
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22128  | https://doi.org/10.1038/s41598-022-26513-3

www.nature.com/scientificreports

Probabilistic projections of El Niño 
Southern Oscillation properties 
accounting for model dependence 
and skill
Roman Olson 1,2, Soong‑Ki Kim 1,3, Yanan Fan 4 & Soon‑Il An 1,3,5*

The El Niño – Southern Oscillation (ENSO) is a dominant mode of global climate variability. 
Nevertheless, future multi‑model probabilistic projections of ENSO properties have not yet been 
made. Main roadblocks that have been hindering making these projections are climate model 
dependence and difficulty in quantifying historical model performance. Dependence is broadly defined 
as similarity between climate model output, assumptions, or physical parameterizations. Here, we 
propose a unifying metric of relative model performance, based on the probability density function 
(PDF) of ENSO paths. This metric is applied to assess the overall skill of Climate Model Intercomparison 
Project phase 6 (CMIP6) climate models at capturing ENSO. We then perform future multi‑model 
probabilistic projections of changes in ENSO properties (from years 1850–1949 to 2040–2099) under 
the shared socioeconomic pathway scenario SSP585, accounting for model skill and dependence. We 
find that future ENSO will likely be more seasonally locked (89% chance), and have a longer period 
(67% chance). Yet, the jury is still out on future ENSO amplification. Our method reduces uncertainty 
by up to 37% compared to a simple approach ignoring model dependence and skill.

The El Niño – Southern Oscillation (ENSO) is a dominant pattern of global climate  variability1–7. It is character-
ized by quasi-periodic warming (El Niño) and cooling (La Niña) of the eastern equatorial Pacific sea surface 
temperatures (SSTs), which lead to associated changes in the tropical climate. ENSO’s extended reach stems out 
of its ability to regulate climate across the globe through its  teleconnections8,9.

Recent history is rife with examples of ENSO’s powerful impacts. The 1997–1998 El Niño is the strongest 
event on record, and it was associated with destructive floods, droughts, fires, extreme heat, damage to crops, as 
well as a hantavirus  outbreak10–12. Other major El Niño and La Niña events were also associated with devastat-
ing damages. For example, the 1982–1983 El Niño caused 40 times more rain than usual in Peru and Ecuador, 
while Indonesia, Australia and Philippines suffered from  drought10,13,14. Anomalous fatal fires were reported in 
 Australia10,13. At the same time, strong waves off the shore of California have led to 14 casualties, urgent evacu-
ation of 15,000 people, and resulted in $265 million in  damages10. Moreover, Africa suffered from devastating 
droughts causing starvation to  death10,14. At the same time a powerful malaria outbreak rampaged through Peru 
and South  America13. The total damages from the 1982–1983 El Niño were estimated at $8.1  billion10.

Long-term ENSO projections are typically made using climate models – complex pieces of computer code 
which solve equations of atmospheric and oceanic dynamics and thermodynamics on a grid, while also typi-
cally including other relevant climate components such as vegetation, sea ice, etc.15. However, there is a lack of 
statistical methodology to combine projections from different climate models to make meaningful conclusions, 
or probabilistic inferences about future ENSO. There are two main reasons for this. One is that climate mod-
els are dependent, with some models sharing components, parameterizations and code, or producing similar 
 output16–21. Thus, if nine out of ten highly dependent climate models agree on a particular outcome, they could 
all, in fact, err; while the tenth independent model may provide the correct projection. Second, it is not clear 
which climate model should be trusted more. One natural assumption is that more weight should be given to 
models that better represent present-day  ENSO22–24, yet no robust statistically-based method exists to measure 
historical ENSO performance. ENSO could be summarized using a large amount of metrics, and it is an open 
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question how model performance in these metrics should be combined to form a single  score25. Furthermore, 
both present-day model output and future projections are heavily influenced by internal climate  variability15,26–28.

Therefore, available ENSO projections are non-probabilistic in nature. They generally offer no agreement on 
the magnitude or direction of future ENSO amplitude  changes8,15,29–33. However, there are indications of likely 
ENSO strengthening under several forcing scenarios from the most recent generation of climate models—Climate 
Model Intercomparison Project phase 6 (CMIP6)34. Similar results are found for Eastern Pacific (EP) ENSO using 
earlier CMIP5 model cohort when the locations of individual ENSO variability maxima was taken into  account29. 
However, there is a need to quantify the relevant outcomes probabilistically, and to expand this analysis to other 
ENSO metrics (e.g. skewness, seasonality, period, etc.).

Here, we for the first time provide probabilistic multi-model projections of ENSO that take into account 
both model dependence and skill at capturing the full ENSO stochastic process, assuming it can be represented 
by two time series variables: Niño 3 region (5°S–5°N, 150°W–90°W) SST anomalies and equatorial Pacific ther-
mocline depth anomalies. It has been previously argued that the full information about a stochastic process is 
contained in the high-dimensional probability density function (PDF) of its paths, whereas other metrics (e.g. 
skewness, amplitude, spectrum, autocorrelation) only provide partial  information35. We first reconstruct these 
PDFs covering 50 years from observations and climate models using a recently published  method35 by fitting 
data-driven stochastic models (Fig. 1, “Methods”). Note that these PDFs are 600-dimensional (50 years times 
12 months). The inter-model and model-observed distances are then calculated (Figs. 1, 2). We argue that these 
distances provide a unifying measure of models’ relative ENSO performance. These distances are then used to 
reconstruct model and observed positions in a low-dimensional (“configuration”) space using a method known 

Figure 1.  Workflow of the multi-model projection method. t refers to monthly Niño 3 temperatures, and h 
refers to monthly equatorial mean thermocline depths. Blue rectangles represent information derived from 
CMIP6 models; red rectangles represent information derived from observations. Black rectangles show 
information derived from the fusion of both sources of information.
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Figure 2.  CMIP6 ENSO skill evaluation. Distances between CMIP6 models and observations, based on 
symmetric Kullback–Leibler divergences between 50-year PDFs of monthly ENSO paths. Model names and 
references can be found in Table 1.
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as multidimensional scaling (MDS; Fig. 1). These positions are then input into a novel multi-model projection 
method that accounts for model skill and  dependence18 to provide probabilistic projections of ENSO amplitude, 
skewness, seasonality, spectrum peak, kurtosis and autocorrelation changes under the shared socioeconomic 
pathway (SSP) forcing scenario  SSP58536 (Fig. 1). The overall methodology for multi-model projections is not 
limited to ENSO and could be modified to handle other climate variables.

