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Analysis of merged transcriptomic 
and genomic datasets to identify 
genes and pathways underlying 
residual feed intake in growing pigs
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Improvement of feed efficiency (FE) in pigs is an important milestone in order to reduce the economic 
and environmental impact of pig production. The goal of finding biomarkers for FE has persisted for 
decades. However, due to the complexity of the FE trait, these goals have still not been met. Here, we 
search for quantitative trait loci (QTL), candidate genes, and biological pathways associated with FE 
using both genotype and RNA‑seq data. We obtained genotype and colon epithelium RNA‑seq data 
for 375 and 96 pigs, respectively. In total, a genome‑wide association study (GWAS) and differential 
expression (DE) analysis led to detection of three QTL on SSC9 and 17 DE‑genes associated with FE. 
Possible intersection points between genes located in QTL and DE‑genes were found on levels of 
transcription factor‑target interaction. Moreover, cis‑eQTL analysis revealed associations between 
genotype and expression levels of three DE‑genes and three genes located in the GWAS QTLs, 
which may establish the connection between genotype and phenotype through DE. Finally, single 
nucleotide polymorphism calling using RNA‑seq data for genes located in GWAS QTLs revealed 53 
polymorphisms of which eleven were missense variants.

As the human population grows, the requirement for effective food production industries intensifies. At the same 
time, environmental challenges require food production to be sustainable. Extensive agriculture expansion has 
already led to the usage of one half of habitable land, significant changes in the  landscape1 and numerous other 
challenges, such as greenhouse gas emission, terrestrial acidification, and freshwater  eutrophication2. Life cycle 
assessment studies have shown that feeding accounts for 28–82% of the total impact on climate change from 
animal  production3 and that breeding for feed efficiency (FE) traits can reduce this  impact4. This has raised new 
arguments for improvements in FE in pigs.

FE in pigs is a complex trait with a large number of biological and environmental components. Environmen-
tal factors such as feed composition are constantly studied, leading to new understanding and advances in the 
optimization of feed  composition5–7. Furthermore, advancements in molecular biology techniques have led to 
several studies directed at identifying the biological components involved in FE in pigs. Most of these  studies8–12 
have been aimed at finding biological markers for FE in pigs using different techniques such as genetic mapping, 
RNA-sequencing, metabolomics, and metagenomics.

Among these studies, genome-wide association studies (GWAS) are especially interesting, since GWAS results 
can aid in the understanding of genetic mechanisms for high FE. However, a main drawback is that the herit-
ability of FE is quite low, thus a cohort for a GWAS on this trait must be big to gain enough statistical power 
for detection of quantitative trait loci (QTL)13. Another issue of GWAS is that in most cases it is not possible to 
infer the location of causative mutations precisely, thus a list of candidate genes potentially associated with a 
trait prevails after GWAS. A potential way to overcome this obstacle is to include another omics analysis since 
consistent results of GWAS and other omics analysis can be regarded as mutual verification.

Omics techniques have found widespread use in porcine FE research, in combination with GWAS or on 
their own. A number of associations with different types of biological markers have been found in these studies, 
which overall provide a better understanding of the FE trait complexity. For instance, metagenomics research 
has shown an association of dozens of bacterial taxonomic units in gut microbiota with  FE8,11, and metabolomics 
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studies in combination with  transcriptomic9 and GWA  studies10 have revealed significant gene-metabolite pairs. 
Transcriptomic studies have found FE associated differentially expressed genes (DE-genes) in various tissue, 
including  blood14,  liver12,  brain15 and  intestine16.

The colon is a part of the gastrointestinal tract that absorbs water, electrolytes and vitamins from the digesta as 
it arrives from the small intestine. Furthermore, the colon provides space for a dense and diverse community of 
mainly anaerobe bacteria with the ability to ferment complex carbohydrates, which otherwise cannot be digested 
by the host. The bacterial fermentation results in synthesis of short chain fatty acids, which are a rich source of 
energy for the  host17,18. The healthy symbiotic relationship between host and microbiota is tightly regulated by 
multiple factors and hence, gene expression studies focusing on colon epithelium cells may disclose new aspects 
of the host-microbiota symbiosis.

