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Creep modeling of composite 
materials based on improved gene 
expression programming
Hua Tan 1,2, Shilin Yan 1,2, Sirong Zhu 1,2* & Pin Wen 1,2

In this article, a new method for creep modeling and performance prediction of composite materials 
is presented. Since Findley power-law model is usually suitable for studying one-dimensional time-
dependent creep of materials under low stress, an intelligent computing method is utilized to derive 
three temperature-related sub-functions, the creep model as a function of time and temperature 
is established. In order to accelerate convergence rate and improve solution accuracy, an improved 
gene expression programming (IGEP) algorithm is proposed by adopting the probability-based 
population initialization and semi-elite roulette selection strategy. Based on short-term creep data 
at seven temperatures, a bivariate creep model with certain physical significance is developed. At 
fixed temperature, the univariate creep model is acquired.  R2, RMSE, MAE, RRSE statistical metrics 
are used to verify the validity of the developed model by comparison with viscoelastic models. Shift 
factor is solved by Arrhenius equation. The creep master curve is derived from time–temperature 
superposition model, and evaluated by Burgers, Findley and HKK models. R-square of IGEP model is 
above 0.98 that is better than classical models. Moreover, the model is utilized to predict creep values 
at t = 1000 h. Compared with experimental values, the relative errors are within 5.2%. The results show 
that the improved algorithm can establish effective models that accurately predict the long-term 
creep performance of composites.

Fiber reinforced polymer composites, as a class of widely used composite materials, have the advantages of 
high specific strength and modulus, fatigue and corrosion resistance, low density, light weight, which have been 
applied in the field of civil engineering, aerospace, automotive and construction industries, etc.1,2. In practical 
applications, they need to have a long service life. However, the viscoelastic properties of materials make the 
structures undergo creep behavior during long-term load-bearing, which affects the durability and reliability of 
composites. Creep is time-dependent deformation under constant stress. The mechanisms of creep deformation 
are different for each material but creep process may be generally described to include three stages: primary 
(transient), secondary (steady-state) and tertiary (accelerated) creep. In the primary stage, deformation increases 
rapidly and creep rate decreases over time. In the secondary stage, deformation is almost uniform and creep rate 
remains constant. In the tertiary stage, deformation and creep rate increases rapidly until the material ruptures 
after undergoing a total of strain within a period of  time3,4. Therefore, the modeling research on creep perfor-
mance has great theoretical significance.

At present, the models describing creep performance of composites can be divided into two categories: the 
first type is the physical model, it is based on creep mechanism of the material itself, and is established with the 
help of micro/meso-mechanics and thermodynamics, which mainly includes Maxwell model, Kelvin model, 
Burgers model, Boltzmann model, and Schapery model; the second type is the phenomenological model, it is 
a mathematical description of creep phenomenon, and is free from the constraint of fixed function forms and 
does not reflect the physical properties of creep, which mainly includes Findley model and time–temperature 
superposition model. Recently, there are more and more studies on these two types of models.

In physical model, Katouzian et al.5 used finite element method to simulate creep behavior of composite 
materials based on Schapery model. Rafiee and  Mazhari6 developed Boltzmann model to obtain residual strength 
of pipes after 50 years for predicting long-term behavior of specific GFRP pipe subjected to internal pressure. 
Berardi et al.7 carried out creep experiments of fiber reinforced polymer laminates at room temperature, and 
established Burgers model of fibers. Jia et al.8 employed Burgers model and Weibull distribution function to ana-
lyze the effects of nano-fillers on creep and recovery properties of polypropylene/multi-walled carbon nanotube 
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composites, and then long-term creep behavior of materials was predicted by time–temperature superposition 
model. Asyraf et al.9 found that Burgers model was very practical for explaining the elastic and viscoelastic 
behaviors of composite structures.

In phenomenological model, Zhang et al.10 employed four viscoelastic models to quantify the viscoelastic 
behavior of SCF/PEI composites, and then predict long-term creep behavior by time–temperature superposition 
model. Yang et al.11 evaluated long-term creep deformation and mechanical strength of tube by time–temperature 
superposition model and Findley model under expected service conditions over its entire lifetime. Harries et al.12 
demonstrated a framework for evaluating creep behavior and buckling performance of GFRP, and obtained 
reliable Findley parameters. Ghosh et al.13 focused on the impact of multi-layer graphene reinforcement on 
mechanical performance of glass fiber/epoxy composites, and long-term creep performance at low temperature 
(30 °C) has been predicted by using accelerated deformation at elevated temperatures and time–temperature 
superposition model. Yu and  Ma14 concentrated on the influence of loading rate and frequency/temperature on 
static flexural behavior and dynamic mechanical properties of injection molded GFPP, and the long-term durabil-
ity of PP and GFPP was investigated by master curve of storage modulus constructed based on time–temperature 
superposition model. Asyraf et al.15 also discovered that Findley model was the most suitable for forecasting 
creep behaviours of wood and composite materials.

Most of creep models approximate time-dependent creep behaviour by a series of elastic spring and viscous 
dashpot elements that can be influenced by some factors such as temperature, stress, humidity and fiber mor-
phology, which degrades the mechanical properties of composites. The low applicability of physical model and 
phenomenological model increases the difficulty of creep studies. Creep can be regarded as a complex evolution 
process with time. Therefore, gene expression programming developed by  Ferreira16 is a genotype/phenotype 
evolutionary algorithm and attracts wide attention of scholars around the world. The individuals are encoded 
as linear strings of fixed length (genotype) that are afterwards expressed as nonlinear entities of different sizes 
and shapes (phenotype). It has rapidly become a powerful tool of automatic modeling without a large database 
or any predefined equations in the application of symbolic regression, time series prediction, data mining and 
many other  fields17.

