure. PSO is applied as a replacement of the global genetic algorithm. PSO is introduced by 
Kennedy and Eberhart in the end of the nineteenth century45. The PSO execution process is simple due to its 
short memory requirements46. Recently, PSO is applied in various applications, e.g., multimodal multi-objective 
optimization47, mixed-variable optimization problems48, solar energy systems49, engineering problems50, plant 
diseases diagnosis51, architectures for image classification52, identifying the single, double, and three diode pho-
tovoltaic models’ parameters53, particle filter noise reduction in mechanical fault diagnosis54 and green coal 
production problem55. These extraordinary applications impressed the authors to present the solutions of the 
novel design of the SO-PSDDM using the ANNs procedures based on the optimization structures of the swarm-
ing scheme.

As the process of global search PSO is slow, so the sluggishness and laziness of this scheme are improved by 
using the local search procedure to find the best convergence. Therefore, IPA is applied as a local refinement to 
find the rapid outcomes. The optimal PSO presentations are applied as a primary input in the IPA. Recently, IPA 
is used in the phase-field approach to brittle and ductile fracture56, power system observability57, multipliers 
for linear positive semi-definite programming58, simulation and optimization of dynamic flux balance analysis 
models59, fourth order singular systems60, multistage nonlinear nonconvex programs61 and monotone weighted 
linear complementarity problems62.

Results and Simulations
This section presents the solutions of the SO-PSDDM by using the ANNs procedures based on the optimization 
structures of the swarming scheme and IPA. Thirty numbers of executions have been performed to validate the 
trustworthiness of the computational procedure for solving the SO-PSDDM.

Problem 1:  Suppose the SO-PSDDM in Eq. (6) with ϕ = 1
3
,ε = 1

23
 , ω = 2 and r(z) = z2 is given as:

where v(u) = u4 + 2u2 − 1
6u + 7

4
 . The exact solution is z(u) = 1+ u2 and an error function is given as:
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ẑ0 − 1
)2

+

(

dẑ0
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Problem 2:  Suppose a novel design of the SO-PSDDM in Eq. (6) with ϕ = 1
3
,ε = 1

25
 , ω = 2 and r(z) = z2 in 

shown as:

where v(u) = u6 + 2u3 + 3
8
u+ 1

48u + 13
16

 . The true results are z(u) = 1+ u3. The error function is provided as:

Problem 3  Suppose a novel design of the SO-PSDDM in Eq. (6) with ϕ = 1
3
,ε = 1

27
 , ω = 2 and r(z) = z2 is 

written as:

where v(u) = u8 + 2u4 + 5
32
u2 − 1

8
u+ 99

96
− 1

432u.

The true form of the above equation is z(u) = 1+ u4. A merit function is shown as:

The optimization is performed for each example of the novel design of the SO-PSDDM using the ANNs 
and the optimization structures of the swarming scheme and IPA. Thirty executions have been implemented to 
validate the constancy of the designed scheme for the novel s SO-PSDDM. The proposed solutions based on the 
stochastic schemes are accomplished to achieve the unidentified weight vectors are presented as:

The achieved results through the stochastic scheme are presented in the set of Eq. (20–22). These numerical 
values have been plotted in Fig. 3 based on the best weight vectors to solve the novel SO-PSDDM. The results 
comparison performances based on the worst, best and mean outcomes are drawn in the 2nd part of the Fig. 3 
for the novel SO-PSDDM. The overlapping of the results (worst, best and mean) is performed for each problem 
of the novel SO-PSDDM. These accurate calculations label the brilliance of the proposed computational sto-
chastic approach. The comparison plots are drawn in Fig. 3 (g) based on the AE that are calculated as 10–05-10–07, 
10–05-10–06 and 10–04-10–06 for 1st, 2nd and 3rd problem. The statistical operator performances based on the MSC, 
TIC and Fitness are provided in Fig. 3(h) for the novel SO-PSDDM. The best achieved values of the fitness are 
performed as 10–9-10–10, 10–09-10–10, 10–08-10–09 for problem 1, 2, and 3 of the novel SO-PSDDM. The operators 
MSE and TIC performances lie as 10–9-10–10 for problem 1 and 2, while 10–09-10–10 for problem 3 of the novel 
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SO-PSDDM of the novel SO-PSDDM. These precise and accurate measures designated the correctness of the 
proposed solver for the novel SO-PSDDM.

