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Human reliability assessment 
of intelligent coal mine hoist 
system based on Bayesian network
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The human reliability of intelligent coal mine hoist operation system is affected by many factors, 
in order to reduce the occurrence of human error in the hoist system and improve the reliability of 
the system. The characteristics of phased-mission task operation of hoists is combined, the phase 
dependence of human cognitive errors is considered and, a new human reliability evaluation method 
is proposed with the help of Bayesian network (BN) model in this paper. Firstly, the phase dependence 
of human cognitive errors was analyzed based on the cognitive behavior model. Then the human 
error analysis in the hoist system was carried out, and several main performance shaping factors are 
selected. Secondly, BN was used to build the human reliability model of the hoist system at each 
stage. Finally, it is found that the phase dependence of cognitive errors has a negative impact on 
the human reliability of the hoist system through the case analysis. At the same time, several main 
performance shaping factors (PSFs)were quantitatively analyzed by using the reverse reasoning 
ability of BN, which proves the effectiveness of the proposed method, and provides a scientific and 
reasonable theoretical basis for the development of effective human error prevention measures for the 
operation of intelligent coal mine hoists.

Coal mines are a safety accident prone industry, With the development of smart coal mines, the working condi-
tions, automation of equipment and the production environment have been greatly improved1,2. The number of 
fatal coal mine accidents and the death rate of one million tons of coal decreased from 5670 and 5.28 in 2001 to 
228 and 0.059 in 2020, respectively3. Even if the adoption of digital technologies has lessened the frequency of 
mishaps in industrial systems, accidents brought on by human mistake are still occurring at a high rate4. This is 
true since incorporating new technology into the growth of intelligence also creates a number of issues5. First, 
the volume of information in digital systems has substantially expanded, making it more challenging to find 
the needed data. Second, unlike conventional coal mines, intelligent coal mine systems have both primary and 
secondary jobs. The number of secondary activities is significantly higher than the number of primary tasks, and 
secondary tasks add to the operator’s workload. The development of intelligent coal mines raises the uncertainty 
of human relative to conventional coal mines. The probability of Human error probability (HEP) is also increased 
by complicated procedures6. The coal mine hoist, as the monitoring and operation center of the production 
material and operator transportation system of the coal mine enterprise, is an important channel to link up 
and down the coal mine7. Coal mine hoist as a coal mine enterprise production materials, operators transport 
system monitoring and operation center, is an important link between the coal mine shaft underground, the safe 
operation of the hoist is an important link to ensure the safe production of coal mines. During the continuous 
development of intelligent coal mines, the reliability of the equipment is continuously improved, and it is more 
necessary to focus on human reliability analysis and assessment, so as to improve the overall reliability of the 
system. Human reliability assessment is of great significance to improve the safety and efficiency of intelligent 
coal mine hoist systems as well as to prevent human error accidents8.

Increasingly more operators are transitioning from manual operators to machine system supervisors in the 
context of intelligence and digitalization9. A large number of cognitive activities are involved during multiple 
phase operation tasks in intelligent coal mine hoist systems. The occurrence of cognitive mistakes is not only 
related to the cognitive activity associated with the present phase, but it is also influenced by the results of the 
cognitive activities associated with the previous phase, it is crucial to keep in mind when undertaking human 
reliability analysis. For instance, if the hoist operator does not observe the instrument readings, he/she may 
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make an error. Hoist operators usually experience several phases while performing their tasks, and the human 
reliability of phased-mission systems (PMSs)needs to be analyzed, and the interdependence between phases, 
which is natural, needs to be considered. Therefore, human reliability assessment of coal mine hoist systems is 
more complex and requires consideration of the state dependence of the hoist operator’s cognitive behavior at 
multiple stages.

Many different analytical modeling strategies have been put out by numerous academics to address the issue 
of reliance and reliability assessment in PMSs. There are three main types.The first uses Monte Carlo simulation 
(MCS), a state-space-based approach, to construct state transfer models10. For instance, the phase dependence 
of each unit and the dynamic behavior of the system are represented by the Markov chain (MC) and Petri-net 
(PN) model11. The second utilizes combinatorial methods such as reliability block diagrams (RBDs)12, binary 
decision diagrams (BDDs), and multivalued decision diagrams (MDDs)13. Large-scale PMSs have been suc-
cessfully handled by combinatorial methods based on decision diagram theory and Boolean algebra. The third 
and more applied one utilizes the classical probabilistic graphical model BN, a type of classical probabilistic 
graphical model that has gained popularity among researchers for its improved ability to describe probabilities 
and correlations in complicated systems14,15. An event-tree-based BN model, for instance, was proposed by Li 
et al.16 and can be used to assess the risk and reliability of PMS. Zhao and Smidts17 used Bayesian networks to 
represent human cognitive activities and Monte Carlo simulations to account for various uncertainties in cogni-
tive processes. Human reliability study is aided by this cutting-edge environment for cognitive modeling and 
simulation. Xu et al.18 created a new reliability assessment method that assesses the dependability of multistate 
PMSs by using data gathered from various phases. A dynamic Bayesian network and a particular expectation 
maximization method were combined to achieve this. Overall, BN is a method for PMS reliability assessment 
that works well since it can accurately depict the dependencies across phases as well as the chance correlations 
inside a single phase.

In the past human reliability assessment studies, HRA has been widely used in various fields as a method to 
assess the probability of human error to improve the safety and reliability of systems.

A number of HRA techniques have been created in the past to assess and forecast human errors19. They 
analyze how human activity affects safety and reliability systems using systems engineering and cognitive and 
behavioral sciences, and they forecast the likelihood of human errors based on employee actions and decisions. 
In the study of human reliability in the field of coal mining, Wang et al.20 analyzed the behavioral reliability of 
traditional mechanized coal mining operators using Monte Carlo methods. The influence of sound in the work-
ing environment on the behavioral reliability of operators was explored, but the influence of human own factors 
on behavioral reliability was ignored. A fuzzy Bayesian network approach was used by Qiu et al.21 to create a gas 
tunnel safety risk assessment model. Liu et al.22 developed the Human Factors Analysis and Classification System 
for Coal Mines in China based on the statistical findings of 362 significant coal mine accidents that occurred in 
China. He also looked into the poor safety practices of coal mine workers and the factors that influenced those 
behaviors. Li et al.23 identified and evaluated the risk factors of coal mine safety production using text mining 
and Bayesian network technology, and they clarified the six main risk elements of coal mine safety production 
and their connected components. Fuzzy logic and Bayesian networks were coupled by Xue et al.24 to assess 
three fault states in the gas monitoring network. Fuzzy logic was used to represent the fault states of the system. 
The results of a thorough bibliometric analysis of the HRA field conducted by Hou et al.25 revealed that classic 
HRA approaches are inappropriate for usage in task and system transitions as well as the current workplace. To 
address these developments, new HRA models must be created. According to French et al.26, workers’ cognitive 
processes as well as other performance-influencing aspects (safety culture, safety training, etc.) should be taken 
into account in order to further extend and improve HRA approaches.

