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A soft sensing method of billet 
surface temperature based 
on ILGSSA‑LSSVM
Jun Liu 1,2, Luying Yang 2, Xinhao Nan 1, Yifan Liu 1, Qingming Hou 1, Kun Lan 1 & Feng Yang 3*

It is difficult to measure the surface temperature of continuous casting billet, which results in the 
lack of important feedback parameters for further scientific control of the billet quality. This paper 
proposes a sparrow search algorithm to optimize the Least Square Support Vector Machine (LSSVM) 
model for surface temperature prediction of the billet, which is further improved by Logistic Chaotic 
Mapping and Golden Sine Algorithm (Improve Logistic Golden Sine Sparrow Search Algorithm 
LSSVM, short name ILGSSA-LSSVM). Using the Improved Logistic Chaos Mapping and Golden Sine 
Algorithm to find the optimal initial sparrow population, the value of penalty factor γ and kernel 
parameter σ for LSSVM are calculated. Global optimization method is adopted to find the optimal 
parameter combination, so that the negative influence of randomly initializing parameters on the 
prediction accuracy would be reduced. Our proposed ILGSSA-LSSVM soft sensing model is compared 
respectively with traditional Least Square Support Vector Machine, BP neural network and Gray Wolf 
optimized Least Square Support Vector Machine, results show that proposed model outperformed 
the others. Experiments show that the maximum error of ILGSA-LSSVM soft sensing model is 
3.85733 °C, minimum error is 0.0174 °C, average error is 0.05805 °C, and generally outperformed 
other comparison models.

During the process of continuous casting production, the secondary cooling control, which is the essential part 
of the billet solidification process, largely determines the billet structure and defects. The use of a reasonable 
secondary cooling system to obtain a suitable solidification rate is the key to ensure an efficient continuous 
casting process and thus the good quality for billets.. The billet surface temperature, as an important feedback 
parameter reflecting the intensity of secondary cooling is a prerequisite for the dynamic control of secondary 
cooling water. Oftentimes, unreasonable pouring process and secondary cooling water distribution system could 
lead to quality defects inside the billet. In order to minimize the billet defects, the solidification process must 
be controlled. If the surface temperature of billet can be accurately obtained and feed back to the secondary 
cooling control system for process optimization, then the dynamic optimization of the secondary cooling water 
distribution and the closed-loop control of the billet temperature field can be accomplished, which is of great 
significance for the secondary cooling control, improving the quality of the billet, reducing the internal cracks 
of the billet and improving the automation level of the continuous casting process.

Due to the influence from the high temperature as well as the water mist environment of the secondary 
cooling zone, it is difficult to measure temperature of the moving billet1 using conventional contact temperature 
measurement methods. The presence of water film and randomly peeled iron oxide on the surface of the billet, 
as well as the varying surface emissivity of the billet would all make the single-point thermometer and thermal 
imaging camera (based on the infrared temperature measurement mechanism) unable to functionally and accu-
rately operate during a lasting time period2–4 The temperature field based on mechanism model is an important 
research topic of billet temperature analysis. N. K. Nath, et al.5–10 achieved the acquisition of billet temperature 
by establishing the heat transfer mechanism models of billet in metallurgical process. However, continuous cast-
ing process is a complex process both physically and chemically, and it has been a difficult task to obtain model 
parameters during actual production process. Theoretical models are sophisticated on paper and yet cannot be 
guaranteed in real-life application. Shu Fuhua, et al.11 used the Least Squares Support Vector Machine(LSSVM) 
to predict the billet temperature, but the prediction still has room for improvement. Sun Jie, et al.12 established 
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the billet surface temperature prediction model with the Ant Colony Algorithm, but also carries the drawback 
from this algorithm of easily falling into the local optimal.