Results
We first estimate 50-year PDFs using historical output of 32 CMIP6 climate models as well as observations 
(Table 1, “Methods”) using a recently published  method35,37. The method can account for non-Gaussianity, 
long-term dependence, and cross-correlations between the SSTs and thermocline depth anomalies. We choose 
a subset of 24 GCMs which can be appropriately approximated by the stochastic model (Table 1).

We propose that a unifying measure of relative model performance with respect to observations can be a 
distance between these PDFs. We show model-observational distances based on symmetric Kullback–Leibler 
divergences in Fig. 2 (see Eqs. (4) and (5) in the “Methods” section). This method asserts that the best performing 
models are associated with the smallest distances. There is a large range in the model-observational distances 
(expressed as Kullback–Leibler divergencies), from about 1500 to more than 6000.

An important question is how the model-observational distances are related to model performance on vari-
ous ENSO metrics, such as skewness, standard deviation, etc. Since there are many  metrics25, even the best 
performing ENSO models can have issues at simulating some of them. On the other hand, worst ENSO models 
can perform well at certain metrics. The relationship between model-observational distance and a single metric 
is therefore expected to be weak. Furthermore, it is not immediately clear how ENSO performance at a range 
of metrics can be combined into a single score, that could be regressed with the distance. Thus, it is beyond the 

Table 1.  List of CMIP6 climate models used in this study. Checkmarks indicate the climate models which 
are fitted by the stochastic model appropriately well. More detailed information on CMIP6 models, their 
components and parameterizations can be found at https:// search. es- doc. org/.

Model name (references) Fit OK Model number

ACCESS-CM258,59 ✔ 1

ACCESS-ESM1-560,61

AWI-CM-1–1-MR62,63

BCC-CSM2-MR64,65 ✔ 2

CAMS-CSM1-066,67 ✔ 3

CanESM568,69 ✔ 4

CAS-ESM2-070,71 ✔ 5

CESM2-WACCM72,73 ✔ 6

CIESM74,75 ✔ 7

CMCC-CM2-SR576,77 ✔ 8

CMCC-ESM278,79 ✔ 9

E3SM-1–180,81 ✔ 10

EC-Earth382,83

EC-Earth3-CC84,85

EC-Earth3-Veg86,87

EC-Earth3-Veg-LR88,89 ✔ 11

FGOALS-f3-L90,91 ✔ 12

FGOALS-g392,93 ✔ 13

FIO-ESM-2-094,95 ✔ 14

GFDL-CM496,97 ✔ 15

GFDL-ESM498,99 ✔ 16

INM-CM4-8100,101 ✔ 17

INM-CM5-0102,103 ✔ 18

IPSL-CM6A-LR104,105 ✔ 19

KIOST-ESM106,107 ✔ 20

MPI-ESM1-2-HR108,109

MPI-ESM1-2-LR110,111 ✔ 21

MRI-ESM2-0112,113 ✔ 22

NESM3114,115

NorESM2-LM116,117 ✔ 23

NorESM2-MM118,119

TaiESM1120,121 ✔ 24

https://search.es-doc.org/
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scope of this paper to quantitatively relate model distance to model metrics. Instead, we qualitatively analyze 
fundamental ENSO simulation issues in the five closest and five furthest models. These issues are enumerated 
in Table 2, and figures supporting this table are provided in the Supplementary Material.

We find that the models poorly performing on the distance measure tend to be associated with more funda-
mental issues in simulating ENSO. For example, only three serious issues are detected in the five closest models. 
At the same time, we find ten issues collectively in the five furthest models. Among the poorest performing 
models, one common issue is the lack of noise, as quantified here by standard deviation of either monthly Niño 
3 SST or equatorial thermocline depth anomaly tendencies at a specific ENSO state (e.g. Niño 3 SST and thermo-
cline depth anomaly). Note that these standard deviations are derived not from GCM/observed output directly, 
but from conditional PDFs of tendencies calculated in the fitted stochastic models. Another issue found in two 
models (INM-CM4.8 and INM-CM5.0) is lack of circular ENSO dynamics between Niño 3 SST and equato-
rial thermocline depth anomalies, at least for the analyzed months. Assuming these snapshots provide a good 
indicator of ENSO behavior for the remaining months, this indicates that the two variables are uncoupled from 
each other dynamically, in contradiction to recharge oscillator  theory38–41 and  observations37,42. Other issues 
include wrong ENSO seasonality and absence of spectral peak in the thermocline anomalies. Note that some 
of these issues (wrong SST-thermocline dynamics) may not be reflected in simpler ENSO metrics, pointing to 
their drawbacks when evaluating ENSO performance.

Among the best-performing models, we found an issue with ENSO seasonality in MPI-ESM1-2-LR and too 
high SST noise forcing and lack of circular ENSO dynamics in the CAS-ESM2-0 model.

This qualitative analysis suggests that the distance metric is related to ENSO performance. Therefore, this 
metric could be used as a single measure of model performance and as a replacement for a multitude of metrics 
used previously. This could streamline model development, validation, and inter-comparison efforts. However, 
a more quantitative analysis of relationships between the distance metric and other ENSO performance metrics 
should be carried out in the future.