Recently, gene expression programming has been successfully applied to establish empirical models. For 
example,  Murad18,19 applied gene expression programming to propose predictive model for shear strength of rein-
forced concrete columns subjected to biaxial cyclic loads. Moreover, Murad et al.20 introduced gene expression 
programming to develop simplified model for predicting flexural behavior of FRP reinforced concrete beams. 
They found that there was a good agreement between experimental results and numerical simulation. Babanajad 
et al.21 developed predictive models for true triaxial strength estimation of hardened concrete under general con-
finement configurations using gene expression programming. Iqbal et al.22 employed gene expression program-
ming to develop empirical models for the prediction of mechanical properties of concrete with waste foundry 
sand. Wei and  Xue23 proposed a new equation that could predict the permeability of tight carbonate rocks using 
gene expression programming. Hassani et al.24 presented fire resistance predictive model of steel-reinforced 
concrete composite columns by gene expression programming. Shahmansouri et al.25 studied gene expression 
programming to establish numerical models for compressive strength of GPC based on ground granulated blast-
furnace slag, and validated the performance and predictability of proposed model by conducted sensitivity and 
parametric analysis. Mousavi et al.26 utilized gene expression programming to derive empirical model for the 
prediction of compressive strength of high performance concrete mixes. Mansouri et al.27 developed a framework 
for shear behavior of RC beam-column joints where a novel model was presented by gene expression program-
ming. Beheshti Aval et al.28 estimated shear strength of short rectangular reinforced concrete columns using gene 
expression programming. Tarawneh et al.29 employed gene expression programming to establish accurate and 
reliable model to predict shear capacity of steel fiber-reinforced concrete beams.  Kara30 presented an improved 
model to predict shear strength of FRP reinforced concrete beams without stirrups based on gene expression 
programming. Yeddula and  Karthiyaini31,32 proposed a novel mathematical equation for predicting compres-
sive strength of sialate/ferrosialate geopolymer mortars using gene expression programming. Güneyisi and 
 Nour33,34 implemented gene expression programming to develop predictive model of axial capacity of concrete 
filled steel tube columns. Furthermore, some researchers utilized gene expression programming for predicting 
the strength of special concretes like lightweight  concrete35, and recycled aggregate  concrete36, etc. To the best 
of our knowledge, gene expression programming is very effective in the prediction of mechanical properties for 
solving many structural engineering  problems18–36. There have been some studies involved in creep modeling 
based on classical viscoelastic  models5–15. Therefore, the aim of this article is to simulate creep evolution process 
of composite materials to develop mathematical models by using gene expression programming. An intelligent 
evolutionary approach is employed instead of viscoelasticity-based approach. The physical model is generally 
used for theoretical analysis and has many limitations. The phenomenological model is difficult to reflect physical 
significance of creep and is relatively rigid. The low adaptability of these models leads to the proposal of intel-
ligent computing methods. Gene expression programming has efficient nonlinear modeling capability without 
the guidance of prior knowledge. The novelty of the study consists of three aspects as algorithm improvement, 
model validation and performance prediction for providing design guidance.

Gene expression programming is improved from genetic algorithm and genetic programming. It contains 
all the genetic operators of traditional algorithm and introduces some new genetic operators that brings some 
challenges to the convergence rate and solution accuracy. When there are many terminal symbols in the head of 
gene, it is easy to generate invalid individuals; when the fitness function is selected, the lack of population diver-
sity results in slow convergence, and it is easy to fall into local optimum. Therefore, an improved gene expression 
programming algorithm is developed. The probability-based population initialization is adopted to accelerate 
convergence rate, and the semi-elite roulette selection is utilized to improve solution accuracy. Furthermore, the 
creep tests are performed to obtain short-term experimental data, three temperature-related sub-functions of 
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Findley model are derived from improved gene expression programming algorithm to establish bivariate creep 
model. Compared with classical viscoelastic models, the validity of univariate model is verified by four statistical 
metrics at fixed temperature. Lastly, creep master curve is drawn from time–temperature superposition model 
based on shift factor. The developed model is applied to predict long-term creep performance of composites so 
that high prediction accuracy of the model is validated.

The proposed methodology
In this section, the flow chart of overall research methodology is given as shown in Fig. 1. The methodology is 
divided into two stages: creep modeling and performance prediction. Further detail steps of the research are 
discussed in the subsequent subsections.

Preparation of specimen. The matrix material of this experiment is m-benzene type unsaturated poly-
ester resin FC518, which was supplied by Shanghai Fuchen Chemical Co., Ltd. The reinforcement materials are 
made up of alkali-free glass fibers, with the specifications of winding yarn 2400 Tex and chopped strand mat 
450 g/m2, which were provided by Hebei Zhongyi Composite Materials Co., Ltd. The experimental specimens 
are: resin (R), fiber chopped strand mat (CSM) and fiber circumferential winding (FWC). According to the 
standard GB/T 1449–2005, INSTRON5828 is used to test the initial flexural strength (σ) of specimens. The resin 
mass content (W) of each specimen is tested based on the standard GB/T 2577–2005, and the results are given 
in Table 1. The size of each specimen is determined by the above-mentioned standard, the thickness h = 5 mm, 
the width b = (2.5 ± 0.5) h, and the length L = (18 ± 2) h. The constant load applied by INSTRON5848 universal 
testing machine is 20% of the initial flexural strength, and these testing data are automatically read by computer 
with a time interval of 0.1 s.