In man–machine PMS, more attention has been paid to the interdependence between machine failures in 
the past, and less research has focused on the dependence of human cognitive errors. Also in the past human 
reliability studies have been more research focused on the dependence of human cognitive errors. Some research-
ers, for example, merely treat the operator as a machine unit without accounting for cognitive errors and the 
corresponding phase dependence in the operator’s cognitive process, which is not representative of the actual 
scenario27. In genuine operational processes, PMSs also feature the phase dependence of human cognitive errors 
in addition to the phase dependence of machine states. Ignoring them will inevitably cause the evaluation results’ 
accuracy to decline11. Most of the past human factors reliability assessments about the coal mining field have been 
focused on traditional coal mines, and there are still some shortcomings in human factors reliability studies for 
smart coal mines. In particular, it will be the focus of this paper to identify and quantify the performance impact 
factors of human factors reliability in human–computer interaction operations in smart coal mines.

In summary, this paper combines the operational characteristics of intelligent coal mine hoist systems, focus-
ing on the cognitive behaviors and cognitive error dependencies of hoist operators during operation, and pro-
poses a new human factors reliability assessment method combined with BN. Using Bayesian networks, the PSFs 
and related cognitive activities of hoist operators are considered as modeling elements, and the stage dependence 
of human cognitive errors are also well mapped into the BN, by which a human factor reliability model of the 
hoist system is constructed. Subsequently, the human factor reliability of the coal mine hoist system is evalu-
ated based on the conditional state probabilities of all identified nodes. Finally, a typical intelligent coal mine 
is selected to evaluate the human factor reliability of coal mine hoist system. It enriches the research related to 
human factor reliability assessment in human–machine interaction system of smart coal mines and provides 
a theoretical basis for developing effective human factor failure prevention measures for smart coal mine hoist 
operations.

The rest of the paper is composed as follows: in "System descriptions", the stage dependence of human cog-
nitive errors is analyzed, and the method and Bayesian network technique of how to determine the similarity 
of different operational stages are described. "Methodology" presents the human factors reliability assessment 
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method and its steps in the hoist system proposed in this paper. "Case evaluation" carries out a typical example 
analysis. "Discussion" discusses the results of the analysis in "Case evaluation" and with previous studies. "Con-
clusion" gives the conclusions of this paper.

System descriptions
Phase dependencies analysis.  In contrast to traditional single task systems, PMSs have phase dependen-
cies between subsequent phases. Therefore, it is important to recognize and examine the phase dependencies of 
system units for modeling before evaluating the human reliability of coal mine hoist systems. Along with the 
phase dependency of machine states, phase dependence of human cognitive errors is a characteristic of PMSs. 
In the subject of HRA research28, the relationship between human-caused errors has come to be recognized 
as a phenomenon. The main stages of human cognition include, observation, comprehension, planning, and 
execution. Errors in observation, manipulation, and understanding in the previous stage affect the likelihood 
of the same errors occurring in subsequent stages when similar situations arise29. Therefore, they are analyzed 
comprehensively in this section.

The reliance of cognitive errors between two neighboring phases can be categorized into four types, as shown 
in Fig. 1, depending on the chosen cognitive activity and cognitive phase. The hoist operator normally has to 
complete a series of interconnected cognitive tasks, although the task in phase i is affected by the task in phase 
i − 1 (i = 2, 3, n, where n is the total number of phases).In terms of observation, this paper focuses mostly on 
gathering visual data through observation. As a result, two features, comprising (1) and, can be used to charac-
terize the corresponding interdependencies (2). Furthermore, understanding, planning, and execution involve 
information processing based on the operator’s cognitive-behavioral model and are therefore considered here as 
sharing similar phase dependence mechanisms. Therefore, the phase dependence of understanding, For instance, 
can also be characterized according to both aspects (3) and (4).

(1)	 If the observation of i − 1 phase is successful: this indicates that an object at phase i − 1 was successfully 
detected by the operator. When a similar observation need arises in phase i, it is quite simple to capture 
the item again or even to forgo the observation30, lowering the possibility of errors (arrow line 1).

(2)	 If the observation i − 1 phase fails: without additional cues to remind of the previous error, the operator 
is more likely to make the same mistake again on observing a similar object in phase i (arrow line 2)31. 
Conversely, with additional reminders or cues, awareness of the previous phase error will increase one’s 
attentiveness and can inhibit the recurrence of the same error (arrow line 1).

(3)	 If the understanding of i − 1 phase is successful: It indicates that the operator is using the appropriate cog-
nitive model and is equipped with the relevant information or rules to manage the current circumstance. 
When a comparable circumstance arises in phase i, the operator may produce the right understanding once 
more (arrow line 3).

(4)	 If understanding the i − 1 phase fails; without further clues, having an incomplete cognitive model of the 
operator increases the likelihood that the scenario would be misunderstood again in the i phase (arrow line 
4). The gap between the two phases is once again another crucial factor, even with extra cues. The operator 
will have the chance to complete his or her incomplete cognitive model if the time gap is reasonably long 
enough to enable correct understanding in the following phase (arrow line 3). Otherwise, under extreme 
time pressure, the operator will probably adopt a heuristic method and continue with trial and error32 
(arrow line 4).

Situational similarity analysis.  The comparability of the scenarios between the two stages to enable the 
subsequent model generation and the subsequent estimation of the adjustment factor is a crucial prerequisite for 
evaluating the stage dependence of human cognitive mistakes. The decision tree (DT) suggested by Standard-
ized plant analysis of risk-human reliability analysis (SPAR-H)29 is used in this research to provide a method 
for determining the degree of stage dependence of human cognitive errors. The decision tree (DT) proposed by 
SPAR-H is used in this research, as shown in Fig. 2.