Residual feed intake (RFI) can be used to describe FE in pigs. It is calculated as a difference between observed 
feed intake and expected feed intake as predicted by multiple regression of feed intake on production traits such 
as body weight gain, and tissue composition to account for production requirements, and average metabolic 
body weight to account for maintenance  requirements19.

In the present study, we combine transcriptome analysis and GWAS to identify candidate genes and pathways 
linked with FE measured as RFI. Both types of analysis reveal biological markers for FE.

Results
Genome‑wide association studies. GWAS was performed using 370 pigs after filtering outlier pigs as 
described in the methods section. The test model included RFI values (MJ NE/d) as response variable and sex as 
a fixed effect. Mean and standard deviation for RFI were 0 and 1.111, respectively, and RFI was strictly normally 
distributed according to the Shapiro–Wilk test. The heritability for RFI was 0.17.

Results of the GWAS are shown in Fig. 1. Genome-wide significance threshold was 4.28e-7 after Bonferroni 
correction. All genome-wide significantly associated SNPs were located in a region on SSC9 from 83.7 to 95.9 Mb 
(Table 1). A significant deviation in observed p-values as compared to expected p-values is evident in the qq-plot. 
This reflects a large number of markers in strong LD with the genome-wide significant SNPs on SSC9.

All except three SNPs associated with RFI were located in a 10 Mb region on SSC9, which subsequently was 
studied for LD patterns (Suppl. Figure 1). The LD analysis revealed the majority of SNPs to be located in two LD 
blocks, SSC9: 83,701,293–86,854,470 (QTL-1) and SSC9: 88,546,817–91,460,506 (QTL-2), whereas one SNP was 
located outside the two LD blocks in an LD block located at SSC9: 95,697,312–95,866,333(QTL-3). Hence, the 
LD analysis resulted in identification of three QTLs, two relatively wide (QTL-1 and QTL-2) and one narrow 
(QTL-3) (Table 1, Suppl. Figure 1).

QTL-1 contained fifteen protein-coding genes and eight non-coding genes, and QTL-2 contained thirteen 
protein-coding and six non-coding genes (Suppl. Table 1). Inside QTL-3 no genes were found but the nearest 
flanking genes are given in Table 1.

The lead SNP from the QTL-1 block was located in an intron of BZW2 in a region enriched for ATAC-, 
H3K27ac-, and H3K4me1-signals in colon  tissue20 indicating a regulatory role of this region (Fig. 2a).

Figure 1.  Manhattan (top) and Q-Q (bottom) plots of GWAS results.
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The lead SNP from QTL-2 was located in an intron of the DNAH11 gene. The location of this lead SNP was 
not enriched for epigenetic markers in colon tissue (Fig. 2b).

Analysis of differential expression. For analysis of differential gene expression (DE-analysis) RNA 
sequencing data of colon epithelium was obtained from 96 preselected pigs with high or low RFI as described 
in the methods section. Four pigs were excluded from the analysis because they were found to be outliers with 
regard to their RFI based on statistics described in the methods section. Furthermore, one pig was found to be 
an outlier in respect to gene expression and was excluded from further analysis. Hence, after filtering, 47 (24 
females and 23 males) low RFI pigs and 44 (22 females and 22 males) high RFI pigs were left for DE-analysis. 
For these pigs, mean values of RFI for the low and high RFI groups were − 1.56 and 1.56, respectively, standard 
deviation within groups were 0.57 and 0.88, respectively. The distribution of p-values for the DE model was anti-
conservative (Suppl. Figure 2).