Aiming the the applicability and accuracy of billet surface temperature analysis and prediction, our billet 
surface temperature prediction model based on ILGSSA-LSSVM is proposed in this paper. In our proposed 
method, first a Least Square Support Vector Machine (LSSVM) regression model is established to predict the 
billet surface temperature; secondly, the initial weights and thresholds of the model are optimized by using the 
sparrow search algorithm (SSA);finally, the initialization quality of SSA is improved by using an improved logistic 
chaos mapping, and the global search capability of SSA is improved by using the golden sine algorithm. This 
paper is organized as follows: Section "Methodology: ILGSSA-LSSVM" presents the detail methodology and 
structure of our proposed ILGSSA-LSSVM model; In Section "Experiments, results and analysis", we conduct 
experiments comparing our proposed method to others related methods, and illustrate the effectiveness and 
good performance of our method by quantitively analyzing the experimental results. Finally, Section "Conclu-
sion" concludes this paper.

Methodology: ILGSSA‑LSSVM
LSSVM regression prediction model of billet surface temperature.  The support vector machine 
(SVM) theory proposed by C. Cortes13 in 1995 is a machine learning model that seeks the best compromise 
between the learning accuracy of training samples and the ability to identify arbitrary samples based on the VC 
dimension theory and the principle of minimum structural risk. SVM has strong generalization, compatible to 
solve nonlinear problems and can avoid local minima in solving small sample training set.

In 1999, J.A.K. Suykens14 proposed the least squares support vector machine (LSSVM). Based on the original 
method, the two norms are used and the inequality constraint is changed into equality constraint, so that solving 
the convex quadratic programming problem is transformed into solving linear equations, and the efficiency is 
improved.

The mathematical description of LSSVM is as follows: Suppose there is a training data set composed of N 
samples,D = {(Ii ,Yi)|i = 1, 2, 3, ...,N },Ii is the input value, Yi is the output value. LSSVM regression model can 
be expressed as:

where, ω is the weight vector, ϕ(Ii) is a nonlinear mapping function that maps Ii to a higher dimensional space, 
and b is an offset quantity. In the prediction model of this paper N = 12 . I1 to I12 are molten steel temperature 
in Tundish, inlet temperature of crystallizer, outlet temperature of crystallizer, water flow rate of crystallizer, 
casting billet pulling speed, temperature of secondary cooling water, water pressure of valve port from section 
#0 to #2, valve opening from section #0 to #2 respectively.

In order to solve the problem of partial specific points, the error variable ei is introduced into each sample, 
and the L2-norm of the error variable is added into the original function. The LSSVM optimization problem 
can be translated into:

where, γ is the penalty factor to adjust the relationship between output Yi and error variable ei.
Lagrange multiplier is introduced to solve the optimization problem:

where, αi represents the Lagrange multiplier corresponding to Ii.
According to the KKT Conditions (Karush–Kuhn–Tucker Conditions), take the derivative of each variable 

to solve the values of αi and b:

For the new sample I , the output of the LSSVM nonlinear regression model is:

(1)Y(I) = ωTϕ(Ii)+ b
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where, Kij is the kernel function matrix. Radial basis function (RBF) has the advantages of strong adaptability 

and wide application, so RBF is chosen as the kernel function of this model. So,Kij = exp

{
−�Ii−Ij�2

2σ 2

}
, σ is the 

kernel parameter.
In LSSVM regression modeling, the prediction accuracy depends on the value of penalty factor γ and kernel 

parameter σ . The penalty factor γ is used to balance accuracy and error. The larger γ is, the smaller the error. 
However, the more complex the model decision function is, the more parameters it contains, which could easily 
cause overfitting problem. The kernel parameter σ represents the refinement of the partition between the value 
and the sample. The smaller σ is, the more complex the curves selected in the low-dimensional space are, the 
more finely divided the categories are, and the overfitting is also easy to occur. Therefore, this paper adopts the 
sparrow search algorithm improved by Logistic chaos mapping and golden sine to carry out global optimization 
and select appropriate values of γ and σ.

Hybrid improved ILGSSA algorithm.  Sparrow search algorithm is a population optimization algorithm 
based on swarm intelligence, specifically the foraging behavior and anti-predation behavior of sparrows15. In 
foraging behavior, the population of sparrows is divided into the finder population and follower population. 
After foraging, those randomly selected individuals in the population turn to be the guard population. The 
finder population is responsible for finding the feeding area and direction, and the follower population forages 
with the finder population. Each sparrow could be a finder, but the ratio of finders to followers remains constant 
throughout the population. When the alarm value is greater than the safe value, the sparrow population will give 
up the current position and fly to the safe area.