Figure 1.   Shows the phase dependency of human cognitive mistakes. The red arrowed line denotes the 
facilitative effect of cognitive errors, whereas the blue arrowed line denotes the inhibitory effect. The arrow lines’ 
numbers represent the many forms of dependency.
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It refers to the impact of an operator’s failure to perform a subsequent task after failing to perform a previous 
task. The majority of HRA methods, notably SPAR-H, make the assumption that the probability of an operator 
failing or failing in the next task segment may be higher if the operator fails or fails in the task compared to 
when the operator succeeds. The key risk indicators may be greatly underestimated, and the ensuing results for 
human reliability may appear distorted, if the potential relationships between cognitive actions are not accurately 
portrayed. The intersection of each leaf node represents one of the four characteristics, including personnel, 
time, place, and cues, and each leaf node represents a level of assessed similarity. These levels are complete (CD), 
high (HD), moderate (MD), low (LD), and zero dependence (ZD). The impact on following cognitive processes 
increases with dependence level. The rules used to establish the various levels of reliance are shown on the path 
from the beginning to the finish in the DT. When two phases are more similar in terms of their position, their 
timing, and the presence of additional stimuli, there is a stronger degree of reliance between them. With regard 
to the aforementioned cognitive deficits in humans, the pathways in DT are compatible with and span a variety 
of phase dependencies. The similarity of the situation at each stage can be assessed in terms of five descriptive 
dependency levels. Subsequently, the independent HEP of the operator-related nodes in the later stages can be 
adjusted based on the assessed dependency levels. each dependency level corresponds to a specific adjustment 
factor α to adjust the HEP formula. Thus, the suggested modeling approach incorporates the DT for determin-
ing situation similarity.

BN Model descriptions.  BN are quantitative causal models consisting of a directed acyclic network and 
several statements about probabilities that characterize the dependencies between different PSFs and related 
activities. Nodes, arcs, and conditional probability tables(CPTs)are provided by BN15. These can be used to 
encode the many types of knowledge that operators keep in their memory, or what is known as the information 
processing model. In order to build a human reliability assessment model for hoist systems, BN was chosen as 
the modeling tool because it can accurately depict the causal linkages and dependencies between factors and 
targets in the PMSs of hoist systems.

The BN consists of two parts: the qualitative topology and the quantitative CPTs33. A directed acyclic graph 
made up of a collection of nodes V = {X1, X2,⋯Xn}connected by a collection of directed edges serves as a repre-
sentation of the topology. The nodes represent the interesting random variables, while the directed edges define 
the causal or effect linkages between them. In this study’s application of BN to express the causal relationship of 
flaws, the directed edge between two nodes serves as an example of the causative relationship. Instead of using 
probability intervals between them, a particular BN is used to translate expert expertise into human error prob-
ability (HEP) values for operators. Expert knowledge is transformed into HEP values for operators rather than 
probability intervals between them using a customized BN. If node Xi and node Xj are connected by a directed 
edge, Xi is referred to as Xj ’s "parent" node and is represented by the symbol Pa. (Xj). As a result, Xj is referred to 
as the "child" node of Xi, signifying the causal relationship between Xi and. Xj A leaf node is a node without any 
children, whereas a root node is a node without any parents. By allocating unconditional distributions (which 

Figure 2.   Decision tree for determining the degree of dependence of cognitive behavior.
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can be derived from statistics or domain experts) to root nodes and CPTs to intermediate nodes34. The joint 
probability distribution of the entire network can be written as follows using the chain rule of BN35.

where represents all BN nodes, and Pa(Xi) denotes the parent set of node Xi.

Methodology
This study is broken down into three key steps as illustrated in Fig. 3 as follows. The PSFs in the hoist system are 
identified and screened in step 1 based on the cognitive behavior model that is created for hoist system opera-
tors. In step 2, with the aid of BN, an intelligent coal mine hoist system human factors reliability model is built, 
and the sources and processing techniques of various model parameters are introduced. Step 3 was completed 
to choose typical individual cases for validation and analysis in order to show the suggested method’s viability.

Cognitive model construction.  According to traditional psychology, the human cognitive process con-
sists of three main parts: first people perceive stimuli from external information, then the received informa-
tion is transmitted to the brain for processing, and finally the response activity is made, which is the classical 
stimulus–organism–response (S–O–R) model36. Smidts et al.37 adapted the information processing model and 
proposed the (IDA) Information, Decision, Action model, and divided the cognitive process into four modules: 
information perception, decision, execution, and mental state. However, because it was too complex for practi-
cal application, it later evolved into the Skill-Rule-Knowledge (SRK) model, which classified human cognitive 
behavior into three behavioral modes: skill-based, rule-based, and knowledge-based38. In recent years, some 
scholars, divided the cognitive behaviors of operators in digital control rooms into four stages: monitoring, state 
evaluation, response plan, and operation, and established a model of operators’ cognitive behaviors39,40, this may 
be useful for improving the relevant human reliability analysis model.

The cognitive behavior model, which is highly important in people’s research on human mistake, examines 
the human cognitive process based on the analysis of various cognitive behaviors and cognitive functions of 
individuals. However, the previous cognitive behavior model is relatively simple, the interaction between the 
cognitive functions is not well described, and the influence of the external environment on cognition is not taken 
into account41, so it is difficult to fully reflect the dynamic cognitive behavior characteristics of human–machine 
interaction operation in intelligent coal mine hoisting machine room. Therefore, based on the analysis of 
human–machine interaction in intelligent coal mine hoisting machine room, considering the applicability of 
SRK model and the understanding of IDA model on the cyclic interaction process of cognitive functions and the 
relationship with mental state, this paper expands the SRK model on the basis of IDA model and adds internal 
and external factors that affect the cognitive process, and constructs the intelligent coal mine hoisting machine 
The driver’s cognitive behavior model is shown in Fig. 4. The human cognitive behavior process is monitored 
and controlled by the Hoist operator through the human–machine interface. The operator can access the hoist 
parameter information through the display system of the HMI and assess the current status of the system. Then, 
based on this assessment, the state of the hoist can be determined and the operating procedure and path can be 
selected accordingly. Finally, control response tasks are performed. Thus, the cognitive-behavioral process of a 
coal mine Hoist operator is characterized by four phases: observation, understanding, planning and execution.