A False Discovery Rate of 0.1 was used as a threshold for significance in the DE-analysis (Fig. 3). This resulted 
in identification of 17 DE-genes with 15 genes upregulated in the high RFI group and two genes downregulated in 
the high RFI group (Suppl. Table 2). Immune system associated terms were found in the rank-based enrichment 

Table 1.  Description of QTL blocks as defined by linkage disequilibrium. *Flanking genes for lead SNP in 
QTL-3 are located outside the QTL.

Location Lead SNP p-value Number of genes
Number of protein 
coding genes

Genes flanking the lead 
SNP

QTL-1 SSC9: 83,701,293–
86,854,470 9:85907846 1.54e-7 24 15 BZW2

QTL-2 SSC9: 88,546,817–
91,460,506 9:90703434 2.80e-8 19 13 DNAH11

QTL-3 SSC9: 95,697,312–
95,866,333 9:95864157 1.76e-7 0 0 *ENSSSCG00000042154

*ENSSSCG00000042154

Figure 2.  Plots of QTL-1 (a) and QTL-2 (b) GWAS results, gene location, and epigenetic markers enrichment. 
X-axes indicate genome positions, Y-axis in the top panel indicates − log (p values). Linkage disequilibrium 
between the lead SNP and other SNPs is highlighted by color. Blue lines represent the location of genes, the 
remaining plots illustrate epigenetic marker enrichment scores. Score values on Y-axes correspond to aligned 
read counts in the ChIP-seq analysis reported by Pan et al.  202120.
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test for p-values of all genes tested in the DE-analysis. These functions include regulation of T-cell activation, 
regulation of leukocyte cell–cell adhesion, and antigen processing and presentation (Suppl. Table 3). The same 
type of enrichment test but for log fold change values of genes showed that immune system associated terms 
were characteristic for upregulated genes in the high RFI group (Suppl. Table 4). Downregulated genes were 
characterized by a diverse group of terms, including terms related to mitosis, protein synthesis, etc.

eQTL analysis. For the eQTL analysis, 94 pigs with both RNA-seq and genotype data available were used. 
Only cis-eQTL mapping was performed and SNPs located no more than 1 Mb from a gene were considered. 
Significance threshold was set based on a three step correction procedure as described by Huand et al.21. Genes 
and SNPs passing the significance threshold are called eGenes and eQTLs, respectively in the following.

In total, 2016 eGenes were identified and their expression was associated with 5263 different cis-eQTLs. 
The 2016 eGenes represent: 1701 protein-coding genes, 269 lncRNA genes, 35 pseudogenes, 3 snRNA genes, 3 
processed pseudogenes, 2 IG V genes, 1 miRNA gene, 1 snoRNA gene, and 1 TR V gene.

eQTL were found for two out of the 17 DE-genes, ENSSSCG00000025271, and ENSSSCG00000034614. None 
of these eGenes had a paired eSNP with a p-value in GWAS lower than 0.05.

Three eGenes, AGMO, SOSTDC1, and CRPPA, were found in QTL-1 (Table 2). Only AGMO had a relatively 
low p-value in the DE-analysis.

Figure 3.  Differentially expressed genes between the high RFI and the low RFI. Red dots represent significantly 
up- or downregulated genes.

Table 2.  eGenes among Differentially Expressed RFI QTL genes.

eGene eSNPs baseMean log2FoldChange PDE FDRDE

AGMO 9:84047949 3.41 −1.27211 0.00418 0.41600

CRPPA 9:85565144 32.77 0.26116 0.15780 0.81436

SOSTDC1 9:84672568 8.15 −0.67361 0.19125 0.84661
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SNP calling using RNA‑seq data. SNP calling revealed 53 polymorphisms in genes located in QTL-1 and 
QTL-2. Using the Ensembl Variant Effect Predictor  tool22 it was found that eleven polymorphisms were missense 
variants (Suppl. Table 5). Among those, two variants were deleterious based on SIFT score, both of them were 
located in a conserved domain of the DNAH11 gene. Moreover, four missense mutations were located inside the 
AHR gene.