In this paper, SSA is adopted to optimize the penalty factor value and kernel parameters of LSSVM, which 
solves the problem of low prediction accuracy due to the limitation of parameter selection.

Assume that there is a sparrow population with a number of n , and position of the sparrows in m dimensional 
solution space is expressed as:

where, m is the optimal dimension of the billet surface temperature prediction model. In this model, m = 2.
The fitness value of the sparrows can be expressed as:

where, fi is the fitness value of each sparrow, which is the sum of the mean square error of the training set and 
the mean square error of the test set of the model (t the total error).

Since the initial solution is generated randomly in SSA, it will cause the initial solution to be aggregated, 
resulting in uneven distribution of solution space. Logistic chaotic map has the advantage of decent randomness, 
so we use Logistic chaotic map to generate initial solution 16–21. However, in practical applications, the point 
distribution of the logistic map is more concentrated in the upper half and less common in the lower half, as 
shown in Fig. 1a.In order to make the mapping points more uniformly distributed and enhance the ergodicity 
of the chaotic map, we propose an improved Logistic chaotic map, as expressed in Eq. (8):

where, xi,j ∈ (0, 1) , is the position of the i th individual in the j th dimension of the initial generation of sparrow 
population; xi,1 and xi,2 are random numbers uniformly distributed on (0,1); µ is the coefficient of chaos. If µ is 
closer to 4, the system is more uniformly distributed on (0, 1). In this paper, µ is set to be 3.99.

In order to compare the improvement effect clearly and intuitively, we set the number of iteration times to 
2000, the map points distribution after improvement is shown in Fig. 1b, and the histogram of the points distri-
butions before and after the improvement are shown in Fig. 2.

Observing Fig. 2, we can see that before the improvement, as the chaos value increases, the mapping points 
are more aggregated, and the number of mapping points reaches the maximum when the chaos value reaches 
the maximum. The improved logistic chaos mapping has higher ergodicity and its number of points is more 
uniform. Therefore, the improved logistic chaos mapping is used to initialize the sparrow population and thus 
improve the sparrow population diversity.

Golden sine algorithm simulating the searching process of unit circle by sine function22–25 can obtain high 
quality area. In this paper, the updating rule of finders’ position of sparrow population is defined as:

(5)Y(I) =
n∑

i=1

αiKij + b

(6)X =





x1,1 x1,2 · · · · · · x1,m
x2,1 x2,2 · · · · · · x2,m
...

...
...

...
...

xn,1 xn,2 · · · · · · xn,m





(7)FX =
[
f1, f2, ..., fn

]T

(8)xi,j+2 = µxi,j+1(1− xi,j+1)+ (4− µ)xi,j(1− xi,j)



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21876  | https://doi.org/10.1038/s41598-022-26478-3

www.nature.com/scientificreports/

where, xti,j is the position of the i th individual in the j th dimension of sparrow population in the t  th genera-
tion; xbest is the global optimal position; Q is a random number that obeys standard normal distribution; r1 and 
r2 are random numbers obeying uniform distribution on [0, 2π] and [0,π] respectively; c1 and c2 are partition 
coefficients; τ is golden ratio; R2 is the early warning value obeying the random number of uniform distribution 
on [0, 1] ; ST∈ [0.5, 1] is the safe value.

When R2 < ST , the early warning value is less than the safety value, the finder population is in a safe state and 
it searches for food in a wide area around the current location; when R2 ≥ ST , the early warning value exceeds 

(9)
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Figure 1.   Point distribution of Logistic chaotic map before and after improvement.
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Figure 2.   Histogram of point distribution of Logistic chaotic map before and after improvement.
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the safe value, the finder population leaves the current location and moves to another place randomly obeying 
standard normal distribution.

The follower population position updating rule in the population is defined as:

where, xworst is the global worst position; xtp is the current best position of the finder population; A is a 1×m 
matrix in which each element is randomly assigned a value of 1 or − 1, A+ = AT

(
AAT

)−1

When i > n
2 , it means that the current position of the finder population is not good, there is not enough 

food, and the follower population will fly to another region. When i ≤ n
2 , the follower population forages near 

the finder population.
The initial population randomly selects 10% to 20% of individuals as guards who are responsible for early 

warning and detection of the surrounding environment:

where, β is a random number that obeys standard normal distribution; K is a random number that obeys the 
uniform distribution on [− 1,1]; fi is the fitness of the current individual sparrow; fw and fg are the current global 
worst fitness and best fitness respectively. ε is an infinitesimal constant.