Next, we validate the methodology for the PDF reconstruction. Since the PDFs are high-dimensional it is 
difficult to validate their estimation in the original space. Hence, we use a method known as multi-dimensional 
scaling (MDS) to convert the distances into model and observed positions in a low-dimensional space. The MDS 
is a dimension reduction method akin to principal component analysis (PCA). Unlike the PCA, the input for 
MDS is not modelled values, but inter-model  distances43. This procedure allows for better visualization of the 
PDFs. The output for the MDS are positions of the models in a low dimensional space of principal coordinates 
 R1, …  Rp. The MDS suggests that the uncertainties associated with estimation of the observed and modelled 
PDFs is reasonably low for the three leading MDS dimensions (Supplementary Note).

The multi-model projection method uses a low-dimensional representation of modelled  positions18. To recon-
struct those positions, the MDS was performed using the inter-model and model-observational distances from 
the first ensemble members (“r1i1p1f1”) for the 24 models and observations. Five and six (e = 5, 6) dimensional 
representations are chosen as they yield the best performance (see “Methods”). To illustrate relationships between 
MDS coordinates and future changes, the response plots of 1850–1949 to 2040–2099 changes in six ENSO proper-
ties over the Niño 3 region (standard deviation, skewness, seasonality, ENSO spectrum peak, kurtosis and lag-1 
autocorrelation) are shown in Fig. 3 as a function of the first two principal MDS coordinates,  R1 and  R2. We 
note that these coordinates have no physical meaning, although they could be in theory correlated with certain 
physical quantities. There is a degree of randomness in the CMIP6 model responses due to internal variability 
and due to the uncertainty in the estimation of the MDS coordinates. However, some marked clusters are visible. 
They include the cluster of intensified, more persistent ENSO with lower kurtosis and shorter spectral peak in 
the middle-left of the configuration space (Fig. 3a,d,e,f), and decreased skewness at high  R1 values vs. increased 
skewness as low  R1 values (Fig. 3b).

Table 2.  Fundamental ENSO issues for two model groups. Fundamental ENSO issues in the five closest 
and five furthest CMIP6 models, based on symmetric Kullback–Leibler divergences. The references for 
Supplementary Figs. supporting the findings for the furthest five models are provided in brackets.

Model name Main ENSO features ENSO dynamics ENSO noise

Closest 5 models

MPI-ESM1-2-LR No ENSO seasonality

NorESM2-LM

EC-Earth3-Veg-LR

CAMS-CSM1-0

CAS-ESM2-0 Lack of circular ENSO dynamics Too high SST noise forcing

Farthest 5 models

INM-CM4.8
Second SST amplitude peak in summer (S1). Severe under-
estimation of thermocline variability, almost no interannual 
thermocline spectral peak (S2)

No circular SST dynamics (S3)

INM-CM5.0 Almost no interannual thermocline spectral peak (S4) No circular SST dynamics (S5)

FGOALS-g3 Severe underestimation of thermocline noise forcing (S6)

CanESM5 No SST seasonality (S7) Severe underestimation of thermocline noise forcing (S8)

FIO-ESM-2–0 Severe underestimation of SST noise forcing (S9)
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We then apply the recently developed multi-model projection method that accounts for model skills and 
 dependence18. The key idea of the method is relaxing the assumption commonly used in the popular multi-model 
projection method called “Bayesian model averaging”23,44. That method constructs future projections as the 
weighted average of modelled PDFs. The weight is usually associated with model skill at representing present-
day climate. This assumption is that in reality only one model can be correct, which does not properly represent 
model dependence. We relax this assumption. However, this leads to more complex mathematical expressions 
that can no longer be easily evaluated. Nonetheless, if we formulate model correctness hypotheses as regions 

Figure 3.  Results of multi-dimensional scaling (MDS) analysis of ENSO probability density functions from 
CMIP6 climate models. Changes between periods 1850–1949 to 2040–2099 as a function of MDS principal 
coordinates for Niño 3 (a) standard deviation, (b) skewness, (c) seasonality, (d) ENSO spectrum peak, (e) 
kurtosis and (f) autocorrelation from CMIP6 models (color) under the SSP585 forcing scenario. Observed 
coordinates are denoted by black crosses.  R1 and  R2 are the first two principal coordinates of the observed and 
modelled PDFs of ENSO paths.
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in parameter space we can obtain future PDFs by instead sampling from the subspace of the parameter space 
where at least one model is  correct18.

The method, modified from its original version to fit the problem at hand, states that associated with each 
future change Δ (value in the future period minus the value in the historical period) there is a correctness 
indicator for each climate model i, depending on its relative position in space of  R1, …,  Re, and future change 
( r1,mi , . . . , re,mi ,�i) , and the position of “truth” consisting of observations and given future change (r1,o,…, re,o, 
Δ). The tolerance controlling the model correctness cutoff is controlled by a parameter k (see “Methods”). The 
method works by sampling all pairs of (k, Δ) for which at least one model is considered correct (see “Methods”). 
The prior probability of k is determined using cross-validation (“Methods”). It has been mathematically proven 
that this methodology considers both model skill at capturing present-day observations, and all orders of model 
dependence (e.g. dependence of each model on other models individually, on pairs of other models, triplets of 
other models, and so on) both in terms of present-day output and future  projections18. We address the uncertainty 
in the correct MDS dimensionality by simply combining the projections from simulations using e = 5 and e = 6.