Start

Preparation of 
specimen

Gene Expression 
Programming

Improved GEP algorithm

Bivariate creep 
modeling

Burgers, HKK and 
Findley models

Creep master curve

Validation of IGEP 
model

Short-term 
creep data

Shift factor

Time-temperature 
superposition model

Performance prediction 

Validation of TTSP 
model End

Figure 1.  Flow chart of the research methodology.

Table 1.  Initial flexural strength and resin content of specimens.

Specimen σ/MPa W/%

R 90.9 100

CSM 165.8 70

FWC 933.0 28
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Overview of gene expression programming. Gene Expression Programming (GEP) invented by Fer-
reira is derived and improved from genetic algorithm and genetic programming, it is an efficient tool for devel-
oping models and consists of chromosome with fixed length. Each gene in the chromosome contains a head h 
and a tail t  , there exists the following relationship:t = h(n− 1)+ 1 , n is the total number of arguments within a 
function(maximum arity). The head of each gene contains both function symbols and terminal symbols (e.g.{+ , 
−, *, /,√,cos, tan, log, 6, x, a, b}). While the tail only contains terminal symbols that are made up of constants 
and variables (e.g.{8, y, c, d}). The chromosomes can be viewed as genomes that are modified through selection, 
crossover, mutation, transposition and recombination operations. GEP is developed based on two essential ele-
ments: chromosome and expression tree (ET). The genotype of GEP is chromosome, and the phenotype is ET 
that is composed of nonlinear entities with different sizes and shapes. For example, the chromosome consists of 
one gene, and the genotype of individual is: * − sinQ + cab/bababbaaba, the part in bold is the tail. The gene has 
a head length of 9 and a tail length of 10, so the total length of gene is 19. The genome and expression tree can be 
converted into each other in a certain way, as shown in Fig. 2.

The mathematical equation corresponding to genotype can be expressed as:
(√

a−
(

b+ b
/

a
))

∗ (sinc) . Simul-
taneously, the fitness value Fitness(i) of an individual i is calculated, as given in the Eq. (1).

where M is the selected range,C(i, j) is the value returned by an individual i for fitness case j(out of n fitness 
cases),T(j) is the target value for fitness case j . If C(i, j) = T(j) , there is Fitness(i) = n ·M , the system can find 
the optimal model for itself by this way. Therefore. GEP greatly surpasses existing adaptive  techniques37.

2.3 Proposition of improved GEP. The individuals of GEP have linear genotype and non-linear phe-
notype. Simultaneously, GEP not only contains all the genetic operators of traditional evolutionary algorithm 
but also introduces some new operators, which brings some challenges to the convergence rate and solution 
accuracy. Although GEP algorithm has flexible encoding/decoding methods and evolutionary operations, when 
there are many terminal symbols in the head of gene, it is easy to generate invalid individuals; when the fitness 
function is selected, the lack of population diversity results in slow convergence, and it is easy to fall into local 
optimum. Therefore, this article proposes an improved GEP (IGEP) algorithm. The individuals are initialized 
by probability to accelerate convergence rate; the semi-elite roulette selection is performed to improve solution 
accuracy. Its flow chart is shown in Fig. 3.

The detailed steps of the algorithm are given in Table 2.

2.3 Algorithm complexity analysis. The low time cost of IGEP algorithm is very important to be used 
to build the model. Given the maximum number of iterations is MAXGEN , the size of population is N , the 
size of elite population is M , the length of gene is len , and the size of sample data is S . As can be known from 
the algorithm, in Step 1, individuals with a length of len are traversed and gene encoding is performed. There-
fore, the time complexity of population initialization process is O(N · len) . In Step 2, the fitness value of each 
individual is evaluated, so the time complexity is O(N · S) . In Step3, firstly, the ratio of individual fitness to 
overall fitness is calculated, and its time complexity is O(N) ; secondly, the semi-elite roulette strategy is utilized 
to select individuals, the time complexity is O

(

N2
)

 ; thirdly, the sorting algorithm is employed to select elite 
population, and its time complexity is O

(

N log (N)
)

 ; finally, the remaining individuals are regenerated with 
a time complexity of O((N −M) · len) ≈ O(N · len) . Therefore, the total time complexity required in Step3 
is O

((

N + log (N)+ len+ 1
)

· N
)

 . In Step 4, three genetic operations are all performed in parallel, when the 
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Figure 2.  Expression tree corresponding to the genotype.
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genes are exchanged, its time complexity is O(N · len) . In summary, the time complexity required for one itera-
tion is O(3N · len+ N · S + N2 + N + N · log(N)) . After removing constant term and simplifying the formula, 
the total time complexity of all iterations is O((len+ S + N + log(N)) · N ·MAXGEN)38.

The physical model. Burgers model. Burgers model is a combination of Maxwell and Kelvin–Voigt ele-
ments, it is one of the most widely used models to give the relationship between morphology of composites and 
their creep  behavior39, which is a four-element model, as shown in Fig. 4.

For the most general case of linear viscoelastic materials, the total creep strain is essentially the sum of 
three separate parts: ε1 is the instantaneous elastic deformation; ε2 is the delayed elastic deformation; ε3 is the 
Newtonian flow, it is the same as the deformation of a viscous liquid that obeys Newton’s law of viscosity. The 
total strain εB(t) as a function of time corresponds to the following Eq. (2). The creep constitutive equations of 
Burgers model take the basic forms:

Start
Initialize individuals 

by probability

Fitness value 
calculation

Are the termination 
conditions met?