Transcription factor regulation. A survey of the GeneHancer database revealed that the AHR transcrip-
tion factor encoded by a gene located in QTL-1 has five targets among proteins encoded by DE-genes (Fig. 4). 
Among target DE-genes for AHR, one transcription factor was found. This transcription factor, IRF2, in turn, 
regulates the expression of four additional DE-genes.

Discussion
The combination of GWAS and RNA-seq data analysis provided an opportunity for making a multi-faceted 
analysis of biological markers for RFI. Using the two methods in tandem, we obtained mutual support for results 
from multiple analyses.

The priority in our study was the identification of QTLs for RFI and the biological pathways on which they 
have an impact, thus RNA-seq data was mostly used for verification and interpretation of GWAS results. We have 
achieved this in three different ways: identification of transcription factors in QTLs with targets in DE-genes, 
finding cis-eQTLs in QTL regions for RFI, and SNP calling based on RNA-seq data.

The present GWAS analysis revealed three QTL regions on SSC9, which overlap with a number of QTL 
found in previous studies according to the Animal QTL  Database23. In total, QTLs from 26 previous studies are 
overlapping with the QTLs identified in the present study. Two of these overlapping QTLs are associated with 
production traits such as body weight at day 21 (QTL-1,2,3)24, lipid (QTL-2) and protein (QTL-1,2,3) accretion 
rate, and average daily gain (QTL-1,2,3)25. However, since FE is a genetically highly complex trait, the QTLs 
identified in the present study are at best small pieces in the genetic puzzle underlying FE. A more complete 
picture of the genetic mechanisms underlying this trait must include the many other QTLs found in previous 
studies on this subject [e.g.13,26,27].

In our GWAS analysis the lead SNP for QTL-1 was located in a region enriched for ATAC-, H3K27ac-, and 
H3K4me1-signals in colon tissue. The lead SNP for QTL-2 was located in an intron region of the DNAH11 gene. 
A potential functional importance of this gene is supported by SNP calling based on RNA-seq data which 
revealed two deleterious variants in conserved domains of DNAH11. SNPs located in QTLs were associated with 
the expression of three genes, however, only one gene, AGMO, shows a p-value in the DE-analysis lower than 0.05.

Analysis of DE in the RNA-seq data revealed 17 DE-genes for RFI. Fifteen DE-genes were upregulated in 
the high RFI group of pigs. Rank-based enrichment test for log fold change values showed that expression 
upregulation in the high RFI group was enriched for immune system associated annotations in agreement with 
previous  studies14,28. The identified immune system response in colon epithelium might indicate a link between 
gut immune function, the gut microbiome and FE. The causation of this link can be explained in two different 
ways. On one hand, the microbiome might modulate immune system response. For example, it has been shown 

Figure 4.  Graph of transcription transcription factor regulation pathways among DE-genes (green) and of RFI 
QTL gene (red). Interactions between transcription factors highlighted by red color.
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that short-chain fatty acids (SCFAs) are involved in immune response  inhibition29,30. Energy rich SCFAs are 
also product of fiber fermentation by the gut microbiome and therefore increase of their production might lead 
to increased FE. On the other hand, a modified immune response might be determined genetically and subse-
quently modulate the microbiome. The potential role of genetics in this link is supported by interactions found 
between GWAS and DE results using transcription factor–target networks. In this way, a transcription factor 
encoding gene located in QTL-1, AHR, may explain the differential expression of nine out of 17 DE-genes. The 
AHR gene has to our knowledge not been linked to FE before, but it has been considered a candidate gene for 
reproductive traits in previous  studies31–33. SNP calling based on RNA-seq data revealed four missense muta-
tions in the protein-coding part of the AHR gene. Thus, we conclude that AHR is a promising candidate gene 
for a RFI genetic determinant.

Moreover, one gene located in QTL-1, AGMO, showed an expression level significantly associated with the 
genotype and a relatively low p-value in DE-analysis for RFI. This gene encodes alkylglycerol monooxygenase 
which appears to play a role in immunity, energy homeostasis, and  development34. In our study AGMO was 
down-regulated in the high RFI group of pigs.

