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Analysis of prognostic model based 
on immunotherapy related genes 
in lung adenocarcinoma
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Zhanghao Huang 1, Youlang Zhou 3* & Jiahai Shi 1,2,4*

Lung cancer is one of the most common malignant tumors, and ranks high in the list of mortality 
due to cancers. Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Despite 
progress in the diagnosis and treatment of lung cancer, the prognosis of these patients remains 
dismal. Therefore, it is crucial to identify the predictors and treatment targets of lung cancer to 
provide appropriate treatments and improve patient prognosis. In this study, the gene modules 
related to immunotherapy were screened by weighted gene co-expression network analysis (WGCNA). 
Using unsupervised clustering, patients in The Cancer Genome Atlas (TCGA) were divided into three 
clusters based on the gene expression. Next, gene clustering was performed on the prognosis-related 
differential genes, and a six-gene prognosis model (comprising PLK1, HMMR, ANLN, SLC2A1, SFTPB, 
and CYP4B1) was constructed using least absolute shrinkage and selection operator (LASSO) analysis. 
Patients with LUAD were divided into two groups: high-risk and low-risk. Significant differences were 
found in the survival, immune cell infiltration, Tumor mutational burden (TMB), immune checkpoints, 
and immune microenvironment between the high- and low-risk groups. Finally, the accuracy of the 
prognostic model was verified in the Gene Expression Omnibus (GEO) dataset in patients with LUAD 
(GSE30219, GSE31210, GSE50081, GSE72094).

Lung cancer is one of the most common malignant tumors, and the main cause of cancer-related death 
worldwide1. Among these cancers, LUAD is the most common histological subtype, accounting for more than 
40% of the incidence rate of lung cancer2. Most patients with LUAD have advanced or extensive metastasis at 
the time of diagnosis, and the prognosis is very poor3. Despite advances in medical technology and improved 
clinical outcomes with surgery, radiotherapy, and chemotherapy, the prognosis of these patients remains unsat-
isfactory. The development of immune checkpoint inhibitors has made immunotherapy for LUAD effective, and 
improved the survival rate of patients with advanced LUAD. Nevertheless, only few patients can benefit from 
immunotherapy, and the toxic and adverse effects of immunotherapy continue to remain a challenge4,5. As a 
result, it is imperative to study the tumor microenvironment (TME) and possibilities of immunotherapy for the 
precise treatment of patients with LUAD.

Histopathologically, LUAD is characterized by the infiltration of a large number of different kinds of immune 
cells, including B cells, T lymphocytes, natural killer (NK) cells, macrophages, dendritic cells (DC), and Myeloid-
derived suppressor cells (MDSC)6. These immune cells play different functions and create a microenvironment 
for the development of lung cancer. Studies have shown that immune microenvironment plays an important role 
in the incidence and development of tumors7. Immune cells, mesenchymal cells, and the extracellular matrix 
constitute the main components of the TME and are decisive in determining tumor invasiveness8. In addition, 
some studies have pointed out that some key chemokine networks in TME can recruit different immune cells into 
TME, enhance different mechanisms, and thus promote or inhibit tumor progression. They have also clarified 
the relationship between TME and the occurrence and development of immune cells and tumors, thus laying a 
solid foundation for the immunotherapy of malignant tumors and provided broad-ranging therapeutic targets9.

Immunotherapy provides a new strategy for patients with advanced adenocarcinoma. immune checkpoint 
receptor blockers, such as anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T lymphocyte 
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associated protein 4 (CTLA-4), enhance anti-tumor immune response by targeting T lymphocyte regulatory 
pathways, and have achieved great progress10.

In this study, the gene co-expression network, WGCNA was constructed to screen gene modules related 
to immunotherapy. A total of 19 modules were identified, and the module with the strongest correlation was 
magenta. Prognosis-related genes were screened by difference analysis and univariate Cox regression. The patients 
were divided into three clusters (cluster A, cluster B, and cluster C) through consensus classification. The survival 
of cluster B was greater than that of clusters C and A. Subsequently, 125 differentially expressed genes (DEGs) 
were identified among the three clusters. Through univariate Cox regression, 78 DEGs related to the prognosis 
were screened. LASSO analysis identified six key genes that were then used to build a prognosis model. Survival 
analysis indicated that patients with high-risk scores had poorer prognosis. Follow-up studies also showed signifi-
cant differences in the tumor immune microenvironment, tumor mutation load, immunotherapy, and immune 
checkpoints, between the high-risk and low-risk score groups. Finally, the efficacy of this prognostic model 
was successfully verified in the data set of four external cohorts (GSE30219, GSE31210, GSE50081, GSE72094).