Semi-elite roulette 
selection

End

Mutation

One/two-point/gene 
recombinationNew population

IS/RIS/gene 
transposition

Genetic evolution

Yes

No

Figure 3.  Flow chart of IGEP algorithm.

Table 2.  Description of IGEP algorithm.
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where t denotes the time after loading, σ0 is the applied stress, CB(t) is the creep compliance,Ei and ηi are the 
model parameters, i=1, 2.E1 and η1 are the elastic modulus and viscosity of Maxwell spring and dashpot, respec-
tively; E2 and η2 are the elastic modulus and viscosity of Kelvin spring and dashpot, respectively.

HKK model. Various physical models are constructed through different combinations of elastic spring and 
viscous dashpot elements that can describe hysteresis and creep, such as Maxwell model and Kelvin model. HKK 
model is a combination of a Hooke spring body and two Kelvin models (called HKK), it describes creep process 
of composite materials, and its elements are shown in Fig. 5.

The constitutive equations of HKK model take the basic forms:

where t is the time,σ0 is the applied stress, εH(t) is the total strain, CH(t) is the creep compliance, Ei and ηj are 
the model parameters, i=0, 1, 2 , j=1, 2.E0 is the initial elastic modulus; E1 and E2 are the elastic moduli of Kelvin 
springs, respectively; η1 and η2 are the viscosities of Kelvin dashpots, respectively.

The phenomenological model. Findley power‑law model. The phenomenological model developed by 
Findley introduces a mathematical expression to describe creep behavior of composite materials that is more 
suitable for the prediction of creep deformation, it can effectively predict mechanical performance of compos-
ites. In this model, the creep response can be divided into time-independent and time-dependent strains, creep 
strain can be expressed as follows:

where ε0 is the initial stress-dependent and time-independent elastic strain,εc is a coefficient related to stress 
and temperature, t is the time, n is a stress-independent and temperature-dependent material  constant40. Under 
constant stress, the subsequent form (7) could be derived, where C0 is the initial temperature-dependent creep, m 
is a temperature-related coefficient, and n is a dimensionless material parameter that is dependent of temperature. 
Since the specific mathematical form of Findley model with time and temperature has not been deduced in the 
theoretical analysis, at different temperatures, C can be determined as a bivariate function of both time and tem-
perature. Therefore, Findley model is considered as a modeling framework, the modified model is represented as:

Time‑temperature superposition model. Assuming that creep compliance is a function related to time and tem-
perature, the creep behavior of composites at low temperature for a long time can be predicted by using short-
term creep data at high temperatures. The creep compliance curve C

(
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)
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Figure 4.  Schematic diagram of Burgers model.

Figure 5.  Schematic diagram of HKK model.
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mic time axis by shift factor φT , and so the smooth creep master curve is derived, which is time-temperature 
superposition (TTSP), the calculation equation is as follows:

where C(Ti , t) is the creep compliance,Ti is different testing temperatures, t is the time,Tref  is reference tempera-
ture,φT is shift factor.

Assuming the activation energy is constant, time-temperature shift factor φT is obtained to construct creep 
master curve, it is in good quantitative agreement with the Arrhenius equation, the formula is given in (9), which 
provides a reliable method for predicting long-term creep performance of composite materials.

where Ea is activation energy [ kJmol−1 ], R is the universal gas constant with a value of 8.314× 10−3 kJK−1mol−1

,T is the testing temperature [K]. Equation (9) is applicable for temperature below glass transition temperature.

Creep data and experimental settings
Data description. Three-point bending tests are carried out under constant load. The temperatures of R, 
CSM and FWC specimens are set to 20 °C, 25 °C, 30 °C, 35 °C, 40 °C, 45 °C, and 50 °C, respectively. According to 
the standards, these specimens need to be maintained within a constant temperature chamber for 20 min before 
testing to ensure that the experimental temperature is reached. Short-term (1 h) flexural creep performances 
of three specimens are tested at seven temperatures, and creep data ranging from 0 to 3600 s are obtained. The 
resin content of R specimen is 100%, without any constraint of reinforcement materials, so the creep compliance 
and creep growth rate are the largest, and its creep resistance is the weakest; the resin content of FWC specimen 
is the lowest, and its continuous fibers have the strongest constraint effect on resin deformation, so its creep 
compliance is the smallest and creep resistance is the strongest; the resin content of CSM specimen is relatively 
high, many interfaces lead to stress concentration, and the constraint effect of chopped fibers on resin is not as 
strong as that of continuous fibers, so its creep compliance and creep resistance are between the two. Therefore, 
the creep compliance C-time t curves of R, CSM and FWC specimens could be drawn, as shown in Fig. 6.

Experimental settings. Various parameters are involved in the establishment of IGEP model, and affect 
generalization capability of the model. In order to get a more accurate IGEP model and reduce the time com-
plexity, appropriate parameters need to be set for problem solving, including fitness function, the number of 
iterations, population size, the number of genes, linking function and probabilities of genetic operators. Based 
on multiple trials, the final parameters selected for IGEP algorithm are given in Table 3.