The whole cognitive process constructed by the model is driven by mental factors such as attention and 
memory, while each cognitive function will change the state of mental factors in real time during the execu-
tion process, and the cognitive function and mental factors are dynamic interaction process, and the cognitive 
process will also be influenced by the Hoist operator himself and the surrounding environment. In summary, 

(1)P(X1,X2, · · ·Xn) =
∏n

i=1
P(Xi | Pa(Xi))

Figure 3.   Research framework.
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the cognitive behavior model emphasizes the interaction between cognitive functions and mental states, the 
non-serialization of cognitive functions and the role of internal and external factors on the cognitive process.

Analysis of human error in hoist systems.  Human errors are simply caused by people’s incorrect cog-
nitive behavior. The cognitive processes of hoist operators and the completed work analysis were examined in 
the previous paper. The next stage is to investigate what leads to hoist operators’ incorrect cognitive activity and 
sets off human errors. Human errors will also be generated by the situational environment in which the person 
is positioned, it is currently generally accepted that attributing human errors solely to the person’s own causes 
is biased.

Factors that contribute to human error include at least those related to the person, task-related, man–machine 
interface, environment, and interactions between people in the organization. Through the study of existing 
behavior formation factor classification methods, such as 67 PSFs provided by THERP, 9 CPCs by CREAM, 
8 PSFs by SPAR-H42,43 and others, the behavior formation factors that may lead to human-caused errors are 
summarized by combining the characteristics of man–machine interaction operations of intelligent coal mine 
hoists, as shown in Table 1.

The factors influencing different cognitive functions can vary, and the role of different behavioral formative 
factors in influencing different cognitive functions varies. Therefore, it can be assumed that different behavioral 
formation factors lead to different types of person-factor failures, i.e., behavioral formation factors and person-
factor failure patterns are closely related. Based on the identification of the factors influencing cognitive func-
tions, the relationship between human error patterns and behavioral formation factors was analyzed, as shown 
in Table 2.

Figure 4.   Cognitive behavior model of intelligent coal mine Hoist operator.

Table 1.   Intelligent coal mine Hoist operator behavior formation factors.

Category Subcategories Specific factors

Personal

Physiological status Fatigue

Mental state Stress; attitude

Qualities and competencies Attention; knowledge; experience; memory

Mission
Mission characteristics Task complexity; available time; task novelty; workload

Statute Usability; completeness; comprehensibility; level of detail

Human machine interface
Panel/screen Ease of information identification; layout rationalization

Hardware Equipment reliability; inspection and maintenance

Environment Working environment Noise

Organization

Safety culture Safety regulations; security awareness

Education and training Skills training; safety culture training

Communicate Information communication and feedback

Management issues Inadequate management

Organizational procedures Rationalization of work procedures
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Cognitive model‑based operator PSF identification and analysis.  Usually, as comprehensive as 
possible behavior formation factors are needed for humans failure identification, because only then can the 
causes of humans failures occur be identified more accurately, while such comprehensive behavior formation 
factors, which must be included at every level, are not needed for the calculation of humans failure probabil-
ity. Among the commonly used human reliability analysis methods, SLM chooses six PSFs, CREAM uses nine 
CPCs, and HCR, HDT, and other methods choose behavior formation factors that are basically around a dozen. 
The reason why a small number of important behavior formation factors are usually used for human error prob-
ability calculation is mainly because when conducting quantitative analysis of human reliability, quantitative 
evaluation of each behavior formation factor is required, and the process of quantitative evaluation is compli-
cated, and once the number of behavior formation factors is too many, it is likely to have the possibility of double 
calculation, which makes the results inaccurate instead. Interviews with seven experts were therefore conducted 
based on the identification of hoist operator PSFs. These experts included two university experts who had stud-
ied coal mine reliability for a long time, two hoist operators who had worked for more than 7 years, and two coal 
mine accident investigation experts who were primarily in charge of accident scene investigation, identification 
of accident elements, and determination of accident nature and direct cause. Among the PSFs in Table 2, they 
were asked to identify the primary PSFs for hoist operators in the four stages of observation, comprehension, 
planning, and execution. Final screening revealed six most prevalent PSFs, each of which had two states as indi-
cated in Table 3, as markers for the quantitative examination of human reliability of hoist operators.

Reliability analysis.  A BN-based technique for evaluating the human factor dependability of intelligent 
coal mine hoist systems is developed, which takes into account the stage dependency of human cognitive errors 
and the key human factor reliability PSFs of such systems in the following three steps.

Qualitative modeling construction.  The BN model qualitative structure must first be constructed using the 
identified nodes as a base. The BN structure can change between phases to reflect how the PMSs are configured 
dynamically. The following three sub-steps can be added as further divisions of this step.

(1)	 Ascertain each network node status. The determination of many requisite states for nodes that play a role 
may be necessary to help further quantitative modeling. Finding descriptive states (such as failure or suc-
cess) for a specific node that is performing well or not functioning is one method advised for describing 
states. Degradation-like intermediate states can also be found, if necessary. To describe the operator-related 
nodes, this study, however, only takes into account two states.

(2)	 Identify the nodes’ causal connections within each phase. To create a qualitative BN model for a specific 
phase, causal linkages between various nodes should be established. Causative development begins at 
the root node and travels along arcs to the intermediate and target nodes. The BN that was created can 

Table 2.   Relationship between human error patterns and behavior formation factors.

Serial number Human error mode Behavior forming factors

E1 Not observed/discovered Fatigue; attention; equipment reliability; noise; safety awareness

E2 Observation error Fatigue; attention; layout rationality; ease of information identification

E3 Misidentification Knowledge; experience; ease of information identification; skills training

E4 Diagnostic errors Stress; knowledge; experience; memory; skills training

E5 Inappropriate planning Stress; knowledge; experience; task complexity; available time; task novelty; information communication and 
feedback

E6 Wrong choice Knowledge; experience; task complexity

E7 Action omission Stress; attention; memory; task complexity; available time

E8 Action error Stress; attitude; safety regulations; safety awareness

E9 Information is not exchanged Information communication and feedback

E10 Incorrect/incomplete information exchange Information communication and feedback

Table 3.   Intelligent coal mine Hoist operator human reliability behavior formation factors.