In conclusion, we have identified a number of genes of potential importance for RFI. Of particular interest is 
the gene encoding the AHR transcription factor, which is located in QTL-1 and targeting some of the identified 
DE-genes. Another gene of interest is DNAH11, in which the QTL-2 lead SNP was located in one of the introns. 
Missense mutations were found in both AHR and DNAH11 genes. Further studies in independent cohorts 
should be performed to confirm the relevance of the candidate genes for feed efficiency in pigs. Furthermore, 
the hypotheses concerning interactions between immune system response in colon and microbiome could be 
studied by integration of metagenomics data. Such data will soon be available for the pigs in the present study 
and an analysis of these data will be presented in a separate paper.

Materials and methods
Animals. In the present study, 409 cross-bred animals were used. Study animals were produced by insemina-
tion of (Landrace x Yorkshire) crossbred sows by mixed semen from Duroc boars. DanBred (Herlev, Denmark) 
provided all animals. Conditions from the Danish “Animal Maintenance Act” (Act 432 dated 09/06/2004) and 
the “Order regarding animal experimentation” (BEK nr 12 af 07/01/2016) were met and approved by the Dan-
ish Veterinary and Food Administration. Individual IDs were assigned to each pig at weaning and each pig was 
equipped with an electronic ear-tag. An automatic feeding station was used to record the time, duration, and 
feed consumption at every visit of the pig using ear-tag screening. The trial period started when pigs reached 
the approximate body weight of 30 kg and lasted for 33 days. The same diet was given to all pigs. None of the 
pigs were treated during the trial period. The diet was composed of wheat (49%) barley (25%) and soybean meal 
(17%). The crude protein (CP) content was 16% and the content of standardized ileal digestible protein was 132 g 
per kg feed. The energy content was 9.6 MJ NE per kg feed. Individual feed intake was measured in MJ NE. All 
pigs were slaughtered after overnight fasting at an age of approximately 6 months and a bodyweight of approxi-
mately 100 kg in a commercial abattoir. Blood from each pig was sampled in Thermo Fischer BD K2E (EDTA) 
tubes immediately after exsanguination.

DNA isolation, genotyping and imputation to whole genome sequence variants. High qual-
ity DNA was isolated from EDTA stabilized blood using a classic salting out  procedure35. SNP genotyping was 
performed by Edinburgh Genomics, Ashworth Laboratories (Edinburgh) using the 700 K Affymetrix Axiom 
PigHD chip. Sequences of the probes for Affymetrix Axiom PigHD SNPs were mapped to the new assembly 
using  BWA36 to retrieve marker positions in the newest version of the pig genome assembly (Sscrofa11.181). 
Markers that were assigned to multiple positions across the genome were excluded from the analyses. Only 
autosomal markers were retained. The haplotype phasing for the HD marker set was performed using  Eagle37 
with default parameters. Finally,  Minimac338 was used to impute missing values of the HD marker set. Imputa-
tion of missing data was aided by exploitation of DNA sequence information from 217 purebred pigs of the three 
involved breeds.

Phenotype calculation. Residual feed intake (RFI) was defined as the difference between an observed 
average daily feed intake (ADFI) and expected ADFI. Expected ADFI was estimated using multiple linear regres-
sion of ADFI on average daily gain and metabolic body weight (MBW). MBW was calculated under an assump-
tion of a linear growth rate over the experiment period using formula  from39:

where  W1 and  W0 are weights at start and end of the test, respectively.
The linear model was built using the LinearRegression function in the Sklearn package V.1.1.240. At first, data 

for 409 pigs were used, however nine pigs were excluded from calculation of expected ADFI and further analy-
sis as outliers. Outlier pigs were identified using Cook’s distance values in the abovementioned multiple linear 
regression model. Cook’s distance estimates the impact of separate data points in a least squares regression and 
identify extreme observations for  elimination41. Cook’s distance threshold was set on the level of the 98th per-
centile (Suppl. Figure 3). Outliers were excluded prior to building the final linear model used for RFI calculation.