Materials and methods
The study is in accordance with relevant guidelines and regulations.

Data download.  The transcriptome data based on RNA SEQ of lung LUAD patients and the correspond-
ing clinical data of LUAD patients were downloaded from TCGA database, including the FPKM value of gene 
expression in 539 LUAD samples and 59 normal samples (fpkm; transcripts per kilobase of mapping read-
ings per million), followed by the conversion of FPKM values into TPM values for data processing. Download 
the data of four queues of patients with LUAD from GEO database, GSE30219 (n = 85), GSE31210 (n = 226), 
GSE50081 (n = 127) and GSE72094 (n = 398).

Construction of weighted gene coexpression network and identification of modules related to 
immunotherapy in LUAD patients.  Weighted gene coexpression network analysis is a system biology 
method, which can be used to find highly correlated gene clusters (modules)11. In this study, WGCNA was used 
to identify the modules related to immunotherapy. Select soft threshold β = 5 (scale-free r2 = 0.9) to construct a 
co expression network. Then we transform adjacency matrix into topological overlap matrix to quantitatively 
describe similarity. Next, we used the cutreedynamic function to execute the gene hierarchical clustering tree 
and finally identified 19 coexpression modules.

Extraction of differential genes and prognosis related genes.  "limma" package was used to iden-
tify apoptosis related genes differentially expressed between LUAD and normal tissues in TCGA database. The 
screening criteria are error detection rate (FDR) < 0.05, |logfc|> 0.5. Then, univariate Cox regression analysis was 
used to screen the prognoses related DEG.

Consensus clustering.  The prognostically related DEGs are clustered. The number and stability of the 
clusters are determined by the consensus clustering algorithm using the "ConsensusClusterPlus" package, which 
is repeated 1000 times to ensure the classification stability. The prompt function is used for principal component 
analysis. Heat maps and Kaplan Meyer (km) curves are drawn using R packages "Heatmap", "Survivminer" and 
"Survival".

Model construction and validation.  The consensus clustering algorithm divides the patients into three 
subtypes. Next, we use the R package "limma" to identify the differentially expressed genes among the sub-
types (|logfc|> 1). After using univariate Cox regression analysis to screen DEGs related to prognosis, Lasso Cox 
analysis was used to construct a prognostic model with 6 genes characteristics. Use the "survminer" package to 
determine the median cutoff. Kaplan Meier survival curve was used to determine the overall survival time (OS) 
of patients with different subtypes. Time dependent ROC curve was used to evaluate the validity and accuracy of 
the model. Finally, the accuracy of the prognostic model is verified in the GEO datasets.

Calculate the immune score of TME.  The immune score, stromal score, estimated score and tumor 
purity were obtained according to the transcriptomic spectrums expression, and the tumor purity was calculated 
by "estimate" R package.

Enrichment analysis.  For differential genes in high-risk and low-risk groups,Gene ontology(GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway, Gene Set Enrichment Analysis (GSEA) and Gene Set 
Variation Analysis (GSVA) were used to evaluate biological effects. In order to further study the potential regula-
tory mechanism of tumor immune cell infiltration, a single sample gene set enrichment analysis (ssGSEA) was 
performed to evaluate the infiltration abundance between high-risk and low-risk groups.

Statistical analysis.  All statistical analyses were performed by the R statistical language (version 4.0.3). 
Wilcoxon test and Kruskal Wallis test were used to compare two groups and more than two groups respectively. 
Kaplan Meier plotter was used to plot the prognosis survival curve, and log rank test was used to evaluate the 
significance of statistical difference. Spearman test is used for correlation analysis and calculation of correlation 
coefficient. All statistical tests were bidirectional, and P values less than 0.05 were considered statistically signifi-
cant (* P < 0.05, * P < 0.01, * P < 0.001).
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Results
WGCNA and modules significance calculation.  In order to ensure high scale independence, we use 
soft threshold β Set to 5 (scale-free R2 = 0.9, Fig. 1a, b) to obtain β The adjacency matrix and topological overlap 
matrix (Fig. 1c, d) were constructed, the gene expression matrix of 5000 pretreatment genes was analyzed by 
WGCNA (Table S1), and the correlation coefficient between each module and the samples related to the char-
acteristics of CNPN, CNPP, CPPN and CPPP was calculated. A total of 19 modules were obtained (Fig. 1e, f). 
From the module feature correlation heat map, we found that magenta module has the highest correlation with 
CNPN, CNPP, CPPN and CPPP (CNPN: cor = 0.098; P = 0.03. CNPP: cor = 0.58; P = 1e−46. CPPN: cor = 0.28; 
P = 1e−10. CPPP: cor = 0.67; P = 4e−68).