Serial number PSF Description

PSF1 Statute Usability; completeness; comprehensibility; level of detail

PSF2 Task complexity Type of task; repetitiveness of tasks; number of parallel goals/tasks; task requirements

PSF3 Human machine interface Layout rationality; information communication and feedback; difficulty of operation

PSF4 Communicate Information communication and feedback

PSF5 Education/experience Knowledge; experience

PSF6 workload Physical load; mental load; mental load
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be viewed as an illustration of the cognitive-behavioral framework that the operator uses to comprehend 
the current circumstance. The HRA event tree can be used to determine the causal connections between 
operator-related nodes144. According to Fig. 5 HRA event tree, the final operation is only effective if all 
earlier cognitive tasks were completed correctly, in the proper order, and without any mistakes made by 
humans.

(3)	 Establish connections between various phases. In order to develop an integrated model, this sub-step intro-
duces various phase dependencies, which connect the established BNs of each phase. Linking the identical 
nodes of all phases in a chronological order is one method for illustrating the phase interdependence of 
the unit-level nodes (including the cognitive behavior of the hoist operator). Additional binary nodes, also 
known as indicator nodes, are added to demonstrate whether the hoist operator is functioning properly at 
the conclusion of each phase in order to prevent too many state combinations of CPT generated by directly 
connected target nodes. It is simple to describe the logical relationship between the human reliability of the 
hoist operator completing all phases by connecting the indicator node with a directed arc between each 
pair of neighboring phases.

The three phases of lift man, lift object, and lift explosive, which correlate to phases 1, 2, and 3, are called 
for the target nodes for each phase. The root node represents the underlying cognitive behavioral influences, 
such as "Statute" and "HMI"; each phase of cognitive behavior is set as an intermediate node. Then, by linking 
the corresponding nodes, the phase dependencies in the human reliability system of the hoist operator can be 
constructed. In order to create a comprehensive qualitative intelligent coal mine hoist system human reliability 
BN model, the causal relationship between each phase’s nodes is integrated with the phase dependencies of the 
nodes between various outcomes, as shown in Fig. 6.

Quantitative modeling.  Calculate HEPs within each phase.  In the Bayesian network model, ascertain the 
prior probabilities of the root nodes and the conditional probabilities of the intermediate and leaf nodes. The 
probabilities can be determined in a number of different ways, such as by identifying the connections between 
the nodes and constructing functional relations from data from experiments or simulators, by obtaining the 
probabilities under various conditions through mathematical analysis of a sizable amount of previously gath-
ered data on human-caused error, or by consulting relevant literature, manuals, or domain experts. According 
to this approach, all associated cognitive activities are classified as diagnostic tasks and are consequently given 
the NHEPs that correspond to each phase. Second, in order to evaluate the existing working conditions, PSFs 
must be graded for each phase. Workload flexibility, complexity, experience/training, procedures, ergonomics/
human–machine interface (HMI), stress/stressful stimuli, and available time are the eight PSFs that SPAR-H 
offers. Each PSF has three to five rating levels and corresponding multiplier values. It is feasible to quantify the 
phase dependency of the node by changing the CPT in the later phases based on the CPT in the earlier phases, 
which is selected by domain experts based on the definition and level of the PSF employed in SPAR-H. For each 
phase, the remaining PSFs can be suitably set to the same value. By multiplying the associated NHEPs by the 
PSFs, it is possible to determine the independent HEPs of the model-related nodes. The HEP adjustment algo-
rithm is used when many PSFs are evaluated negatively:

where HEPxi and NHEPxi refer to node x’s independent HEP and NHEP, respectively, in the first phase.

Quantifying the phase dependence of human cognitive error.  In this sub-step, a further adjustment of the 
independent HEP is necessary to quantify the effect of the phase dependence of human cognitive errors. First, 

(2)HEPxi =
NHEPxi × PSFCi

NHEPxi ×
(
PSFCi − 1

)
+ 1

Figure 5.   Event tree representation of the hoist operator HPE.
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for each sort of cognitive activity, it is important to assess how closely the two adjacent phases resemble each 
other as they might not involve exactly the same circumstances. The comparability of events can be evaluated 
in terms of five descriptive dependency levels by utilizing the DT depicted in Fig. 2. In the following phases, the 
operator-related nodes’ independent HEPs can be modified using the determined dependence levels. Here, the 
dependencies are quantified using the SPAR-H method for generating conditional HEPs45. In the event that the 
identical action from the prior phase fails, each dependency level corresponds to a particular variation of the 
HEP formula:

Here, the adjustment factor α and the adjusted HEP at the dependent level of XD are displayed. Table 4 
displays the numbers. The parameter values are drawn from the most often used quantitative correlation model 
provided by the basic HRA approach, commonly known as the human error rate prediction(THERP) technique. 
Describe how cognitive mistakes facilitate. Calculating the nodal likelihood of success under the presumption 
that the identical activity was successful in the previous phase will yield similar findings (the inhibitory effect 
of cognitive errors)45:

where HSPxi |XD stands for the node’s success likelihood at the XD dependent level.
The logical relationship between the associated nodes in the BN model can also be used to calculate the CPT 

of the hoist system’s human reliability-related nodes. When the individual PSF nodes have been identified, the 
basic reasoning behind the CPT assignment of the intermediate relevant nodes can be stated as follows: if the 
hoist operator’s prior cognitive activity in the current phase failed or was performed incorrectly, the state of 
that cognitive activity node is incorrect; alternatively, its state probability is conditionally decided based on the 
condition of the same kind of cognitive activity in the previous phase. For instance, if phase i − 1 and phase i 
depend on MD, Table 5 displays the CPT of the node plani in phase i. The same method can be used to determine 
the CPT of additional nodes.

(3)HEPxi |XD =
1+ α · HEPxi

α + 1
,XD = ZD, LD,MD,HD,CD

(4)HSPxi |XD =
1+ α · HSPxi

α + XD
,ZD = ZD, LD,MD,HD,CD

Figure 6.   Qualitative structure of the BN model for human reliability of coal mine Hoist operators.