The illustrations based on the convergence are provided in Figs. 4, 5, 6 based on TIC operator, Fitness and 
MSE measures using the histogram (Hist) and boxplots (BPs). The best performances of the fitness are observed 
in Fig. 4, which are presented as 10–06 to 10–10, 10–06 to 10–08 and 10–06 to 10–07 for problem 1, 2, and 3 of the novel 
SO-PSDDM. The TIC measures are performed in Fig. 5 that are obtained as 10–08-10–10, 10–07-10–09 and 10–06-10–09 
for problem 1 to 3 of novel SO-PSDDM. Similarly, the MSE values are shown in Fig. 6 that are achieved as 10–10 

Figure 3.   Graphic representations of optimal weight vectors, AE and statistical performances for solving the 
SO-PSDDM.
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to 10–11, 10–07 to 10–10 and 10–06 to 10–10 for problem 1, 2, and 3 of the novel SO-PSDDM. These best obtained 
values via statistical gages authenticate the reliability of the stochastic swarming computational schemes.

To authenticate the convergence and accuracy of the proposed stochastic swarming computational scheme, 
the statistical values have been performed based on the minimum (Min), Median, SIR, Mean, Standard devia-
tion (STD) gages. These measures have been performed Tables 1, 2, 3 for thirty independent executions to solve 
the novel SO-PSDDM. The accurate performances of these operators’ label the accuracy and constancy of the 
proposed stochastic swarming computational scheme for solving the novel SO-PSDDM.

Figure 4.   Statistical illustrations via swarming schemes based on the fitness for solving the novel SO-PSDDM.
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The convergence illustrations via the proposed stochastic swarming computational scheme using the global 
form of the fitness, TIC and MSE for 30 trials are illustrated in Table 4 to solve the novel SO-PSDDM. The Min 
performances of the Global Fitness, TIC are reported as 10–03-10–04, 10–03 to 10–04, while for MSE these perfor-
mances are 10–04 to 10–06. Whereas the SIR for these gages found as 10–06 to 10–09, 10–03 to 10–04 and 10–08 to 10–10. 
The best global performances validate the exactness of stochastic scheme for the SO-PSDDM.

The complexity cost performances for each case of the novel SO-PSDDM using the stochastic computing 
performances based on the iterations, executed time along with the function measures is provided in Table 5. The 

Figure 5.   Statistical illustrations via swarming schemes based on the TIC for solving the novel SO-PSDDM.
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average iterations, implementation of time along with the count of function are calculated as 39.53151, 996.64444 
and 88,684.355555, respectively for the novel SO-PSDDM using the stochastic procedures.

Concluding remarks
In this work, a mathematical perturbed delay differential singular model is designed by using the standard 
Lane-Emden model. The inclusive structures based on the delay terms, singular-point and perturbation factor 
have been provided along with the shape factor based on the SO-PSDD system. The novel system represents the 

Figure 6.   Statistical illustrations via swarming schemes based on the MSE for solving the novel SO-PSDDM.
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Table 1.   Statistical presentations via stochastic performances for solving the novel SO-PSDDM-based 
Problem 1.