The 96 pigs selected for RNA sequencing (see below) contained four outliers, thus 92 pigs were left after 
filtering.

MBW =

(W1.75
1

−W
1.75
0

)

1.75× (W1 −W0)



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21946  | https://doi.org/10.1038/s41598-022-26496-1

www.nature.com/scientificreports/

Genome‑wide association study. 375 pigs were genotyped, but 5 pigs were excluded from GWAS as 
phenotype outliers as described above. Quality control for the genotypes was conducted based on the criteria 
of Hardy–Weinberg equilibrium (HWE >  10–8) and minor allele frequency (MAF > 0.05) by PLINK  software42. 
After quality control, 357,735 SNPs remained for further analysis. We estimated the genomic relationship 
matrix (GRM) using GCTA 43 with the filtered autosomal marker set. GWAS analyses were performed using the 
“leave-one-chromosome-out” procedure in GCTA. Number of independent tests  (Nindep) was estimated using 
 SimpleM44 and a Bonferroni corrected genome wide significance level was defined as 0.05/Nindep. Genome-wide 
significance threshold was 4.28e-7 after Bonferroni correction.

GWAS was performed for each chromosome using RFI as a response phenotype and including sex as a fixed 
effect. Genome-wide significantly associated SNPs were further used for QTL region identification.

QTL regions were identified based on linkage disequilibrium (LD) between lead SNPs in a region and sur-
rounding SNPs. Pairwise LD  (r2) was calculated using the –r2 function in  PLINK42. Borders of QTLs were defined 
based on position of the most distant SNP from the lead SNP with an  r2 score above 0.85.

Genomic heritability was estimated for RFI using sex as a fixed effect. For estimation, the GCTA –reml func-
tion and the GRM established above were used.

Identified QTL regions were screened for epigenetic marker tracks in colon tissue based on published pig 
genome functional  annotations20. Epigenetic marker tracks were obtained from the UCSC  database45 and visual-
ized based on scores. Scores were derived from ChIP-seq data and represent processed counts of reads aligned 
to the given location in the genome.

RNA extraction and RNA sequencing. At a commercial slaughterhouse, the gastrointestinal organs 
were removed from the pigs within 20 min after bleeding. Approximately 5 cm of the middle part of the colon 
was cut out and rinsed in 0.9% saline. The mucosal lining was scraped off with a scalpel, transferred to cryo-
tubes, and snap-frozen in liquid nitrogen. Samples were collected from 325 pigs. Among those pigs, 48 animals 
with high FE and 48 animals with low FE were selected for RNA sequencing. An equal number of females and 
males were selected for both high and low FE. The animals were selected based on feed conversion ratio (FCR) 
adjusted to the weight of pigs at the start of the trial. Mean values of adjusted FCR in high and low FCR groups 
were 2.291 and − 1.799 MJ NE/kg, respectively. The mean and standard deviation value for adjusted FCR in the 
entire population were 0 and 1.593, respectively. Thus, a ratio of sample difference between groups to standard 
deviation in the entire population was 2.567.

For RNA isolation, 50 mg of tissue per sample were homogenized in a GentleMACS™ Octo Dissociator 
machine (Miltenyi Biotec) using the RNeasy® Mini Kit (Qiagen) with DNase digestion, following manufacturer’s 
instructions. The concentration and purity of the RNA samples were measured on a Nanodrop ND-1000 spectro-
photometer (NanoDrop Technologies, Wilmington, USA). RNA integrity was assessed on a BIO-RAD Experion 
machine using the RNA stdSens kit. All samples had an RNA-quality index (RQI) above 8.

RNA-seq library construction was performed by purifying the mRNA by oligo(dT)beads, the resulting library 
was sequenced on an Illumina HiSeq 2000 sequencing platform with TruSeqV3 sequencing reagents at the Beijing 
Genomics Institute, Shenzhen, PR China as previously  described46.