Table 4.   Value of adjustment factor α.

Adjustment factor CD HD MD LD ZD

a 0 1 6 19 ∞
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System reliability assessment.  The chain rule of CPT and BN of all identified nodes can be used to determine the 
joint probability distribution of the target nodes in each phase of this phase. It goes without saying that the task 
state of the entire human–machine system at this phases is only successful if both the operator’s (RPi) cognitive 
activity and the machine system’s operation are successful. Following that, the conditional probabilities listed 
below can be used to describe the logical relationship between the task success criteria at each phase:

where IN and TN stand for, respectively, the indication node and the target node (the condition of the system 
during the current phase). Thus, the probability of success of the indicated node in the final stage reflects the 
probability that the operator will maintain proper operation without human error throughout the phased-mission 
of the intelligent coal mine hoist system.

Case evaluation
Get the prior probability of the root node.  For the determination of the a priori probability and con-
ditional probability of human reliability PSFs of intelligent coal mine hoist operators, they cannot be derived by 
mathematical analysis because of the absence of a large amount of human-caused failure data. The assessment of 
the a priori probability and conditional probability of PSFs has been done, and the nuclear power plant opera-
tors’ a priori probability and conditional probability of PSFs have been addressed with triangular fuzzy numbers 
and appraised using the expert interview method46. However, given that the coal mine hoist room environment 
is somewhat different from theirs, it is not possible to use their data directly, and there is a lack of basic data on 
intelligent coal mine hoist rooms to obtain the probabilities of certain situational environmental states. There-
fore, this paper uses expert scoring method to determine the prior probability and conditional probability of 
each node.

One intelligent coal mine humans expert, two more intelligent coal mine hoist operators and one safety 
inspector, a total of four experts, were selected for scoring and allowed to evaluate the prior probability of the 
root node, the conditional probability of the intermediate node and the leaf node. To reduce the influence of 
subjectivity in the evaluation, a triangular fuzzy number estimation range is given in the evaluation, which is 
divided into seven grades, and the probability of each node being in different states under different scenarios 
is selected. Then a fuzzy number semantic-numerical probability scale is designed accordingly and a semantic 
questionnaire is developed (as shown in Fig. 7) to facilitate experts, hoist operators and safety inspectors to 
evaluate and score the probabilities under different scenarios.

Since the data given by experts, Hoist operators and safety inspectors differ in their working experience 
and professional knowledge, the collected data cannot be simply averaged, and the obtained triangular fuzzy 
numbers need to be averaged, defuzzified and normalized to finally obtain a priori probabilities and conditional 
probabilities that match the actual situation.

The triangular fuzzy number affiliation function is shown in equation.
The triangular fuzzy number probabilities are first averaged. The probabilities given by different experts are 

arithmetically averaged, then the average of the probabilities of the nodes is:

Finally, the probability values are normalized so that the sum of the probability values of each node in differ-
ent states is 1. The final probability values are then obtained.

(5)P(INi = 1 | INi−1,TNi) =

{
1 INi−1 = 1,TNi = 1

0 else

(6)ϕ(x) =





0, x < m;

(x −m)/(b−m),m ≤ x < b;

(n− x)/(n− b), b ≤ x < n

0, x ≥ n

(7)P̃
′

ij =
P̃1ij + P̃2ij + . . . . . . P̃lij

l
= (m

′

ij , b
′

ij , n
′

ij)

(8)P
′

ij =
P̃
′

ij∑k
j=1P̃

′

ij

Table 5.   The CPT of the node plani in the phase i. 

PSF Bad/Good

Understandi Bad Good

Plani-1 Bad Good Bad Good

Bad 1 1 HEPxi |XD 1 − HSPxi |XD
Good 0 0 1 − HEPxi |XD HSPxi |XD
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By processing the obtained data, the prior probabilities of the six root nodes were obtained, as shown in 
Table 6.

CPT computation method.  The CPT assignment procedure of the node Observed2 can be described as 
follows. First, the NHEP is set to 0.01 because the observed error mode is "observation error". Second, based 
on the SPAR-H scoring table to produce scoring Table 7, according to the PSF level in phase 1, assuming a 
moderately complex task, normal protocols, poor human–machine interface, normal communicate, normal 
education and training, and normal workload. The composite PSF can be calculated as PSFs = 2 × 1 × 0.5 × 10 × 
1 × 1 = 10. The independent HEP for Observed1 can be calculated by multiplying the NHEP by the composite 
PSF:HEP = 0.01×10

0.01×(10−1)+1
= 0.0917 . Fourth, the independent HEP can be changed to the condition using the 

updated formula for HD depending on the assessed level of dependence (HD): HEP = (1 + 0.0917)/2 = 0.54585, 
HSP = [1 + (1 − 0.0917)]/2 = 0.95415. conditional probabilities for other cases at the PSF level can be obtained in 
a similar way. Finally, the values of HEP and HSP obtained for various cases are brought into Table 5, and the 
CPT of each node can be obtained, which is input into GeNIe software for analysis.

Model runs and data analysis.  Face validity.  Regarding the system’s human reliability logic, the evalua-
tion of face validity focuses on determining whether the calculation of each node, network structure, and model 
conditional probability is comparable to the experts’ empirical knowledge. It also examines whether it accurately 
depicts the real hoist operation situation. Four more experts were recruited to take part in the validation and 
assessment of the suggested method because it was difficult for the four experts participating in determining the 
model a priori probability to disagree with one another. Two of the four specialists were hoist operators with ex-
pertise, while the other two were scholars working on studies related to coal mine safety management. The four 
experts concurred that the nodes and their connections largely matched their empirical understanding and the 

Figure 7.   Qualitative structure of the BN model for human reliability of coal mine Hoist operators.

Table 6.   A priori probabilities of root nodes affecting the reliability of Hoist operators.

Node Status and probability

Statute Good
0.98

Bad
0.02

Task complexity Complex
0.97

Simple
0.03

HMI Good
0.96

Bad
0.04

Communicate Adequate
0.98

Inadequate
0.02

Education/experience Good
0.97

Bad
0.03

Workload High
0.96

Low
0.04
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results of relevant research. Additionally, the model fulfills face validity since the probability distributions of the 
nodes and the model’s parameters somewhat mimic the functionality of the real equipment.