Evaluation metric. Four evaluation metrics, namely, coefficient of determination R-squared R2, root mean 
square error RMSE, mean absolute error MAE and relative square root error RRSE, are used to evaluate the per-
formance and compare prediction accuracy of models. These criteria are calculated as follows:
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)
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Figure 6.  Creep compliance C-time t curves of three specimens at seven temperatures.
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where n is the number of data points, yi is the measured value, y is the average value, and ŷi is the predicted value. 
R2 measures the degree of correlation, the larger the value of R2, the better the performance of model; RMSE is 
a measure of the residual variance, lower RMSE represents more accurate estimation; the smaller the values of 
MAE and RRSE, the better the performance of model.

Creep modeling results and validation of the model
The experiments are implemented on a PC with Intel Core i5-4460 3.20 GHz CPU, 8 GB memory, Win7 64-bit 
operating system, and the software environment is MATLAB R2016a.

Time-temperature bivariate creep modeling results. Based on short-term creep data from 0 to 
3600 s, Findley model is modified to be expressed as a function of time and temperature by IGEP algorithm. 
Therefore, the time–temperature bivariate IGEP models for three specimens are established, the modeling 
results are given in Table 4, where ai(i = 1, 2, 3,…) is the model parameter, C0, m and n are three sub-functions 
related to temperature T respectively, and R2 of three models are above 0.98. Moreover, these modified Findley 
equations are suitable for describing the creep behavior in all isothermal conditions, although the kernel func-
tion is different at each temperature. It can be known that at fixed temperature, when the time tends to infinity, 
IGEP model of specimens is provided with the physical properties of creep. In addition, the first-order and 
second-order derivative values approach zero, IGEP model satisfies the variation law that creep strain increases 
monotonically and tends to be stable.

R specimen is analyzed, creep compliance values at 25 °C, 30 °C, 35 °C, 40 °C and 45 °C are used as training 
dataset, and a time-temperature bivariate creep model is established. The fitting curve and fitting surface are plot-
ted in Figs. 7a and 8a. The coefficient of determination R2 is 0.9928 obtained by IGEP model, the values of RMSE, 
MAE and RRSE are 0.0487, 0.0430 and 0.0848 for training phase, respectively. Moreover, creep compliance values 
at 20 °C and 50 °C are used as validation dataset, the coefficient of determination R2 is 0.9983 obtained by IGEP 
model, the values of RMSE, MAE and RRSE are 0.0538, 0.0397 and 0.0407 for validation phase, respectively, as 
provided in Table 5. The statistical metric values are effectively similar for training and validation set, the results 
indicate high generalization capacity and precise prediction ability of IGEP model. It can be found that there is 
a good coincidence between experimental data and fitting curves with low errors.

Similarly, CSM specimen is analyzed, creep compliance values at 20 °C, 30 °C, 35 °C, 40 °C and 50 °C are used 
as training dataset, and a bivariate creep model is established. The fitting curve and fitting surface are plotted in 
Figs. 7b and 8b. The coefficient of determination R2 is 0.9962 obtained by IGEP model, the values of RMSE, MAE 
and RRSE are 0.0148, 0.0109 and 0.0617 for training phase, respectively. Moreover, creep compliance values at 
25 °C and 45 °C are used as validation dataset, R2 is 0.9638 obtained by IGEP model, the values of RMSE, MAE 
and RRSE are 0.0458, 0.0421 and 0.1903 for validation phase, respectively, as provided in Table 6. Simultaneously, 

Table 3.  The parameter settings for IGEP algorithm.

Parameters Setting values

Fitness function R2, RMSE

Max number of iterations 200,000

Population size 30

Function set {+,−, ∗, /, ex , 1/x,−x, x2, x3, x4}
Terminal set t,T , c1, c2, c3, c4, c5

Chromosome h = 7, t = 8, number of genes = 3

Linking function Addition

One-point recombination 0.00277

Two-point recombination 0.00277

Gene recombination 0.00277

IS transposition 0.00546

RIS transposition 0.00546

Gene transposition 0.00546

Mutation rate 0.00138

Table 4.  IGEP creep models for three specimens.

Specimen IGEP model R2 RMSE MAE RRSE

R C(T ,t) =T+a1+(T+a2)t
a3e

T /(ea4/T−T+a5) 0.9928 0.0487 0.0430 0.0848

CSM
C(T ,t) =a1 + T/(T + 1)+(ee

e
e
(a2+a3T)

+ T)ta4T 0.9962 0.0148 0.0109 0.0617

FWC C(T ,t) = (T+a1)/a2+e
e
T/a3

t
e
T /a4 0.9867 0.0264 0.0172 0.1154
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FWC specimen is analyzed, creep compliance values at 20 °C, 25 °C, 30 °C, 45 °C and 50 °C are used as training 
dataset, and a bivariate creep model is established. The fitting curve and fitting surface are plotted in Figs. 7c 
and 8c. The coefficient of determination R2 is 0.9867 obtained by IGEP model, the values of RMSE, MAE and 
RRSE are 0.0264, 0.0172 and 0.1154 for training phase, respectively. Moreover, creep compliance values at 35 °C 
and 40 °C are used as validation dataset, R2 is 0.9242 obtained by IGEP model, the values of RMSE, MAE and 
RRSE are 0.0109, 0.0089 and 0.2753 for validation phase, respectively, as provided in Table 7. The high R2 and 
low RMSE, MAE and RRSE values demonstrate that the developed IGEP models are trained effectively and can 
well describe creep performance of composites at different temperatures.