Extraction of differential genes and prognosis related genes.  By comparing the differential expres-
sion of magenta module genes in normal tissues and LUAD tissues, 48 differential expression genes were iden-
tified. The heat map shows the expression of each differential gene in each sample (Fig. 2a). The volcano map 
shows the up regulation and down regulation of differential genes (Fig. 2b). Univariate Cox regression analysis 
was used to screen 21 prognostically related DEGs (Table S2), as shown in the forest diagram (Fig. 2c). Gene 
mutation (Fig. S1) shows that among 561 samples, 75 had mutations in central regulatory factors, with a fre-
quency of 13.37%. It was found that IL16 had the highest mutation frequency, followed by FCRLA, FLI1, RASSF2, 
GIMAP7, EVI2B, PAPLIN, S19R4, RASGRP2. The rest of the regulatory factors did not show any mutations in 
the sample. The investigation of Copy number variation(CNV) frequency(Fig. 2d) showed that 19 central regu-
latory factors had copy number variation, FCRLA, PTPN7, TAP1, LTA, GIMAP7, EVI2B, FAM53B, IL16, CD28 
focused on the amplification of copy number, and FCRLA had the highest amplification frequency. RASSF2, 
CD69, PAPPIN, S1PR4, FLI1, GNG7, STAMBPL1, CLECL1, ZC3H12D focused on the deletion of copy number. 
The deletion frequencies of CLECL1 and CD69 were the highest. In addition, the altered position of the central 
regulator CNV on the chromosome is also shown (Fig. 2e).

Consensus clustering based on prognostic related genes.  Unsupervised clustering of LUAD patients 
with different expression patterns of 21 immune prognosis related genes was carried out using the R package of 
consensusclusterplus. In order to ensure the stability of classification, 1000 iterations were carried out, and the 
resampling rate was 80%. The cumulative distribution function (CDF) curve is used to determine the number of 
clusters and determine that k = 3 has the best cluster stability from k = 2 to 9 according to the s imilarity (Fig. 3a–
c). Finally, three different clusters (A, B, C) were identified, and the OS curve indicated the significant survival 
advantage of cluster B in the three main clusters (P = 0.003, Fig. 3d). Then Principal component analysis (PCA) 
was used to determine the sample distribution of the three clusters (Fig. 3e). The Heatmap showed high expres-
sion of prognosis related genes in cluster B and low expression in cluster A (Fig. 3f). ssGSEA analysis showed 
that there were significant differences in the degree of immune cell infiltration among the three clusters (Fig. 3g). 
Except for the unintentional expression of cd56dim.natural.killer.cellna, the expression of the other 22 immune 
cells was the lowest in cluster A and the highest in cluster B, such as activated B. cellna (P < 0.001), Activated. 
CD4. T. cellna (P < 0.001), Activated. CD8. T. cellna (P < 0.001), Eosinophilna (P < 0.001), MDSCna (P < 0.001), 
Macrophagena (P < 0.001), Mast. cellna (P < 0.001), Monocytena (P < 0.001), Natural. killer. Cellna (P < 0.001), 
neutrophilna (P < 0.001), among others. The immune cell infiltration level of cluster A was the lowest, indicating 
that the immune response of cluster A was the lowest, which is consistent with the poor survival results. The 
immune cell infiltration level of cluster B was the highest, indicating that the immune response of cluster B was 
the highest, which is consistent with the better survival results. To explore the differences in biological behavior 
among different clusters, we performed KEGG gene set variation analysis (GSVA) (Fig. S2a–2d). The results 
showed that the OXIDATIVE_PHOSPHORYLATION and PARKINSONS_DISEASE were mainly enriched in 
cluster A compared with cluster B. B_KILLER_CELL_MEDIATED_CYTOTOXICITY, T_CELL_RECEPTOR_
SIGNALING_PATHWAY, B_CELL_RECEPTOR_SIGNALING_PATHWAY were mainly enriched in cluster 
B. Cluster A compared to cluster B, PRIMARY_IMMUNODEFICIENCY, INTESTINAL_IMMUNE_NET-
WORK_FOR_IGA_PRODUCTION, HEMATOPOIETIC_CELL_LINEAGE, ALLOGRAFT_REJECTION, 
AUTOIMMUNE_THYROID_DISEASE were mainly highly expressed in cluster B and low expressed in clus-
ter A. cluster B compared to cluster C, PRIMARY_IMMUNODEFICIENCY, INTESTINAL_IMMUNE_NET-
WORK_FOR_IGA_PRODUCTION, AUTOIMMUNE_THYROID_DISEASE, ALLOGRAFT_REJECTION, 
JAK_STAT_SIGNALING_PATHWAY, CYTOKINE_CYTOKINE_RECEPTOR_INTERAVTION were mainly 
highly expressed in cluster B, and cluster C was mainly related to ARGININE_AND_PROLINE_METABO-
LISM, GLYCOSYLPHOSPHATIDYLINOSITOL_GPI_ANCHOR_BIOSYNTHESIS ALZHEIMERS_DISEASE, 
HUNTINGTONS_DISEASE, PARKINSONS_DISEASE.