We note that model dependence and model non-exclusivity are related terms. Here, we mathematically define 
dependence in terms of model non-exclusivity as � =

∑

1≤i<j≤l p(Mi ∩Mj) where p(Mi) is the probability that 
model i is correct, and l is the number of available models. A measure of non-exclusivity (or dependence) for a 
particular model could be similarly defined as �i =

∑

1<j<l,j �=i p(Mi ∩Mj) . In other words, it is a tendency for a 
model to be jointly correct with other models, and for its output to cluster together with other models.

We show the future projections for key ENSO properties in Fig. 4, while the summary of the results is pre-
sented in Table 3. The projection results are compared with simple poor-man’s resampling of PDFs construed 
from 24 available future modelled changes using kernel density estimation (KDE; see “Methods”). We note that 
the KDE-based poor man’s approach is statistically wrong, as it incorrectly assumes that modelled changes are 
independent samples from the underlying PDF. In addition, it does not account for differential model skill at 
simulating ENSO. Thus, the poor man’s projections are shown for mere comparison with the novel method.

Our work projects a 64% chance of ENSO amplification (about as likely as not in the language of the IPCC 
uncertainty guidance  note45), with the mean strengthening of just 0.058 K (Fig. 4a, Table 3). The likelihood of 
an increase is down from 73% (likely) obtained from a simple resampling of the KDE-based PDF. Earlier studies 
based on Climate Model Intercomparison Project phase 5 (CMIP5) yielded inconclusive results: while one work 
projected future ENSO  amplification29, other studies did not agree on the direction of future ENSO  change8,15,30. 
Furthermore, a centennial time-scale modelling study argued that any possible intensification under increased 
atmospheric  CO2 concentrations would be temporary, with weaker ENSO on the long  term31.

Yet, the newest CMIP6 climate model ensemble shows robust increases in ENSO  amplitude34, with 88.4% 
percent of models predicting an increase in the twenty-first century over the twentieth century under the SSP585 
forcing scenario. The resampled KDE-based PDF from our work shows a smaller 73% probability of an increase, 
and the difference between the studies could be due to a different region (we use Niño 3 compared to Niño 3.4 
used in that work), and period. However, when model skill and dependence are considered, the percentage of 
future increases falls even more down to 64%. Indeed, out of three most likely models based on our analysis, one 
(CAM-ESM2-0) projects future ENSO weakening of -0.044 K.

Large uncertainty remains regarding future skewness projections (49% probability of an increase; Table 3, 
Fig. 4b). A similar percentage (47%) is obtained using the poor man’s PDF resampling (Table 3). Previous work 
using CMIP5 model generation suggested that future skewness may  decrease15,30. The gap between our and pre-
vious works could be due to a number factors, including using different sets of global climate models, periods 
for calculating the changes, and regions for averaging ENSO anomalies.

Our approach projects a robust increase in ENSO seasonality (89% chance), with a mean increase of 0.3 
(Fig. 4c, Table 3). We note that observed seasonality (defined here as the ratio of ENSO standard deviation for 
the most variable month over one for the least variable month) for years 1915–2016 is 1.9. Therefore, the pro-
jected mean increase is 16%. These results are markedly different from the KDE-based “poor-man’s” projections, 
which indicate only a 64% chance of an increase. Three most likely models under our analysis, MPI-ESM1-2-LR, 
CIESM and CAS-ESM2-0, project increases of 0.23, 0.33 and 0.47, respectively. These results are in contrast to 
inconclusive findings previously reported based on a set of CMIP5 climate  models15.

Furthermore, our work indicates a likely (67% probability) lengthening of ENSO period. This is in stark 
contrast to a 37% chance of lengthening found in the KDE-based projection PDF. Furthermore, both lower and 
upper endpoints of the 90% confidence intervals are shifted towards higher values, with a small (7.7%) decrease 
in uncertainty (Fig. 4d, Table 3). The most likely outcome (mode of the PDF) is that of 1.3 years lengthening of 
ENSO period, which mirrors the value output from the highest-probability model, MPI-ESM1-2-LR. However, 
the model with the second highest probability, CIESM, showcases a small decrease of -0.55 years, which may 
explain a bump in the projection PDF around that value (Fig. 4d). ENSO period has not been previously intensely 
scrutinized, and available work did not project any large future changes in the ENSO  spectrum46.

Furthermore, our projections offer mixed results on future kurtosis changes (58% chance of an increase). 
These results are markedly different from the likely (68% chance) decreases found using the poor man’s approach 
of resampling the KDE-based PDF. For this variable, there is only a minor reduction (4.5%) of uncertainty owing 
to considering model skill and dependence. There is additionally a 61% chance of increased month-on-month 
autocorrelation, a small drop down from 67% (likely) under a poor-man’s approach. Again, there is only a small 
(4.5%) decrease in projection uncertainty compared to the poor-man’s approach in case of autocorrelation.

Compared to the poor-man’s approach of resampling PDFs of future changes obtained through the KDE 
method, there is a reduction in uncertainty for all projection variables. The smallest reduction (4.5%) is found 
for kurtosis and lag-1 autocorrelation, while the largest reduction (37%) occurs for seasonality projections. The 
reduced projection uncertainty is thus a major benefit of our approach. We remind the reader that the poor-man’s 
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Figure 4.  ENSO probabilistic projections from CMIP6 climate models. Probabilistic multi-model projections 
for changes in Niño 3 (a) standard deviation, (b) skewness, (c) seasonality, (d) ENSO spectrum peak, (e) 
kurtosis and (f) lag-1 autocorrelation between years 1850–1949 and 2040–2099 from CMIP6 climate models 
under the SSP585 emissions scenario (black lines). The projections are compared to resampling of PDFs 
obtained using kernel density estimation from actual modelled changes (thin blue lines). Dotted vertical lines 
represent respective 90% confidence intervals. Vertical grey lines are zero lines. Individual model projections are 
shown by red circles.
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approach should never be used to make probabilistic projections; we include it solely with the purpose of show-
casing the reduction of uncertainty owing to the novel projection method.