u Min Med Mean SIR STD

0 3.25928E−07 4.66616E−06 9.53434E−04 2.41607E−06 4.93283E−03

0.05 6.67252E−08 4.77692E−06 1.13927E−03 4.81387E−06 5.32610E−03

0.1 2.07402E−07 5.46945E−06 1.67515E−03 6.10533E−06 6.23077E−03

0.15 4.05190E−08 6.12370E−06 2.45481E−03 6.79540E−06 7.59667E−03

0.2 5.99439E−07 6.84725E−06 3.04849E−03 6.20632E−06 8.60692E−03

0.25 5.47989E−07 9.74012E−06 2.62003E−03 5.54247E−06 7.89073E−03

0.3 1.18973E−07 9.41275E−06 3.13279E−03 7.95664E−06 1.01843E−02

0.35 8.52329E−08 7.86144E−06 8.36886E−03 7.11166E−06 2.39926E−02

0.4 3.09995E−07 6.28085E−06 1.26811E−02 7.80690E−06 3.89698E−02

0.45 6.74997E−07 5.56770E−06 9.04074E−03 6.27895E−06 2.97933E−02

0.5 8.06805E−08 3.05818E−06 1.25960E−02 4.90873E−06 4.20323E−02

0.55 3.98308E−08 3.12062E−06 4.89098E−02 3.11601E−06 1.60262E−02

0.6 1.54915E−07 2.89889E−06 8.91168E−02 5.55410E−06 3.03817E−02

0.65 3.12993E−07 6.20114E−06 1.39926E−02 6.90784E−06 4.98168E−02

0.7 1.14665E−07 7.85856E−06 2.29761E−02 7.32446E−06 7.91550E−02

0.75 1.88195E−07 6.93564E−06 3.78500E−02 4.60432E−06 1.19116E−02

0.8 3.07894E−07 1.23612E−05 5.25783E−02 1.29801E−05 1.53449E−02

0.85 4.45512E−06 2.75504E−05 5.89336E−02 1.99353E−05 1.59780E−02

0.9 3.09392E−06 3.45237E−05 5.51525E−02 2.55173E−05 1.57473E−02

0.95 1.16738E−06 1.68189E−05 6.52558E−02 2.09277E−05 1.77453E−02

1 7.08528E−06 7.36480E−05 7.95988E−02 5.47937E−05 2.07721E−02

Table 2.   Statistical presentations via stochastic performances for solving the novel SO-PSDDM-based 
Problem 2.

u Min Med Mean SIR STD

0 3.91605E−07 9.26747E−06 5.07470E−04 2.24202E−05 1.93356E−03

0.05 6.29302E−07 1.28941E−05 6.83530E−03 4.21742E−05 1.89956E−03

0.1 7.63730E−07 2.41048E−05 2.84035E−02 4.23485E−05 8.00115E−03

0.15 2.13225E−07 3.86512E−05 6.57355E−02 5.08616E−05 1.88075E−03

0.2 9.42074E−07 6.24658E−05 1.14787E−01 9.13037E−05 3.35634E−03

0.25 2.73184E−06 7.48152E−05 1.68132E−01 1.57460E−04 5.05306E−02

0.3 4.50193E−06 6.09892E−05 2.22950E−01 2.14585E−04 6.72256E−03

0.35 3.05625E−06 5.58300E−05 2.73928E−01 2.41463E−04 8.11942E−03

0.4 4.78660E−07 3.73123E−05 3.06411E−01 1.42908E−04 9.08282E−03

0.45 6.54305E−07 2.63053E−05 3.14441E−01 1.66944E−04 9.53662E−03

0.5 8.35949E−07 3.23571E−05 3.23737E−01 1.63346E−04 9.44918E−03

0.55 5.81528E−08 2.87395E−05 3.28815E−01 4.28922E−05 9.03771E−03

0.6 3.76732E−06 2.08270E−05 3.27214E−01 3.12623E−05 8.58655E−03

0.65 8.54568E−07 1.59875E−05 3.20494E−01 5.10999E−05 8.32470E−03

0.7 3.26665E−06 3.75830E−05 3.11436E−01 4.25909E−05 8.32622E−02

0.75 4.86321E−06 5.21953E−05 3.05148E−01 4.75391E−05 8.52543E−02

0.8 3.02292E−06 4.94802E−05 3.08327E−01 2.94906E−05 8.86728E−02

0.85 2.60173E−06 3.57292E−05 3.24533E−01 1.01432E−04 9.40117E−02

0.9 2.76980E−06 8.71741E−05 3.48362E−01 9.62001E−05 1.01498E−02

0.95 1.48408E−06 1.29774E−04 3.74016E−01 1.35267E−04 1.10562E−02

1 6.47615E−07 5.20566E−05 4.03910E−01 1.59708E−04 1.21609E−02
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singularity at one point, whereas the delay and perturbed factors have been noted twice. The singular form of the 
system becomes more complicated with the perturbed/delay terms. The novel SO-PSDDM is numerically simu-
lated by using the artificial neural networks along with the optimization measures of the swarming procedures 
and interior-point algorithm. An error function is optimized through the swarming PSO procedure and IPA to 
solve the SO-PSDDM. The precision, substantiation and validation have been observed for three problems. The 
correctness of the novel SO-PSDDM has been observed by comparing the obtained and exact solutions. For the 
reliability, stability and convergence of the proposed scheme, the statistical performances of the Min, Median, 
SIR, Mean, Standard deviation STD gages have been observed for 30 independent trials. Additionally, the new 
model become complicated with the delay, perturbed and singular terms. Therefore, these systems are not easy 
to solve by using the traditional scheme. Therefore, the artificial intelligence based swarming scheme is a suitable 
procedure to deal such complex and harder nature systems.