Consensus clustering based on DEG among different clusters.  Based on 125 DEGs (Fig.  4a, 
Table S3) of the intersection of three clusters, 78 prognosis related genes (Table S4) were screened out through 
univariate analysis for unsupervised cluster analysis. In order to ensure the stability of classification, 1000 itera-
tions are carried out, and the resampling rate is 80%. The cumulative distribution function (CDF) curve is used 
to determine the number of clusters and determine that k = 2 has the best cluster stability from k = 2 to 9 accord-
ing to the s imilarity (Fig. 4b, c). Finally, two different clusters (A, B) were identified. Kaplan Meier OS curves 
for both clusters showed that patients with gene cluster B had better prognosis (P < 0.001) (Fig. 4d). Then the 
PCA algorithm is used to confirm that the samples of the two risk groups are distributed separately (Fig. 4e). 
The Heatmap shows the clinicopathological features of prognostically relevant DEGs (Fig. 4f). ssGSEA analysis 
showed that there were significant differences in the degree of immune cell infiltration between the two clusters 
(Fig. 4g). Activated. CD4. T. cellna (P < 0.001) , CD56d im. natural. killer. cellna (P < 0.001), Natural. killer. T. 
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Figure 1.   Sample dendrogram and soft-thresholding values estimation. (a) Scale free index analysis of 
coexpression module genes under different soft thresholds. (b) Average connectivity analysis of coexpression 
module genes under different soft thresholds. (c, d) β = Scale free topology at 5. (e) Gene clustering tree based on 
topological overlap. (f) heat map of correlation between 19 module genes and different characteristics. CNPN, 
CTLA4_Negative_PD1_Negative; CNPP, CTLA4_Negative_PD1_Positive; CPPN, CTLA4_Positive_PD1_
Negative; CPPP, CTLA4_Positive_PD1_Postive.
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Figure 2.   Extraction and CNV of differential genes. (a) Heat map of differential gene expression in normal 
and tumor tissues, heat map of prognosis related genes between normal (N, bright blue) and tumor tissues (T, 
red) (blue: low expression level; red: high expression level); (b) volcano map shows the regulation of differential 
genes in lung adenocarcinoma(LUAD) and normal tissues in The Cancer Genome Atlas (TCGA) cohort (green: 
down regulation; red: up regulation); (c) the forest map of genes related to prognosis was screened by univariate 
Cox analysis; (d) copy number variation (CNV) frequencies of prognosis related genes in the TCGA cohort. The 
height of the column represents the change frequency. The green dot represents the missing frequency. The red 
dot represents the amplification frequency. (e) Location of CNV changes in genes on 23 chromosomes.
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Figure 3.   OS curve, expression and immune cell infiltration among clusters. (a–c) Consensus clustering 
heat map of lung adenocarcinoma (LUAD) patients when k = 3. (b) Delta area curve of consensus clustering 
represents the relative change of area under the cumulative distribution function (CDF) curve. (c) For consensus 
clustering CDF with k = 2–9. (d) Kaplan Meier OS curve among the three clusters. (e) Principal component 
analysis (PCA) showed the sample distribution of the three clusters. (f) The expression of differentially expressed 
genes in the three clusters and their clinicopathological characteristics. Red and blue represent high and low 
expressions of genes respectively. (g) The degree of infiltration of immune cells among the three clusters. The P 
value is displayed as: ns: not significant *P < 0.05; **P < 0.01; ***P < 0.001.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22077  | https://doi.org/10.1038/s41598-022-26427-0