An advantage of our method compared to deterministic approaches is that it allows us to characterize the 
range of uncertainty using various metrics, for example, the 90% confidence interval. Reflecting the overall future 
projected increase in seasonality, the associated 90% confidence interval is asymmetric around zero, ranging from 
− 0.089 to 0.70 (Fig. 4c). A spectrum peak shortening or lengthening by two years cannot be ruled out (Fig. 4d). 
Large decreases in kurtosis are more likely than increases of similar magnitude due to a large lower tail (Fig. 4e). 
In addition, we note that the model range is not always a reliable indicator of the projection uncertainty range. 
For example, there are incidences where at least one of the bounds of the 90% confidence interval is outside of 
the model range (Fig. 4). This illustrates the limits of using model range as an indicator of projection uncertainty.

Furthermore, we find that properly accounting for model dependence is numerically important. An existing 
popular method of combining models known as “Bayesian model averaging (BMA)” handles dependence using 
the following assumption: only one model can be true at a time (“mutually exclusive” events). In other words, 
if one model is correct, then all other models must be incorrect: p

(

Mi|Mj = 0
)

, i �= j . If this is the case, then 
the sum of model probabilities is exactly one within our sample space (which asserts that at least one climate 
model is correct): 

∑l
i=1 p(Mi) = 1 , where l is the number of models. More generally, the Law of Total Prob-

ability states that:

with the first term 
∑l

i=1 p(Mi) being greater than one. Previous work hypothesized that the assumption of 
model exclusivity in the BMA (e.g. ignoring probabilities of model pairs 

∑

1≤i<j≤l p
(

Mi ∩Mj

)

 , triplets 
∑

1≤i<j<k≤l p
(

Mi ∩Mj ∩Mk

)

 , etc.) may be relatively unimportant when the dimensionality of observational 
constrains on climate models is high (> 2). However, here we find that even with five MDS dimensions for case 
of standard deviation projections, 

∑l
i=1 p(Mi) = 2.11 �= 1 . This suggests that accounting for model dependence 

in a proper way is critical even when multiple dimensions are used to constrain climate models.
Our work is subject to several caveats. First, we only consider time series aspects of ENSO without any 

spatial information and constrain our analysis to the Niño 3 region. We choose this region as it is important 
for dynamical ENSO evolution within the recharge oscillator  theory39–41,47. However, previous work has found 
that the ENSO projections differ when they are made at the locations of model-dependent centers of ENSO 
 variability29. Considering other ENSO regions is subject of future work. Second, we neglect the uncertainty in 
the present-day MDS location of observations. However, sensitivity analysis to the observations (see “Methods” 
and Supplementary Note) suggests that the errors in the observational estimate in three leading MDS dimensions 
are small. In addition, MDS location of pseudo-observations and the observations are similar, suggesting that 
the errors introduced due to fitting the stochastic model are small. Third, we assume that tolerance for defining 
model credibility regions is the same for all models. A more thorough treatment of model uncertainties should 
be done in the follow-up work. Fourth, we assume that ENSO over the periods used for the analysis is station-
ary, which has been suggested by a previous  study48. Fifth, there is a discrepancy in the observational and the 
modelled periods: the GCMs output is used over the period 1871–2014, while the observations cover the period 
from 1915 to 2016. The length of the observational period is limited by the presence of a dense observational 
network; we found that extending the period back in time leads to the rapid deterioration of the stochastic model 
fits. At the same time, discarding earlier GCM data is expected to increase the errors in the estimation of GCM 
positions in the configuration space. However, our analysis suggests that the length of model time series is suf-
ficient, and there are no indications internal variability is an issue. This is supported by proximity of different 
ensemble members of same GCMs in leading MDS space dimensions (Supplementary Note).

(1)

p

(

l
⋃

i=1

Mi

)

= 1 =
l

∑

i=1

p(Mi)−
∑

1≤i<j≤l

p
(

Mi ∩Mj

)

+
∑

1≤i<j<k≤l

p
(

Mi ∩Mj ∩Mk

)

−· · ·+(−1)l−1p(M1 ∩M2 ∩ · · · ∩Ml),

Table 3.  Summary of ENSO multi-model projections. Key properties of multi-model probabilistic ENSO 
projections for changes between years 1850–1949 and 2040–2099 from CMIP6 climate models under the 
SSP585 forcing scenario using the novel method and compared to the poor man’s approach of resampling of 
PDFs obtained using kernel density estimation. Probability of increase is re-stated using the IPCC uncertainty 
guidance note  terminology45. Likely changes (using the IPCC guidance note terminology) are shown in bold.

Variable Projection mean Probability of an increase (novel method)
Probability of an increase (KDE 
resampling) 90% confidence interval reduction

Standard deviation [K] 0.058 64% 73% (likely) 14%

Skewness  − 0.026 49% 47% 20%

Seasonality 0.30 89% (likely) 64% 37%

ENSO spectrum peak [year] 0.5 67% (likely) 37% 7.7%

Kurtosis 0.092 58% 32% (unlikely) 4.5%

Lag-1 autocorrelation 0.0029 61% 67% (likely) 4.5%
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Conclusions
Here we for the first time present multi-model probabilistic projections of ENSO properties. The projections 
account for the differential skill of climate models at capturing present-day high-dimensional PDF of ENSO paths 
(this PDF completely describes the underlying stochastic process assuming it is limited by 50 years), and for the 
dependence of climate models. We find that future ENSO will likely display more seasonality (89% probability) 
and have a longer spectrum peak (67% probability), with the most likely spectrum peak lengthening of 1.3 years. 
We compare our projections with a poor-man’s approach or sampling the probability density of future changes 
obtained through kernel density estimation. We stress that such poor man’s approach should not be performed 
in practice as it does not account for model skill and dependence, and we include it here only for comparison 
purposes. We find that the novel approach reduces the projection uncertainty (measured by the width of 90% 
confidence intervals) by 4.5—37%, depending on the projection variable, with the largest reduction for ENSO 
seasonality. In addition, projections in some cases change qualitatively compared to the poor man’s approach 
(based on the IPCC terminology). For example, kurtosis increases change from “unlikely” to “about as likely as 
not”, and lag-1 autocorrelation increases change from “likely” to “about as likely as not”. Furthermore, we attest 
that accounting for model dependence is important numerically, even when observational constraints include 
several dimensions.