Validation of IGEP model. Due to low adaptability of classical models under complex conditions, the 
previous research on creep performance is mostly univariate creep model related to time or creep master curve 
drawn from TTSP. Therefore, IGEP algorithm is utilized to establish a time-temperature bivariate model and 
get the fitting surface. When a certain temperature is fixed, the bivariate creep model is analyzed by dimension 
reduction. Then three-dimensional surface is converted into two-dimensional curve, the univariate model as a 
function of time is acquired. To further verify the validity of bivariate creep model, IGEP model for R specimen 
is analyzed, the creep curve at fixed temperature 40  °C is obtained. Compared with Burgers model, Findley 
model and HKK model, the curve fitting results are plotted in Fig. 9a. At the same time, four metric values of R2, 

Figure 7.  Fitting curves for three specimens.

Figure 8.  Fitting surfaces for three specimens.

Table 5.  Metric values of training and validation data for R specimen.

Data R2 RMSE MAE RRSE

25 °C 0.7993 0.0355 0.0315 0.4480

30 °C 0.6880 0.0543 0.0510 0.5586

35 °C 0.7533 0.0543 0.0497 0.4967

40 °C 0.9295 0.0357 0.0267 0.2655

45 °C 0.8880 0.0585 0.0563 0.3347

Training 0.9928 0.0487 0.0430 0.0848

20 °C 0.8791 0.0263 0.0229 0.3477

50 °C 0.9208 0.0714 0.0564 0.2814

Validation 0.9983 0.0538 0.0397 0.0407
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RMSE, MAE and RRSE are calculated, as given in Table 8. Similarly, IGEP models for CSM and FWC specimens 
are analyzed by dimension reduction, and the creep curves at 50 °C are obtained. Compared with viscoelastic 
models, the curve fitting results are plotted in Fig. 9b,c. Simultaneously, the overall performance of IGEP model 
can be validated by four metrics R2, RMSE, MAE and RRSE, the values are provided in Table 8.

Since most of creep models are time-related univariate models, and there are few models with multiple vari-
ables, a new bivariate modeling program is developed by IGEP in this work, the effect of temperature is intro-
duced into the traditional Findley power-law creep equation. It can be clearly seen from the table that R2 values 
of univariate IGEP model for three specimens are above 0.92 by dimension reduction analysis, the coefficient of 
determination of four models are relatively high and close to each other. The results show that the fitting curve 
of IGEP model is almost in good agreement with experimental data.

Time-temperature superposition creep modeling results. Calculating activation energy is a very 
useful technique to estimate shift factor for time-temperature superposition without constructing complete 
master curve. The activation energies Ea of R, CSM and FWC specimens are obtained by dynamic mechani-
cal thermal analysis to be 365.50 kJ/mol, 337.07 kJ/mol and 319.66 kJ/mol, respectively. Assuming Ea is valid 
only below material’s glass transition temperature. In this article, 23  °C is selected as reference temperature 
Tref  . Since some experimental temperatures are higher than reference temperature 23 °C, others are lower than 
23 °C. For T > Tref  , the logarithm of shift factor lgφT is negative resulting in right-shifted creep compliance 

Table 6.  Metric values of training and validation data for CSM specimen.

Data R2 RMSE MAE RRSE

20 °C 0.8215 0.0085 0.0078 0.4225

30 °C 0.9264 0.0120 0.0099 0.2713

35 °C 0.9177 0.0128 0.0088 0.2868

40 °C 0.6416 0.0262 0.0241 0.5987

50 °C 0.9766 0.0104 0.0059 0.1529

Training 0.9962 0.0148 0.0109 0.0617

25 °C 0.6043 0.0190 0.0178 0.5957

45 °C 0.6975 0.0281 0.0245 0.5500

Validation 0.9638 0.0458 0.0421 0.1903

Table 7.  Metric values of training and validation data for FWC specimen.

Data R2 RMSE MAE RRSE

20 °C 0.7251 0.0098 0.0093 0.5243

25 °C 0.9136 0.0034 0.0029 0.2939

30 °C 0.7747 0.0089 0.0070 0.4746

45 °C 0.7359 0.0474 0.0367 0.5139

50 °C 0.9430 0.0299 0.0242 0.2387

Training 0.9867 0.0264 0.0172 0.1154

35 °C 0.5837 0.0120 0.0097 0.6452

40 °C 0.9107 0.0098 0.0081 0.2988

Validation 0.9242 0.0109 0.0089 0.2753

Figure 9.  Creep models for R, CSM and FWC specimens at fixed temperature 40 °C, 50 °C and 50 °C.
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curve. On the contrary, for T < Tref  , the logarithm of shift factor lgφT is positive resulting in left-shifted creep 
curve. According to Arrhenius equation, the logarithm of shift factor for three specimens are calculated as given 
in Table 9. It is clearly seen that the order of lgφT for three specimens at the same temperature is as follows: 
∣

∣lg(R)
∣

∣ >
∣

∣lg(CSM)
∣

∣ >
∣

∣lg(FWC)
∣

∣ . The larger the logarithm of shift factor, the greater the effect of temperatures 
on creep performance of composites. Therefore, the sensitivity of creep to temperatures for three specimens is: 
R > CSM > FWC.

When short-term experimental data of creep compliance C-time t at seven temperatures are used, creep 
master curve of R, CSM and FWC specimens can be derived from TTSP, as shown in Fig. 10. Findley model is 
a parametric phenomenological model suitable for creep behaviour under low stress conditions. Burgers model 
and HKK model are classical physical models. At present, there are different methods for master curve fitting. 
The abscissa axis in Fig. 10 represents the logarithm of time lg t . In order to facilitate the observation, the abscissa 
axis is converted into time t, and is plotted to provide reference for engineering structural design. IGEP model 
and viscoelastic models are established by fitting the data on creep master curve for three specimens. The results 
are shown in Fig. 11. Moreover, the metric values of four models are calculated, as given in Table 10.