www.nature.com/scientificreports/

cellna (P < 0.001), Type. 2. T. helper. cellna (P < 0.001), Gamma. delta. T. Cellna (P < 0.05) are mainly enriched in 
cluster A. Activated B. cellna (P < 0.001), Activated. dendritic. cellna (P < 0.001), Eosinophilna (P < 0.001), Mast. 
cellna (P < 0.001), Monocytena (P < 0.001), Type. 17. T. helper. cellna (P < 0.001),  immature. B. cellna (P < 0.01),  
immature. dendritic. cellna (P < 0.01), T. follicular. helper. Cellna (P < 0.01) and macrophagena (P < 0.05) are 
mainly enriched in cluster B.

Construction of prognosis model.  In order to avoid over fitting, Lasso Cox regression analysis was per-
formed on 78 differential genes related to prognosis, and Lasso coefficient spectra of 6 potential prognostic genes 

Figure 4.   OS curve, clinical correlation and immune cell infiltration among geneclusters. (a) Venn diagram 
between the three clusters. (b, c) The genes were divided into two clusters according to the consensus clustering 
matrix (k = 2). (d) Kaplan Meier OS curve for two clusters. (e) Principal component analysis (PCA) shows the 
sample distribution of the two clusters. (f) The Heatmap showed the clinicopathological features of genes with 
different prognosis. (g) The degree of infiltration of immune cells between the two clusters. The pvalue was 
displayed as: ns: not significant * P < 0.05; ** P < 0.01; *** P < 0.001.
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related to immunity were established (Fig. 5a). Then the optimal penalty parameters of lasso model were deter-
mined through ten-fold cross validation (λ) (Fig. 5b), find the key genes with the strongest correlation through 
dimension reduction, and calculate the relative coefficient of genes (Table S5). Finally, six genes, Plk1,HMMR, 
ANLN,SLC2A1, SFTPB,CYP4B1 were established to construct the prognosis model and score. We named it 
"IMscore". Risk scoring formula = (Plk1mRNA level *0.05682) + (HMMRmRNA level *0.00878) + (ANLNm-
RNA level *0.10474) + SLC2A1mRNA level *0.01988) + (SFTPBmRNA level *−  0.00501) + CYP4B1mRNA 
level *−0.00608). Among them, 2 genes are protective factors (SFTPB,CYP4B1), and 4 genes are risk factors 
(Plk1,HMMR, ANLN,SLC2A1). Calculate the risk score for each patient according to the formula. According 
to the optimal threshold, patients were divided into high-risk and low-risk groups (Table  S6). PCA showed 
(Fig. 5c) that patients with different risks could be divided into two groups. There were differences in IMscore 
among different subtypes. IMcluster A has the highest risk value and IMcluster B has the lowest risk value. The 
prognosis of high scores is poor, which is consistent with the previous studies (Fig. 5d). In genecluster, there were 
also differences in IMscore. The risk value of genecluster A was greater than that of cluster B, and the prognosis 
of cluster A is worse, which is consistent with the previous studies (Fig. 5e). Combining the IMscore with the 
clinical survival status, it was found that the IMscore of the dead patients was much larger than that of the living 
patients, and the patient mortality increased with the increase of the risk value (Fig. 5f). Survival analysis showed 
that there were significant differences between the high-risk group and low-risk group, and the survival of the 
high-risk group was worse (P < 0.001, Fig. 5g). Finally, the IMscore, genecluster, high-risk, low-risk and survival 
status were connected through the Sankey diagram. Most of the clusterB with the best prognosis in IMscore 
belong to geneclusterB with better prognosis in genotyping, and most of them belong to the low-risk group with 
better prognosis (Fig. 5h).