In addition, we propose a unifying PDF-based metric of climate model performance at ENSO time series 
properties and rank the ENSO performance of CMIP6 models. Future work should extend this method to con-
sider the spatial structure of ENSO. Our method is not restricted to ENSO or atmospheric sciences and can be 
used with other monthly cyclostationary time series.

Methods
Data. We use 32 climate models from the CMIP6 project. The list of models is given in Table 1. These models 
were chosen as only they have bug-free output necessary to perform this analysis. Historical run ensemble mem-
bers r1i1p1f1 for years 1871–2014 are used for fitting the stochastic models, while historical output for years 
1850–1949 and future output under the SSP585 forcing for years 2040–2099 is used to calculate future changes. 
In addition, ensemble members r2i1p1f1 for three GCMs (BCC-CSM2-MR, CAMS-CSM1-0 and INM-CM5-0) 
are also utilized for years 1871–2014. All relevant monthly output is horizontally interpolated onto a 1°x1° grid 
using nearest neighbor interpolation. To calculate Niño 3 index t, we first perform the spatial average of SST over 
the Niño 3 region (5°S–5°N, 150°W–90°W), then calculate anomalies from monthly means, and then linearly 
detrend these anomalies over each respective period.

A similar procedure is used for calculating equatorial mean thermocline h over the Pacific for the latitudes 
5°S–5°N. First, for each interpolated grid point the depth of the 17-degree isotherm is obtained from monthly 
potential temperature fields. Preliminary data analysis indicates that the difference between potential temperature 
and temperature can be ignored for the thermocline depth calculations. Then, the depth is horizontally averaged 
over the equatorial Pacific, the annual cycle is removed, and the anomalies are linearly detrended.

The data extraction procedure for observations (years 1915–2016) is similar, except no interpolation of the 
observed datasets is done. Observed SST anomalies originate from the ERSSTv5  dataset49. The observational 
sources used to calculate thermocline depth anomalies include SODAv2.2.4 reanalysis for years 1915–201048, and 
GODAS reanalysis for years 2011–201650. Unlike the GCMs, thermocline depth from the SODAv2.2.4 reanalysis 
is obtained from in-situ temperature fields.

We also perform sensitivity analysis with respect to the observations. To do that, we construct the second 
observational dataset, where SST anomalies originate from the HadISST  dataset51, and the sources for ocean 
temperature used to calculate the thermocline depth anomalies are split between two datasets. Specifically, they 
come from SODAv2.2.4 for years 1915–1957 and from ORAS4 for years 1958–201652. Note that to our knowledge 
SODAv2.2.4 is the only available ocean reanalysis available prior to year 1958.

Stochastic models. Stochastic models are fitted to the 1871–2014 monthly Niño 3 index and thermocline 
depth following previous  work35,37. Specifically, the conditional probabilities of monthly Niño 3 changes ( �t ) 
and thermocline depth changes ( �h ) given the state (t,h) are found from the joint probabilities p(�t, t, h) and 
p(�h, t, h) , which are, in turn, estimated using kernel density methods separately for each calendar  month37. The 
non-Markov part of the model describes the normal transforms of the SST and thermocline depth changes using 
the multivariate normal distribution. Specifically,

where subscript t stands for temperature, superscript indicates time index, �−1 is the inverse standard normal 
cumulative distribution function (CDF), F is conditional cumulative distribution function (CCDF), and m 
is month. In Eq. (2) the changes are defined as �t(s) = t(s+1) − t(s) and similarly for the thermocline depth 
anomalies. A similar equation is used for normal transforms of thermocline depth changes ξ (j)h  . The trans-
forms are then collected into a single vector which is modelled using the multivariate normal distribution: 
ξ = [ξ (s)t , ξ

(s)
h , ξ

(s+1)
t , ξ

(s+1)
h , . . . , ξ

(s+v)
t , ξ

(s+v)
h ] ∼ N(0,�) . The covariance matrix � of this distribution is esti-

mated from data. The model allows to find the theoretical cyclostationary probability of any sequence of ENSO 
trajectories z:

(2)ξ
(j)
t = �−1

(

F
(

�t(j)|t(j), h(j),m(j)
))

,

(3)p(z) = p
(

t(s), h(s), . . . , t(s+v+1), h(s+v+1)
)

.
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The stochastic models are fitted using a procedure that has been modified from previous  work35,37. Consist-
ent with these studies, we use bandwidth SK during the kernel density estimation, where S is a numeric variable 
and K is the two-stage plug-in estimator for the bandwidth  matrix53. However, the procedure for estimating S 
is different. Here, we develop a systematic procedure for choosing S. First, for each GCM, different values of S 
are tried, starting from an initial value of 2, and decreasing in steps of 0.25. For each value, the Markov part of 
the model is first fitted on 50×50×50 grids of ( �t, t, h) and ( �h, t, h) . For the non-Markov part, we set the size 
of � to cover the period of 143 years (1 year less than the length of the model output), and optimize � following 
previous  work35. For each S, we keep track of the AIC of the model output over years 1871–2013. If the AIC at 
the next value of S in the sequence starts increasing, or if a multimodality is detected in any of the marginal PDFs 
p(�t) , p(t) or p(h) obtained from the joint PDF p(�t, t, h) for the representative month of January, we keep the 
current value of S as the final value. Afterwards, we obtain the multi-model mean of S determined in this way 
across all GCMs (0.98) and re-fit the stochastic models for all 32 GCMs using this value. We have tried using 
different S values for each GCM, however, it led to inconsistent PDF estimation based on the MDS analysis. 
Therefore, we opt to use the same value for all GCMs. This value of S is also used for fitting the ensemble member 
r2i1p1f1 output for three GCMs.