Table 3.   Statistical presentations via stochastic performances for solving the novel SO-PSDDM-based 
Problem 3.

u Min Med Mean SIR STD

0 2.81494E−07 5.38021E−05 4.12286E−04 3.45392E−05 1.81281E−03

0.05 3.97733E−07 5.45424E−05 2.19502E−02 1.14050E−04 4.96580E−02

0.1 3.58538E−06 1.63741E−04 8.15904E−02 2.02824E−04 1.80321E−01

0.15 4.02099E−05 2.95543E−04 1.60298E−01 3.47039E−04 3.51184E−01

0.2 4.31225E−06 3.92231E−04 2.34821E−01 6.60673E−04 5.24591E−01

0.25 5.76076E−05 4.67731E−04 2.84154E−01 6.21411E−04 6.77294E−01

0.3 1.13333E−05 4.66191E−04 3.34891E−01 2.40195E−04 7.76930E−01

0.35 7.41801E−07 3.35635E−04 3.46584E−01 2.38453E−04 8.30033E−01

0.4 1.66043E−05 2.32169E−04 3.39964E−01 1.63506E−04 8.35122E−01

0.45 1.24690E−05 1.71361E−04 3.31192E−01 2.12338E−04 8.09979E−02

0.5 1.20792E−05 1.02758E−04 3.22086E−01 2.88302E−04 7.72343E−02

0.55 6.84075E−06 1.40519E−04 3.12250E−01 2.44493E−04 7.40156E−02

0.6 5.97871E−06 1.39992E−04 3.25147E−01 2.43317E−04 7.49184E−02

0.65 2.66925E−05 1.28135E−04 3.86269E−01 1.04294E−04 8.16101E−02

0.7 9.74861E−06 9.33194E−05 4.52305E−01 1.34891E−04 9.27394E−02

0.75 1.54588E−06 1.29861E−04 5.16051E−01 2.19343E−04 1.05123E−01

0.8 3.24905E−06 1.55802E−04 5.76658E−01 2.17065E−04 1.17445E−01

0.85 1.39944E−05 1.23407E−04 6.37357E−01 9.91446E−05 1.29858E−01

0.9 3.80092E−06 1.05567E−04 6.98774E−01 1.71256E−04 1.42311E−01

0.95 1.74201E−05 2.13083E−04 7.37263E−01 2.81903E−04 1.50103E−01

1 2.83864E−06 4.32771E−05 6.87038E−01 1.04323E−04 1.54045E−01

Table 4.   Global representations by using the stochastic performances for solving the novel SO-PSDDM-based 
Problem 3.

Index Problem

G.FIT G. TIC G.MSE

MIN SIR MIN SIR MIN SIR

ẑ(u) 1 3.7152E−04 4.3797E−09 1.9329E−03 8.1786E−06 2.8839E−05 7.9659E−10

2 3.6592E−04 1.3136E−07 2.4658E−04 9.5087E−05 4.6636E−05 1.1046E−08

3 1.3656E−03 1.1248E−06 3.7081E−03 1.7854E−04 3.8046E−05 1.5468E−08

Table 5.   Complexity performances for each case of the for solving the novel SO-PSDDM.

Problem

Iterations Executed time Function computations

Mean STD Mean STD Mean STD

1 44.4870978 10.13863940 1005.0000 138.3050244 99,753.53333 21,816.36993

2 35.18988877 10.29969406 979.93333 137.2957877 78,988.40000 23,091.78820

3 38.91754381 10.69665569 1005.0000 136.9856497 87,311.13333 23,301.85795
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In upcoming investigations, the novel designed perturbed delay differential model will be solved by using 
the Morlet wavelet, Meyer wavelet and Gudermannian neural networks63–68.

Data availability
The datasets generated/produced during and/or analyzed during the current study/research are available from 
the corresponding author on reasonable request.
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