Evaluation of correlation between risk score and clinical characteristics.  The risk curve (Fig. 6a) 
shows that LUAD patients are divided into high-risk and low-risk groups according to the median value of the 
risk score. The IMscore of the high-risk group is higher than that of the low-risk group. With the increase of the 
risk value, the number of dead patients increases. The progression free survival showed that the high-risk group 
was lower than the low-risk group (P < 0.001, Fig. 6b). The predictive effect of OS prognostic characteristics in 
LUAD patients was evaluated by time-dependent receiver operating characteristic (ROC) curve. The areas under 
the curve were (AUC) 0.675 in 1 year, 0.668 in 3 years and 0.607 in 5 years (Fig. 6c), indicating that the model 
has high sensitivity and specificity in predicting the prognosis of LUAD patients. Subsequently, we performed 
univariate and multivariable Cox analysis based on the risk scores obtained from immune related prognostic 
characteristics and the main clinical characteristics of LUAD patients in TCGA database. Univariate Cox analy-
sis confirmed that higher stage and risk score were risk factors for HRS > 1 in LUAD patients, P < 0.001 (Fig. 6d). 
After removing other factors, a further multivariable Cox analysis (Fig. 6e) showed that higher stage and risk 
score were proved to be independent prognostic factors for OS in LUAD patients (stage HR = 1.571, 95% CI: 
1.352–1.824, P < 0.001; risk score HR = 5.029, 95% CI: 2.722–9.290, P < 0.001). Stage stage shows that the risk 
score increases with the increase of stage, and the risk value of stage IV is the highest (Fig. 6f); T stage indicates 
that the risk score increases with the increase of stage, and the risk value in T4 stage is the highest (Fig. 6g). 
Clinical staging showed that the prognostic risk characteristics were closely related to the degree of malignancy.

Nomograph modeling using clinical characteristics and risk scores.  In order to make better use of 
the prognosis model we constructed, nomograms of 1, 3 and 5-year overall survival of LUAD patients in TCGA 
database were established based on multivariate Cox analysis (Fig. 7a, Table S7). Calibration charts for the 1-, 3-, 
and 5-year OS are used to visualize the performance of nomograms (Fig. 7b). The sensitivity of the nomogram 
model was evaluated by ROC curve. The AUC result of the risk scoring model was 0.714 (Fig. 7c), indicating that 
the nomogram was the best in predicting the survival of LUAD patients compared with other individual prog-
nostic factors. Then, by univariate Cox analysis, the risk score was a risk factor for HRS > 1 in LUAD patients, 
P < 0.001 (Fig. 7d). Multivariate Cox analysis showed that the risk score proved to be an independent prognostic 
factor for OS in LUAD patients (risk score HR = 1.913, 95% CI:1.370–2.672, P < 0.001, Fig. 7e).

Functional analysis between different risk groups.  In order to study the potential difference of bio-
logical function between different risk groups, we conducted GO, KEGG pathway, GSEA and GSVA. GO analysis 
showed that DEGs between high-risk and low-risk groups were mainly enriched in nuclear division, organelle 
fission, chromosome segregation. (Fig. 8a, Table S8). KEGG analysis showed that DEGs were mainly enriched in 
CELL_CYCLE, DNA_REPLICATION and P53_SIGNAL_PATHWAY (Fig. 8b, Table S9). GSEA analysis showed 
that the high-risk score group was mainly enriched in CELL_CYCLE, DNA_REPLICATION and P53_SIGNAL_
PATHWAY, OOCYTE_MEIOSIS, SPLICEOSOME, etc., while the low-risk score group was mainly enriched in 
ALPHA_LINOLENIC_ACID_METABOLISM, ARACHIDONIC_ACID_METABOLISM, ASTHMA, INTES-
TINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTIC,COMPLEMENT_AND_COAGULATION _CAS-
CADE, etc. (Fig. 8c, Table S10). GSVA analysis prompted P53_SIGNALING_PATHWAY, CELL_CYCLE, DNA_
REPLICATION, RNA_DEGRADATION, HOMOLOGOUS_RECOMBINATION were mainly enriched in 
high-risk groups, ASTHMA, PPAR_SIGNALING_PATHWAY, ALPHA_LINOLENIC_ACID_METABOLISM, 
LINOLEIC_ACID_METABOLISM, COMPLEMENT_AND_COAGULATION_CASCADES and others were 
mainly enriched in low-risk groups (Fig. 8d, Table S11). Biological function between high and low risk groups 
in TCGA cohort.