Differential expression analysis. Quality control for total RNA-Seq reads was performed using FastQC 
software. Reads were aligned to the pig reference genome (Sscrofa 11.1) using the Bioconductor Rsubread 
 package47 with default parameters. Genes were annotated using the Ensembl  database48 and filtered excluding 
genes which were expressed in less than twenty percent of the animals. The same phenotype as for the GWAS 
(RFI) was used as a response variable in the DE-analysis, i.e., the animals were divided into high and low RFI 
groups using 0  MJ NE per day as a threshold. As mentioned above, pigs for RNA sequencing were initially 
selected based on FCR values adjusted to the body weight at the start of the trial. However, high and low FE 
grouping based on FCR and RFI matched for all pigs. Mean values of RFI for the low and high RFI groups 
were -1.56 and 1.56, respectively, standard deviation were 0.57 and 0.88, respectively. Analysis of differential 
expression was carried out using DESeq2 platform V.1.3649. After the first fit of the model, Cook’s distances for 
gene expression were retrieved using the assays () function in DESeq2 in order to detect outliers. In this way 
one animal was considered as an outlier based on average Cook’s distance value (Suppl. Figure 4). This pig was 
excluded from further analysis and the final DE model was fitted using the remaining dataset. Features with a 
False Discovery Rate (FDR) ≤  0.1 were considered to be differentially expressed genes (DE-genes).

Functional enrichment analysis for the full result table of DE association test was carried out using the 
STRING V. 11.5 web-tool (www. string- db. org)50 based on Kolmogorov–Smirnov test statistics. Functional enrich-
ment was run on two estimates of DE analysis, namely nominal p-values and log fold changes for genes.

Cis‑eQTL analysis. For cis-eQTL analysis, transcriptome and genotype data for 94 out of the 96 pigs with 
transcriptome data were used. One pig was excluded after DE-analysis as described above and another pig lacked 
genotype data. The RNA-seq data were mapped and filtered as for the DE-analysis and the data was normalized 
by size factor using the DESeq2 platform V.1.3649. Quality control of SNPs was conducted as for GWAS. Cis-QTL 
were mapped using the BootstrapQTL method V 1.0.521. BootstrapQTL uses three steps of multiple testing cor-
rection. At first Bonferroni correction is used to adjust nominal p-values from MatrixEQTL cis-SNPs separately 
for each gene, after that FDR correction is applied to the lowest p-values for all genes, and in the end SNPs with 
locally adjusted p-values corresponding to globally corrected p-value threshold of 0.05 are considered as eSNPs. 
The bootstrap procedure was used to correct for the overestimation of effect sizes. Cis-eQTL associations were 
searched within a 2 Mb region around each gene.

http://www.string-db.org
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SNP calling using RNA‑seq data. For SNP calling, increased requirements for reads were applied. Read 
head cutting (12 bases) and sliding window trimming (SLIDINGWINDOW:4:20) were applied for all reads 
using  Trimmomatic51. Then reads were aligned to the pig reference genome (Sscrofa 11.1) using the STAR pack-
age V.2.7.1052 with default parameters. SNP calling was performed using the Rsubread package V.2.0.347. Only 
polymorphisms with a score higher than 0.2 were kept. The identified polymorphisms were annotated using 
Ensembl Variant Effect Predictor  tool22.

Transcription factor regulation. The GeneHancer database V.5.953 was used to build transcription factor 
regulatory networks. The database was filtered to include only promoters and promoter genes with “double elite” 
confidence  scores53. Genes located in QTL regions were tested as transcription factors regulating the expression 
of DE-genes. If the target DE gene was a transcription factor, its potential role in regulating expression of other 
DE-genes was also tested. In this way, a network was built starting with the QTL transcription factor coding gene 
and ending with all targets found.

Data availability
The datasets generated and analyzed during the current study are available from the Genome Sequence Archive 
(GSA) repository with the primary accession code CRA007239.
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