Apparently, it can be revealed that R2 of IGEP model is above 0.98, and the curve fits well with experimental 
data. R2, RMSE, MAE and RRSE are used as evaluation metrics, the fitting effect of IGEP model is better than 
that of Findley model, and far better than that of Burgers model and HKK model, indicating that IGEP model 
can well describe long-term creep performance of composite materials. When the creep compliance values of 
R and CSM specimens are enlarged by  1010 times, and creep compliance values of FWC specimen are enlarged 
by  1011 times, the model parameters are figured out with the help of computational software Origin 2018, the 
results are provided in Tables 11, 12 and 13.

Table 8.  Evaluation Metric values of creep models for R, CSM and FWC specimens at 40 °C, 50 °C and 50 °C, 
respectively.

Temperature model R2 RMSE MAE RRSE

R_40 °C

IGEP 0.9295 0.0357 0.0267 0.2655

Burgers 0.9953 0.0092 0.0063 0.0688

Findley 0.9957 0.0088 0.0055 0.0658

HKK 0.9900 0.0135 0.0104 0.1002

CSM_50 °C

IGEP 0.9766 0.0104 0.0059 0.1529

Burgers 0.9994 0.0016 0.0014 0.0239

Findley 0.9993 0.0018 0.0014 0.0270

HKK 0.9966 0.0040 0.0033 0.0585

FWC_50 °C

IGEP 0.9430 0.0299 0.0242 0.2387

Burgers 0.9962 0.0077 0.0052 0.0614

Findley 0.9995 0.0028 0.0019 0.0226

HKK 0.9986 0.0047 0.0031 0.0372

Figure 10.  Creep master curves for three specimens.

Table 9.  Logarithm of shift factor for three specimens at seven temperatures.

Parameter 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C

lgφT (R) 1.5191 − 0.9958 − 3.4277 − 5.7808 − 8.0586 − 10.2649 − 12.4030

lgφT (CSM) 1.4010 − 0.9183 − 3.1611 − 5.3311 − 7.4318 − 9.4665 − 11.4382

lgφT (FWC) 1.3286 − 0.8709 − 2.9978 − 5.0558 − 7.0480 − 8.9775 − 10.8474
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Figure 11.  Creep master curves and fitting curves for three specimens.

Table 10.  Evaluation metric values of creep models for three specimens at reference temperature 23 °C based 
on TTSP.

Specimen model R2 RMSE MAE RRSE

R

IGEP 0.9950 0.0621 0.0486 0.0705

Burgers 0.9245 0.2420 0.2060 0.2748

Findley 0.9943 0.0666 0.0546 0.0756

HKK 0.9328 0.2283 0.1885 0.2592

CSM

IGEP 0.9818 0.0328 0.0261 0.1350

Burgers 0.9042 0.0752 0.0616 0.3096

Findley 0.9787 0.0355 0.0307 0.1460

HKK 0.9096 0.0730 0.0566 0.3007

FWC

IGEP 0.9835 0.0252 0.0159 0.1286

Burgers 0.9311 0.0514 0.0446 0.2625

Findley 0.9803 0.0275 0.0200 0.1402

HKK 0.9345 0.0501 0.0418 0.2559

Table 11.  Burgers model parameters for creep master curve.

Specimen E1/(GPa) E2/(GPa) η1/(GPa*s) η2/(GPa*s) R
2

R 1.902 6.829 63.950E15 13.896E11 0.9245

CSM 4.897 24.345 26.945E15 89.337E8 0.9042

FWC 37.83 292.77 755.63E14 147.40E11 0.9311

Table 12.  HKK model parameters for creep master curve.

Specimen E0/(GPa) E1/(GPa) E2/(GPa) η1/(GPa*s) η2/(GPa*s) R
2

R 1.903 7.342 8.621 12.150E11 17.808E15 0.9328

CSM 4.898 34.725 25.113 94.510E14 85.046E8 0.9096

FWC 37.83 304.79 298.69 141.99E11 356.93E14 0.9345

Table 13.  Findley model parameters for creep master curve.

Specimen C0 m n R
2

R 4.605 0.2543 0.0683 0.9943

CSM 0.5153 1.3420 0.0138 0.9787

FWC 2.554 0.0208 0.1056 0.9803
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Validation of TTSP model and performance prediction. Since creep experiments at room tempera-
ture need to take a long time, the accelerated characterization of long-term creep behavior is performed. Shift 
factor is solved by Arrhenius equation, the short-term creep data at high temperatures could be used to predict 
long-term creep performance at low temperature. In order to verify the validity of TTSP model, under constant 
load, the long-term creep tests on 0–1000 h at reference temperature 23 °C are carried out, and the correspond-
ing creep experimental data for R, FWC and CSM specimens are measured to compare with creep master curve 
obtained based on TTSP.

When the creep compliance at t = 1000 h is selected for analysis, four models are established by fitting master 
curve to predict the values at t = 1000 h. The predicted value of TTSP model is compared with experimental 
value at 23 °C, and then the relative error δTTSP is calculated, the results are provided in Tables 14 and 15. It can 
be seen that relative error δTTSP predicted by TTSP model for R specimen is 5.18%; relative error δTTSP for CSM 
specimen is 2.22%; and relative error δTTSP for FWC specimen is 1.15%, all are within 6%. It is well proven that 
long-term flexural creep life of composites can be accurately predicted through an accelerated testing method 
at high temperatures.