Correlation analysis between risk score and tumor mutational burden.  There is a significant dif-
ference in tumor mutation load between high and low risk scores. The tumor mutation load in the high risk score 
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Figure 5.   Lasso regression analysis was used to construct prognostic gene features. (a) Least absolute shrinkage 
and selection operator (Lasso) coefficient spectrum of 6 potential prognostic genes related to immunity. (b) The 
best parameters in lasso regression were selected by 10 × cross validation. Lasso, min imum absolute contraction 
and selection operator Cox regression model. (c) Principal component analysis (PCA) showed the sample 
distribution of different risk score groups. (d) IMscore among different cluster. (e) IMscore among different 
genecluster. (f) The relationship between IMscore and survival status. (g) Kaplan Meier OS curve between high 
risk group and low risk group (P < 0.001). (h) Sankey diagram showing the relationship between IMcluster, 
genecluster, IMscore, and survival status.
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Figure 6.   Clinical correlation analysis of prognosis model. (a) Risk score distribution and survival status 
of each patient. (b) Progression free survival. (c) Receiver operating characteristic (ROC) curve shows the 
prediction efficiency of risk score. (d) Univariate Cox regression analysis in TCGA cohort. (e) Multivariate Cox 
regression analysis in The Cancer Genome Atlas (TCGA) cohort. (f), (g) Relationship between clinical stages 
and risk scores.
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Figure 7.   Construction of nomograms. (a) Nomograms used to predict the 1, 3, and 5-year overall survival of 
lung adenocarcinoma (LUAD) patients in the The Cancer Genome Atlas (TCGA) cohort. (b) Calibration chart 
for predicting recurrence in 1, 3 and 5 years. (c) Receiver operating characteristic (ROC) curve evaluates the 
sensitivity of nomograph model. (d) Univariate Cox regression analysis in TCGA cohort. (e) Multivariate Cox 
regression analysis in TCGA cohort.
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Figure 8.   Enrichment analysis. (a) The bubble chart shows the Gene ontology (GO) analysis of differential 
genes between high-risk and low-risk groups based on The Cancer Genome Atlas (TCGA) database. (b) 
The histogram shows Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differential genes 
between high-risk and low-risk groups based on TCGA database. (c) Gene Set Enrichment Analysis (GSEA) 
of differential genes between high-risk and low-risk populations based on TCGA database. The five main 
up-regulated pathways in the high-risk group (left) and the five main up-regulated pathways in the low-risk 
group (right). (d) Gene Set Variation Analysis (GSVA) of pathway enrichment between high and low risk 
groups.
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group is significantly higher than that in the low risk score group (Fig. 9a), and there is a significant positive 
correlation between tumor mutation load and risk score (Fig. 9b). Survival analysis showed that it was meaning-
less to study the relationship between high and low tumor mutation load and patient survival alone (Fig. 9c). 
However, after giving high and low risk scores, OS showed patients with high scores had poor prognosis in both 
high tumor mutation load group and low tumor mutation load group. Among them, patients with high tumor 
mutation and low IMscore had the best survival, while patients with low tumor mutation and high IMscore had 
the worst survival (Fig. 9d). There were differences in gene mutation frequency between high and low IMscore 
groups. The gene mutation frequency in high IMscore group was higher than that in low IMscore group. The 
top 20 most significantly mutated genes in the high and low risk score groups were TP53, TTN, MUC16, RYR2, 
CSMD3, LRP1B, ZFHX4, USH2A, KRAS, XIRP2, FLG, SPTA1, NAV3, ZNF536, COL11A1, FAT3, PCDH15, 
CSMD1, ANK2, KEAP1. In addition, the top five genes with the highest mutation frequency in the high and 
low risk groups are TP53, TTN, MUC16, RYR2, CSMD3. TP53 mutations are mainly Missense_Mutations and 
Nonsense_Mutations, while TTN, MUC16, RYR2, CSMD3 mutations were mainly Missense_Mutations and 
Multi_Hit (Fig. 9e, f).