We assess S separately for the observations in a similar way over the period 1915–2016. In this case, � cov-
ers 101 years, and AIC is calculated for years 1915–2015. We estimate the observed S to be 1.5. It is natural to 
hypothesize that S is different between the GCMs and the observations because of the different length of the data. 
Specifically, when the sample size is smaller, we need to make sure that there is enough smoothing to remove 
spurious multimodalities and discontinuities in the PDFs, hence we expect a larger S.

The goodness of fit of the stochastic models is estimated using their relative error at representing the original 
GCM output and comparing this error to the relative error of long runs of the stochastic model fitted to EC-
Earth3-Veg GCM at representing its own 144-year time segment. EC-Earth3-Veg is chosen due to its positive 
performance on a number of ENSO-related  metrics25. The procedure is described in previous  work35, except the 
length of the short segment to which the long runs are compared to is different. The stochastic model is deemed 
to fit reasonably well to 24 out of 32 models (Table 1). We thus choose these models for further analysis.

Inter‑model and model‑observational distances. Once the model and observed monthly ENSO path 
PDFs p(z) for 50-year periods are obtained, we set out to calculate distances between 600-dimensional PDFs for 
all GCMs, and observations. Here we use the symmetric version of the Kullback–Leibler divergence:

where

is the standard Kullback–Leibler divergence. Here pMi (z) and qMj (z) represent PDFs of vector z being simulated 
by the ith and jth models, respectively. Note that this is a multidimensional integral over 50-year trajectories of 
Niño 3 SST and equatorial thermocline depth. Symmetric Kullback–Leibler divergences have been previously 
used in the context of dimensionality reduction of  PDFs54. This integral is evaluated using Monte Carlo integra-
tion. Specifically, for each pair of GCMs or observations samples from pMi (z) are generated using direct simula-
tion of the stochastic model, and then Dk

(

pMi (z)||qMj (z)

)

 is obtained by taking a simple mean of the fraction 
term ln pMi (z)

qMj (z)
 over the random z samples, and Dk

(

qMj (z)||pMi (z)

)

 is calculated in the similar way. We use 1000 
Monte Carlo samples. Preliminary data analysis shows that this number of samples is sufficient to estimate the 
symmetric Kullback–Leibler divergence with reasonable accuracy.

Multidimensional scaling (MDS). Multidimensional scaling takes in inter-model (or model-observa-
tional) distances, and finds model locations in the space of given  dimensionality55,56. More specifically, the input 
to the method is the n× n matrix of inter-model distances Ŵ = (γ ij) . These distances are first converted to the 
n× n matrix A = (aij) , where aij = − 1

2γ
2

ij
 . Next, the symmetric n× n matrix B = HAH is formed, where 

H = In − n−1Jn and Jn is an n× n matrix of ones. The matrix B is then spectrally decomposed to find eigenval-
ues and eigenvectors: B = V�VT , where � = diag(�1, . . . , �n) is the diagonal matrix of the eigenvalues of B 
sorted in non-increasing order and  V = [v1, . . . , vn] is the matrix whose columns are the eigenvectors of B. 
Suppose that the required dimension of analysis is e , and that e < e

′ , where e′ is the number of positive eigenval-
ues of B. We define �1 = diag(�1, . . . , �e) to be the matrix of e largest eigenvalues of B in non-increasing order, 
and V1 to be the associated matrix of e eigenvectors. Then,

where R = V1�
1/2
1 =

[√
�1v1, . . . ,

√
�eve

]

= [r1, . . . , rn]T , and r1, . . . rn are the principal coordinates of the 
observational and model locations in the e-dimensional space. The inter-model and model-observational dis-
tances dij in the reduced-dimensional space closely approximate the original distances γij.

Here, we select the MDS dimension e using cross-validation by excluding each model one at-a-time, and 
comparing multi-model projections (see “Cross-Validation” subsection) to the excluded model outputs. We 
achieve the best mean absolute error of the mean for e = 5, and best mean absolute error of the mode for e = 6. We 

(4)γij = D
k

(

pMi (z), qMj (z)

)

= Dk

(

pMi (z)||qMj (z)

)

+ Dk

(

qMj (z)||pMi (z)

)

,

(5)Dk

(
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)

=
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z
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therefore combine results for these dimensionalities when performing future projections (subsections below). 
We perform MDS twice: first with observations, canonical 24 models, additional runs of three GCMs, pseudo-
observations, and second set of alternative observations (Supplementary Note). The purpose of this analysis 
is to illustrate the uncertainties involves in the estimation of the MDS coordinates and the original PDFs. The 
second time we perform the MDS is for the purpose of multi-metric future projections. Here, we use only the 
observations and the canonical r1i1p1f1 runs of the 24 GCMs.

When performing the MDS the first row of the distance matrix always involves the default observational set, 
while the rest of the rows involve climate models, pseudo-observations or additional observations.