Forward inference analysis.  By entering evidence at its parent nodes using the formula, the forward inference 
analysis based on the BN model can compute the probability distribution of the integrated processor system’s 
failure lifetime. Once all nodes’ conditional probabilities are known, it is possible to estimate their state dis-
tribution in any phase using the computation procedure described above. It is also possible to assess the hoist 
operator’s dependability during each phases. The reliability of the Hoist operators in each phase can also be 
evaluated. The obtained prior probabilities and conditional probabilities are fed into the already constructed 
Bayesian network model of human reliability through the GeNIe software. Given the prior probabilities, the 
reliability and humans failure probabilities of each phase of the cognitive behavior of the Hoist operator can be 
derived, as shown in Fig. 8.

It can be observed that the reliability of the Hoist operator gradually decreases as the task progresses. These 
happen as a result of the system’s design and the rising HEP levels between stages. The dynamic PSFs levels can 
be used to explain the variations in human reliability changes in the three phases. For instance, the operator’s 
cumulative effects of fatigue were felt in phase 3 as opposed to phase 2 due to the lengthy working hours, which 
caused a comparable rise in PSF levels and a more abrupt decline in system reliability. Also, the reliability of 
each cognitive phase decreases more from phase 2 to phase 3 than from phase 1 to phase 2. In order to compare 
the variability of reliability across cognitive phases, the reliability in each of the three task phases is shown in 
Table 8. Unsurprisingly, the reliability of the Hoist operator gradually decreased in the four cognitive phases 
Observed, Understand, Plan, and Lmplement, and since the prior probability of each PSFs node set in each 
phase is the same, this indicates that the dependence of cognitive errors has a negative impact on the reliability 
of the Hoist operator.

In the observation phase of the Hoist operator’s probability of error is the lowest, the highest reliability, which 
is related to the advancement of coal mine intelligence, the hoist room monitoring and control devices are also 
gradually upgraded, man–machine interaction is more friendly, sound and light signals, functional partition 
layout, color highlighting, etc. can make the Hoist operator quickly find the problem, thus reducing the Hoist 
operator’s errors in the observation phase. The execution phase has the highest probability of errors. With the 
increasing reliability and automation of the equipment, the cognitive tasks of the Hoist operator are increasing, 
and in the face of a large amount of information and audio and visual signals on the screen display, after per-
ceiving and understanding the information, he needs to make a quick judgment, make a plan and carry out a 
series of operations, which may cause excessive pressure on the Hoist operator and make execution errors easily.

Diagnostic analysis.  The BN model was used to identify the root causes of failures that were caused by people. 
The BN established in the previous section is then evaluated based on the results of the fault diagnosis by doing a 
sensitivity analysis to examine the impact of changes in probability in the parent node on the child nodes. Con-

Table 7.   PSFS and their multiplier for the diagnosis and action portion of the task.

PSF Selected level Multiplier

Task complexity

Highly complex 5.0

Moderately complex 2.0

Nominal 1.0

Obvious diagnosis 0.1

Statute

Not available 50.0

Incomplete 10.0

Available, but poor 5.0

Nominal 1.0

Diagnostic/symptom oriented 0.5

HMI

Missing/misleading 50.0

Poor 10.0

Nominal 1.0

Good 0.5

Communicate

Poor 2.0

Nominal 1.0

Good 0.8

Education/experience

Low 10.0

Nominal 1.0

Good 0.5

Workload

Extreme 5.0

High 2.0

Nominal 1.0
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trary to causal reasoning, diagnostic reasoning examines the source of the outcome when the outcome is already 
known. In the BN model for human reliability analysis, assuming that a human failure has already occurred, one 
goes along the already built BN model to reverse the diagnostic reasoning to get the posterior probability of the 
root node and compare it with the prior probability to get the percentage change in probability, which shows 
which factors have a greater impact on human reliability. Therefore, assuming that a failure occurs in the lifting 
explosive phase, the posterior probability of its root node is reasoned and the diagnostic reasoning is shown in 
Fig. 9.

The posterior probability of each PFSs reliability root node is calculated by running it in the software as shown 
in the figure. Comparing them with the previously obtained prior probabilities, the percentage change of the 
posterior probabilities with respect to the prior probabilities can be obtained, as shown in Table 9.

In order to show more visually the degree of influence of the root node of each PSFs on the human reliability, 
the posterior probability increase of the root node of these PSFs was plotted as a bar chart, as shown in Fig. 10.

Through the Table 8 and Fig. 10, it can be found that when the human reliability of the third-phase hoist 
system is 0, the PSF1 task complexity, PSF3HMI, PSF5 education/training, and PSF6 Workload posterior prob-
abilities change more compared to the a priori probabilities, where the sum of the posterior probability increases 
of Task complexity, HMI, and education/training in the three-phase task are more than 100%, and Task com-
plexity is more than 260%. This indicates that Task complexity has the greatest impact on the human reliability 
of the coal mine hoist system, followed by education/training, HMI, and workload, respectively, and these PSFs 
also have a significant impact on the human reliability of the hoist system. The posterior probability of PSFs in 
the diagnostic inference analysis was greater in phase 1 compared to the increase, which indicates that phase 
dependence still exists in the reverse diagnostic inference process.

The above facts prove that the interdependence of cognitive behaviors and human cognitive behaviors have a 
significant impact on the reliability of coal mine hoist operators. To address the problems of complex operational 
tasks, inadequate education and training, and high workload, the workflow of hoist operators should be opti-
mized to reduce the complexity of their operational tasks and to improve the usability, operability, information 

Figure 8.   Quantitative assessment model of human reliability of coal mine Hoist operators.

Table 8.   Human reliability of Cognitive Phases.

Cognitive phase Phase 1 Phase 2 Phase 3

Observed 0.97574 0.97561 0.97557

Understand 0.95793 0.95162 0.94848

Plan 0.94452 0.93080 0.88999

Implement 0.92742 0.90667 0.86071
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Figure 9.   Coal mine Hoist operator human reliability diagnosis model.

Table 9.   Percentage change of posterior probability with respect to prior probability.