If fi > fg , the population feels danger and approaches to the safe position, and if fi = fg , the population stays 
in a safe position and moving around it.

When the sparrow population reaches the minimum fitness or the maximum number of iterations, the 
population stops updating.

ILGSSA‑LSSVM algorithm flow.  In this paper, the fitness (i.e. the total error) is used to evaluate the 
global optimization results. When the sparrow population reaches the minimum fitness or the maximum num-
ber of iterations, the population stops updating, and the optimal position information output is the optimal 
value of γ and σ of the LSSVM surface temperature prediction model. The flow of ILGSSA-LSSVM algorithm is 
shown in Fig. 3, which includes the following 6 steps:

(1)	 The improved Logistic chaotic mapping initializes sparrow population.
(2)	 Calculate and sort the individual fitness of the population, and mark the best fitness and the worst fitness.
(3)	 Update the position of the finder population, follower population and guard population.
(4)	 Determine whether the minimum fitness or the maximum number of iterations has been achieved. If not, 

go to Step 2). If yes, proceed forward.
(5)	 Assign the optimal individual position of output to the γ and σ values of the LSSVM.
(6)	 Predict the billet surface temperature using LSSVM regression model.

A comparison of the fitness curves between ILGSSA-LSSVM model and SSA-LSSVM model over the course 
of 20 iterations is shown in Fig. 4. The fitness of ILGSSA tends to be stable and converges to 0.01273 at 12th 
generation, while the SSA tends to be stable and converges to 0.01467 at 18th generation. Compared with SSA-
LSSVM model, ILGSSA-LSSVM model not only converges faster, but also has smaller fitness.
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Figure 3.   Flow chart of ILGSSA-LSSVM algorithm.
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Experiments, results and analysis
Experiment description.  Figure 5 shows the infrared colorimetric thermometer used at the exit site at 
secondary cooling outlet. The thermometer measurements were used as the final temperature of the billet sur-
face after emissivity correction and data filtering. In this paper, the calculated results of the soft sensing method 
are verified by the temperature measured by the thermometer. Proposed method is tested in the field of Fujian 
Sanming Steel Co., Ltd with steel grade Q235 billet in size 150 mm × 150 mm. So far, the model has been running 
well in the continuous casting site and meets the production requirements of the company. A total of 255,000 
pieces of data during 30 days from June 1 to June 30, 2022 were actually used in this experiment and divided into 
850 groups according to production time. Each group contains 300 pieces of production data, 200 of which are 
randomly selected as the training set and the remaining 100 as the test set.The Gray Wolf Optimizer (GWO)26 
and SSA are both bioheuristic algorithms that emerged in recent years.. The GWO algorithm is compared with 
the ILGSSA algorithm. BP network is one of the most widely used neural network modelsthat can learn and 
store a large number of mapping relations. Here BP neural network is compared with LSSVM. In order to verify 
the accuracy of this soft sensing method for billet surface temperature, five soft sensing methods including 
ILGSSA-BP model, SSA-LSSVM model, LSSVM model, GMO-LSSVM model and BP model, will be compared 
respectively with ILGSSA-LSSVM model.

The parameters of ILGSSA-LSSVM model, ILGSSA-BP model and SSA-LSSVM model are set to be consistent. 
The parameter values of other control models are: in the SSA-LSSVM model, γ = 7.4818 and σ 2 = 6.1418 ; in the 
GWO-LSSVM model, γ = 8.1298 and σ 2 = 3.3753;in the LSSVM model,γ = 8 and σ 2 = 0.0958.

Suppose the warning value of sparrow population is 0.6, the finders take 70% of the population, the fol-
lowers take 30%, and the guards take 40%. The optimization range of parameters γ and σ to be optimized is 
γ ∈ [0.01, 500],σ ∈ [0.01, 100].The optimization result is: γ = 7.9982,σ 2 = 6.6038.