Future multi‑model projections. We define hypotheses about climate model correctness by modifying 
previous  work18 as regions in parameter space. Consider that each ith model is associated with the coordinate 
θ i =

(

r1,mi , . . . , re,mi ,�mi

)

 in the space of e MDS coordinates and future changes �. Note that here changes 
represent long-term changes between the historical (years 1850–1949) and the future period (years 2040–2099). 
These coordinates can be normalized to have the inter-model range of one in each dimension; let the normalized 
coordinates be:

where Gj is the range of model coordinates in the dimension j, and G� is the range of future modelled changes. 
Each model i is considered to be correct ( Hi) under a given “true” future climate change � if the distance between 
its normalized coordinates θ∗i  and the normalized coordinates of the truth (consisting of the normalized MDS 
p os it ions  of  obs er vat ions  and  t he  nor ma l ize d  “t r ue”  f uture  c l imate  change  �∗)  
θ∗ =

(

r∗1,o, . . . , r
∗
e,o,�

∗) =
(

r1,o
G1

, . . . ,
re,o
Ge

, �
G�

)

 is within a given value k:

The difference between this formulation and the one previously  employed18 is that the current formulation 
uses hyperspheres in an e-dimensional space as model correctness regions, whereas the previous formulation 
uses hypercubes. The hypersphere formulation appears to be more intuitive to us, since it, unlike the hypercube 
formulation, could be represented using distances. In addition, its region boundaries are smooth, unlike those 
of the hypercube formulation.

Furthermore, we define sample space � as the region in space ( �, k) where at least one climate model is 
correct: H1 ∪ · · · ∪Hl , where l = n-1 is the number of models. We choose the prior for k to be a half-normal 
distribution k ∼ N+(0, σ 2) following prior  work18. Here, σ is the parameter chosen by the user. We find an 
appropriate value for it using cross-validation (described below). Future projections are made using the mar-
ginalization theorem:

where 1� is an indicator function for membership in the set � (it is one over the set � , and 0 outside of this set). 
Samples from 1�p(k) are taken using rejection sampling. We perform future projections using runs r1i1p1f1 
from the 24 selected models.

We address the uncertainty in the number of dimensions e by combining projections from e = 5 and 6, as these 
were the best-performing dimensionalities during cross-validation (see subsection below).

Cross‑validation. We use cross-validation to optimize the number of MDS dimensions, as well as the 
parameter σ . We try MDS dimensionalities e ranging from 2 to 8. For each dimensionality, each model is 
excluded from the analysis one-by-one (except the model CAS-ESM2-0, which is an outlier in the MDS space), 
multi-model projections of Niño 3 standard deviation changes for years 1850–1949 to 2040–2099 are performed 
using the remaining 23 models and compared with the modelled change in the excluded model. Then, an appro-
priate σ is obtained such that it provides well-calibrated confidence intervals for the standard deviation changes 
(the 90% confidence intervals having an empirical coverage of around 90%). 50,000 samples from the joint PDF 
are used. An additional experiment in 5 MDS dimensions with a different initial random seed indicates that 
50,000 samples are enough to reasonably approximate the marginal PDF of future projections. We analyze the 
mean absolute error of the mean and mean absolute error of the mode for different dimensions. We find that 
the mean absolute error of the mean is smallest for e = 5, while the mean absolute error of the mode – for e = 6. 
Without any further information on the likelihood of different e values, we simply combine projections from 
both dimensions (which is effectively Bayesian model averaging with an equal probability for two competing 
models with different values of the hyperparameter e).

A sensitivity cross-validation experiment for e = 5 where all MDS dimensions have been equally scaled using 
the mean range G′ = 1

5

∑5
j=1 Gj has resulted in much wider mean 90% confidence interval compared to the 

baseline method. We therefore choose individual scaling factors Gj for each MDS coordinate.
We also use cross-validation to determine the proper smoothing for the binned kernel density estimate for 

the PDFs in the case of the poor-man’s approach. Specifically, the bandwidth in the kernel density method is 
S× d , where S is the smoothing parameter, and d is the two-stage direct plug-in bandwidth  estimate57. We select 
S for which 90% of the time the “true” changes are within the 90% confidence intervals of the kernel-smoothed 
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PDFs obtained on the basis of the changes from the remaining models. We use 50,000 random samples during 
this analysis. We find that S = 2.15 is the appropriate smoothing value.

ENSO metrics. Six metrics for monthly Niño 3 region output are chosen for projections: standard devia-
tion, skewness, seasonality, ENSO spectrum peak, kurtosis, and lag-1 autocorrelation. Standard deviation, skew-
ness, kurtosis, and autocorrelation are based on standard definitions. Seasonality is defined as the ratio of stand-
ard deviation in the most variable month (e.g. the month with the highest standard deviation) to the standard 
deviation in the least variable month. The ENSO spectrum peak is defined to be the period with the maximum 
spectrum density that falls within the ENSO range of 2–8 years.

Data availability
CMIP6 climate model output is publicly available from ESGF portal at https:// esgf- node. llnl. gov/ search/ cmip6/. 
ERSSTv5 sea surface temperature observations can be downloaded from https:// psl. noaa. gov/ data/ gridd ed/ data. 
noaa. ersst. v5. html. SODA v2.2.4 reanalysis is publicly available online through https:// iridl. ldeo. colum bia. edu/ 
SOURC ES/. CARTON- GIESE/. SODA/. v2p2p4/. GODAS reanalysis output can be downloaded from https:// www. 
cpc. ncep. noaa. gov/ produ cts/ GODAS/. ORAS4 reanalysis can be obtained from https:// www. cen. uni- hambu rg. 
de/ en/ icdc/ data/ ocean/ easy- init- ocean/ ecmwf- ocean- reana lysis- system- 4- oras4. html. HadISST observations are 
available from https:// www. metoffi ce. gov. uk/ hadobs/ hadis st/. Multi-model projection code is publicly available 
from https:// bitbu cket. org/ roman olson/ proba bilis tic_ enso_ proje ctions_ public/ src/ master/.
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