However, it is clearly seen from Table 14 that the prediction effect of IGEP model for R specimen is better 
than that of TTSP model and Findley model, far better than that of Burgers model and HKK model; the predic-
tion effect of IGEP model for CSM specimen is comparable to that of Findley model, better than that of TTSP 
model, and far better than that of Burgers model and HKK model; the prediction effect of IGEP model for FWC 
specimen is better than that of TTSP model, and comparable to that of other creep models. It is concluded that 
IGEP model is a better way to simulate creep master curve.

At the same time, taking relative error δ between creep value predicted by each model and experimental 
value at t = 1000 h as a statistical metric, it can be seen from Table 15 that the relative error δIGEP of IGEP model 
for R specimen is the smallest, it is 5.11%; the relative error δIGEP of IGEP model for CSM specimen is almost 
the same as the error δFindley of Findley model, it is 0.61%; at t = 1000 h, the prediction effect of each model for 
FWC specimen is better than that of TTSP model, and the relative error δ is very small, all are below 0.6%. The 
predicted values are extremely consistent with experimental values. The experiments and theory are integrated to 
verify the validity of accelerated characterization method. The comparison of developed models and accelerated 
testing results indicates that IGEP model has better prediction accuracy than Burgers, Findley and HKK models 
in describing long-term creep performance of composite materials.

Discussion. Creep modeling of composite materials is a subject widely studied in the field of material science 
and engineering. This article only investigates the effect of time and temperature on flexural creep behavior of 
composites that is very important to the service life. However, under the complex conditions, there are many 
factors involved in creep failure of materials, such as humidity, atomic migration and diffusion, crack initiation 
and propagation, fiber morphology and orientation, there exists uncertainty in creep properties of composites, 
so that the empirical prediction model is not accurate enough. In addition, the joint effect of various factors 
makes it difficult to simulate the evolution process of creep from a microscopic perspective. Therefore, a swarm 
intelligent algorithm can be utilized to establish mathematical relationship model between multiple factors and 
output from a macroscopic perspective. The randomness and fuzziness of creep are not considered that results 
in the failure of classical models. So the fuzzy random method is used to improve the traditional particle swarm 
algorithm to obtain an efficient model to describe creep  performance41. The operation of instrument and the test 
of specimen result in certain errors in the data obtained. The creep test under constant load is performed, but the 
load is variable in practical application. An effective model for describing creep properties of composites under 
step loading and unloading conditions is established to provide theoretical support for deformation analysis and 
long-term  stability42.

The intelligent evolutionary algorithm is easy to implement and has strong scalability by selecting different 
basis functions such as exponential function and power function. When there are few experimental samples, the 
useful information can still be analyzed and extracted from the data, so that the testing workload in the process 

Table 14.  The comparison between predicted value and experimental value at t = 1000 h.

Specimen Ctested CTTSP CIGEP CBurgers CFindley CHKK

R 5.6203 5.3292 5.3329 5.2579 5.3182 5.2549

CSM 2.1559 2.2037 2.1690 2.0459 2.1693 2.0457

FWC 2.6493 2.6797 2.6631 2.6436 2.6563 2.6434

Table 15.  Relative error δ predicted by creep models at t = 1000 h.

Specimen δTTSP (%) δIGEP (%) δBurgers (%) δFindley (%) δHKK (%)

R 5.18 5.11 6.45 5.38 6.50

CSM 2.22 0.61 5.10 0.62 5.11

FWC 1.15 0.52 0.21 0.26 0.22
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of creep modeling is reduced. The modeling of alternative methods proves that the prediction of machine learn-
ing algorithm is superior to other methods in the  literature43, it has wider engineering applicability and higher 
prediction accuracy in describing long-term creep performance of composites. GEP is an efficient evolution-
ary algorithm, it can be regarded as a promising approach to devise empirical models based on experimental 
phenomena and variation laws, Since the creep experiments at room temperature need to take a long time, the 
application of accelerated characterization method can reduce its time cost by short-term creep data. Although 
mechanical testing is one of the most direct ways to study mechanical properties of materials, the time-consum-
ing and sophisticated creep tests could be avoided through computer simulation using GEP.

Conclusions
To summarize this article, an intelligent computing method is proposed for creep modeling of composite materi-
als. In order to derive three temperature-related sub-functions of Findley model, an improved GEP algorithm is 
developed to establish bivariate model. The probability-based population initialization and semi-elite roulette 
selection are adopted to accelerate convergence rate and improve solution accuracy. Moreover, compared with 
Burgers, Findley and HKK models, the validity of univariate model at fixed temperature is verified by R2, RMSE, 
MAE and RRSE metrics. Lastly, the short-term creep curves are plotted as creep master curve based on shift fac-
tor, the relative error at t = 1000 h is used as a statistical metric. IGEP model established by fitting master curve 
has lower prediction errors for three specimens, all are within 6%. The experimental results indicate that IGEP 
model can accurately predict long-term creep performance of composite materials. This work not only expands 
the application field of GEP algorithm, but also provides a new method for creep modeling.

In future work, except for TTSP, other superposition models could be extended and are reasonably studied to 
accelerate the characterization of long-term performance. When the effect of fiber content and surface treatment 
on creep properties of composites is studied further, GEP algorithm would be efficiently utilized to develop mul-
tivariable creep model as a function of temperature, stress and fiber, which is of great significance to investigate 
creep behavior for the design and life prediction.

Data availability
The data used to support the findings of this study are available from the corresponding author upon reasonable 
request.
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