Iterations

F
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n
es
s

Figure 4.   Comparison of fitness curves between ILGSSA and SSA.

Figure 5.   Temperature measurement verification of billet surface at secondary cooling outlet.
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Table1.   Comparison table of soft sensing results.

Model Maximum error/ °C Minimum error/ °C Mean error/ °C

ILGSSA-LSSVM 3.85733 0.01740 0.05805

ILGSSA-BP 6.39868 0.86509 3.67250

SSA-LSSVM 5.02431 0.00585 1.05740

GWO-LSSVM 5.318245 0.07711 0.64137

LSSVM 9.47212 0.28742 4.17160

BP 9.26264 0.36246 4.79316
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Results and analysis.  The comparison results of the above six methods are shown in Table 1. The ILGSSA-
LSSVM model has the smallest maximum error and mean error, and even the minimum error is larger than 
SSA-LSSVM model, but still smaller than other models. Figs 6 and 7 show the results and error comparisons for 
the test sets of all selected methods. Overall, the maximum error, minimum error and mean error of the LSSVM 
optimization model are smaller than those of the BP neural network optimization models. The ILGSSA-LSSVM 
model has the smallest relative error and the smallest error fluctuation, so this soft measurement method has 
comparatively stronger robustness than other comparison models.

The mean square deviation ( MSE ) and root mean square error ( RMSE ) are usually used to characterize the 
degree of dispersion between the predicted value and true value. The decision coefficient R2 is used to indicate 
the goodness of fit of the predicted value to the true value,.The closer it is to 1, the closer the predicted value is 
to the true value. The mean absolute error ( MAE ) is used to evaluate the fitting accuracy to avoid biases cancel-
ling each other out.

where, n is the number of members of the test set; yi is the i th predicting value; and ŷi is the real predicted value 
of yi.

Evaluation indexes of different models are shown in Table 2. Compared with the other five models, ILGSSA-
LSSVM model has the smallest MSE , RMSE,MAE and error values, and the value of R2 is closest to 1.

In summary, the ILGSA-LSSVM soft sensing method has the highest accuracy, the best fitting degree and the 
smallest error fluctuation. In real life production process, the soft temperature sensing method and the infrared 
colorimetric thermometer verify each other, which aids and improve the calibration of temperature measure-
mentand provides valuable reference for the actual production of steel mills.

Conclusion
In this paper, we proposed a hybrid improved billet surface temperature soft sensing method based on ILGSSA-
LSSVM, which achieved good prediction for the surface temperature of billet and provided accurate parameter 
feedback for secondary cooling water distribution process of continuous casting. Conclusions are as follows:

(1)	 With the improved Logistic chaotic mapping, the stability and uniformity of the initial solution distribution 
of sparrow population is improved. Golden sine algorithm is used to obtain better high-quality solution 
region of sparrow population scanning, which improvesthe global searching ability of ILGSSA-LSSVM.

(2)	 Global optimization method is used to find the optimal parameter combination of γ and σ , which minimizes 
the negative influence from randomly initializing parameters towards the prediction accuracy.

Compared with ILGSSA-BP model, SSA-LSSVM model, LSSVM model, GMO-LSSVM model and BP model, 
ILGSSA- LSSVM model has the superiority of higher convergence accuracy with fewer iterations, it is able to 
obtain the surface temperature of billet more efficiently and accurately. We are inclined to believe that our pro-
posed ILGSSA-LSSVM soft sensing method lays a reliable and inspiring foundation for the research of developing 
techniques for controlling and optimizing secondary cooling water distribution process in continuous casting 
of billet.
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Table 2.   Comparison table of evaluation indexes of various soft sensing methods.

Model MSE RMSE R
2 MAE

ILGSSA-LSSVM 1.381 1.1752 0.900 0.93262

ILGSSA-BP 15.5271 3.9404 0.41206 3.6725

SSA-LSSVM 2.0631 1.4364 0.68821 1.2684

GWO-LSSVM 1.4147 1.1894 0.6484 1.0173

LSSVM 19.884 4.4591 0.82718 4.1716

BP 29.0398 5.3889 0.56141 5.1217
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Data availability
The datasets used and analyzed during the current study are available from the corresponding author on reason-
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