Phase PSF1 PSF2 PSF3 PSF4 PSF5 PSF6

Phase 1

Prior probabilities 0.03 0.02 0.04 0.02 0.03 0.04

Posterior probabilities 0.0630 0.0221 0.0574 0.0213 0.0502 0.0566

Growth rate(%) 110 10.5 43.5 6.5 67.333 41.5

Phase 2

Prior probabilities 0.03 0.02 0.04 0.02 0.03 0.04

Posterior probabilities 0.0515 0.0213 0.0510 0.0208 0.0433 0.0509

Growth rate(%) 71.667 6.5 27.5 4 44.333 27.25

Phase 3

Prior probabilities 0.03 0.02 0.04 0.02 0.03 0.04

Posterior probabilities 0.0541 0.0204 0.0527 0.0201 0.0404 0.0479

Growth rate(%) 80.333 2 31.75 0.5 34.667 19.75

Figure 10.   Superposition of posterior probability and percentage change of prior probability.
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recognition, and complexity of interface management tasks of the human–machine interface to reduce the work-
load of hoist operators. The operator’s cognitive-behavioral training should also be improved, and the operation 
method should be standardized to aid in the operator’s observation, understand, plan and execute correctly, and 
ensure the reliability of task completion.

Discussion
The development of smart coal mines has led to the digitization of hoist systems and the diversification of opera-
tor operational tasks, and in the face of the human reliability assessment problem in smart coal mine systems, 
most of the existing human reliability assessment methods are used in conventional coal mines and rarely manage 
to consider the stage dependence of human cognitive errors and how they affect their own safety performance. 
Therefore, the appropriateness of traditional human factors reliability assessment methods needs to be further 
explored. This paper is a preliminary study of human-caused reliability assessment in smart coal mines, and 
discusses the proposed methods and limitations of human reliability assessment in smart coal mines considering 
the interdependence of human cognitive errors.

First, in our proposed approach, since the human factors reliability model for hoist operators is only used to 
quantify the HEP of operator-related nodes, it cannot change the conclusion that the interdependence of cogni-
tive errors affects system reliability. However, the error-generating factors (which can be described by PSFs) con-
sidered in different HRA methods are more or less different, and this should also be considered when modeling 
coal mine hoist operators, therefore, the PSFs in the smart coal mine hoist system were identified and analyzed, 
and finally screened, which is more compared with the PSFS selection process in other human-causal reliability 
studies fit the actual situation of smart coal mine production, but the screening method relies only on expert 
judgment is more subjective and objective data analysis is not sufficient, and future work will make up for this.

Secondly, in the past, the reliability research about coal mine system has focused more on the external envi-
ronment and equipment on the reliability of the system. However, in the context of intelligent coal mines, the 
reliability of equipment is increasing and the external environment is simpler and safer, so it is more important to 
focus on the reliability of people in the system. In this paper, we focus on the reliability assessment of human in 
the system, and the results obtained are slightly different from the past studies. Past studies have concluded that 
environmental factors20,47, human emotions, and some physiological abnormalities48 have a greater impact on 
the reliability of human factors in coal mine production. In this study, we found through BN reasoning analysis 
that the complexity of tasks and the design of human–machine interface in smart coal mines more affect the 
human factor reliability of human in human–computer interaction system. This may be related to the change in 
the external environment of the smart coal mine and the gradual complexity of the operator’s tasks.

BNs, as a directed acyclic probability map, can establish causal relationships and elucidate complex uncer-
tainty relationships, which is beneficial for human reliability analysis. Precise inference requires access to a large 
amount of accurate data, which is often difficult in human reliability analysis. In this paper, in quantifying the 
stage dependence of cognitive errors, the decision tree proposed by SPAR-H was used in order to be able to 
accurately determine the situational similarity of each stage to help calculate the adjusted HEP of each node, 
and eventually the stage dependence of human cognitive errors between each stage was mapped to BN, making 
the human reliability assessment of this study more accurate.

Finally, in the process of human factors reliability modeling of intelligent coal mine hoist system, data were 
collected for experts in related fields. The use of triangular fuzzy numbers and the application of the collected 
data after processing makes the determination of model parameters more reliable and accurate. However, some 
uncertainties with probability distribution are difficult to avoid. Future research will explore methods to further 
minimize the impact of uncertainty on the model results. In addition, since the cognitive processes of operators 
in smart coal mine hoist systems are more similar to most of the smart coal mine HMI operational tasks, the 
proposed human factors reliability assessment method can be adapted to other operators in smart coal mines.

Conclusion
Human reliability assessment of coal mine systems has been a hot topic of research. However, few studies have 
focused on human reliability assessment in intelligent coal mine systems, especially considering the stage depend-
ence of human cognitive errors in phased-mission system. To address this challenge, this paper first analyzes the 
stage dependence of cognitive errors of hoist operators and classifies them into four types based on a cognitive-
behavioral model, and constructs decision trees to quantify the degree of human cognitive dependence at each 
stage. Then, a new reliability analysis method for hoist operators in PMS considering the stage dependence of 
human cognitive errors is proposed. The reliability assessment model of hoist system human is constructed with 
the help of BN, which is developed to represent the causal relationship between the reliability of hoist system 
human and each node in each stage as well as the dependence between different stages, in conjunction with the 
characteristics of intelligent coal mine operations. The stage dependencies of human cognitive errors are also 
quantified separately in the developed BN. The hoist system human-causal reliability can be evaluated based on 
the CPT of all identified nodes. Finally, the effectiveness of the proposed modeling approach is illustrated with 
a three-stage task of a typical intelligent coal mine hoist.

Based on the forward and reverse directions of the BN theory, the probabilities of various influencing factors 
of human reliability in intelligent coal mine hoist systems can be accurately obtained. The results show that the 
interdependence of cognitive errors negatively affects the human factor reliability of the hoist system, and the 
complexity of the task of the operation, human–machine interface, education and training, and work load have 
a great impact on the human reliability in the smart coal mine hoist system. Therefore, certain targeted measures 
should be taken in advance to improve the human factor reliability of coal mine hoist systems. Although this 



16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21880  | https://doi.org/10.1038/s41598-022-26493-4

www.nature.com/scientificreports/

paper studies a specific coal mine hoist operation example, the proposed method is considered applicable to 
other human-centered intelligent coal mine systems for human reliability assessment.

Data availability
Data can be obtained from the corresponding author upon reasonable request.
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