Correlation analysis of risk score with tumor immune microenvironment and immune cell infil-
tration.  In order to study the relationship between risk score and immune microenvironment, the estimate 
algorithm was used to quantify the matrix score, immune score, estimate score and tumor purity. The stromal 
score, immune score and estimate score of the low-risk group were higher than those of the high-risk group 
(P < 0.05,Fig. 10a). Therefore, the tumor purity of high-risk group was higher than that of low-risk group, it was 
associated with poor prognosis (Fig. S3a–3d) . There was significant difference between risk score and immune 
subtype (P < 0.05), and the risk value was the highest in C1 (Fig. 10b). Using the CIBERPORT algorithm, we 
calculated the proportion of 22 immune cells in each LUAD sample. Then, the difference of the proportion of 
immune cells between the high and low risk groups was compared. The results showed that the proportion of 
plasma cells, T cells CD4 memory reacting, NK cells activated, monocytes, dendritic cells reacting and mast cells 
resting was significantly higher in the low-risk group, and the proportion of M0 macrophases (P < 0.001), M1 
macrophases (P < 0.001), T cells CD4 memory activated (P < 0.001) and NK cells resting (P < 0.001) in the high-
risk group were significantly higher (Fig. 10c). They were associated with poor prognosis (Fig. S4a–4b). Immune 
correlation analysis showed that IMscore with activated CD4. T. cellna, Type. 2. T. helper. Cellna were positively 
correlated, IMscore with activated B. cellna, Eosinophilna, Mast. Cellna, Type. 17. T. helper. Cellna were nega-
tively correlated (Fig. 10d). In further study, it was found that there was a significant difference in risk score and 
immune related function analysis between high-risk and low-risk groups (Fig. 10e), in which HLA (P < 0.001) 
and Type_II_IFN_ Reponse (P < 0.001) were activated in low-risk group, MHC_class_I (P < 0.001), APC_co_
inhibition (P < 0.01), Inflammation-promoting (P < 0.05), Parainflammation (P < 0.05) were mainly activated in 
high-risk group. MHC_class_I and Parainflammation were associated with poor prognosis (Fig. S4c–4d). The 
content of stem cells was positively correlated with the risk score of patients (r = 0.49, p < 2.2e−16, Fig. 10f).

Correlation analysis between risk score, immune checkpoint and drug sensitivity.  Immune 
checkpoint inhibitor is a new strategy for the treatment of lung cancer in recent years. The correlation analysis of 
immune checkpoints showed that CD274, PDCD1LG2, PDCD1, IDO1 were positively correlated with risk scores 
(Fig. 11a). The difference analysis of immune checkpoints showed that CD40LG (P < 0.001), TNFSF14 (P < 0.001), 
TNFSF15 (P < 0.001), CD48 (P < 0.001), CD27 (P < 0.001) were highly expressed in the low-risk group, TNFRSF9 
(P < 0.001), CD276 (P < 0.001), PDCD1LG2 (P < 0.001), CD274 (P < 0.001) and TNFSF4 (P < 0.001) were highly 
expressed in the high-risk group (Fig. 11b). CD274 was highly expressed in the high-risk group, thus, the high-
risk group was more suitable for anti-PD-L1 treatment. Semi-inhibitory concentration (IC50) is an important 
index to evaluate the efficacy or response of drugs. We studied the risk score and the sensitivity of antican-
cer drugs, and found that the risk score is related to many anticancer drugs, such as gemcitabine, paclitaxel, 
etoposide, vinorelbine, imatinib, sorafenib, among others, which are more suitable for high-risk patients. These 
results suggest that the risk score can be used as a potential predictor of chemotherapy sensitivity, providing new 
insights for the treatment of tumors and the prevention of drug resistance (Fig. 11c–h).

Validate model accuracy in GEO datasets.  To determine the predictive power of the six gene prog-
nostic model in other datasets, four LUAD patient datasets (GSE30219, GSE31210, GSE50081, GSE72094) as 
external validation. The same formula was used to calculate the risk score of patients in the GEO cohort. Accord-
ing to the optimal threshold, LUAD patients were divided into high-risk group and low-risk group. The survival 
curve showed that patients in the high-risk group had a shorter survival time (Fig. 12a–d). ROC curve was used 
to evaluate the sensitivity of prognostic model (Fig. 12e–h). Therefore, through these four datasets, the correct-
ness and feasibility of the prognosis model are verified. Our model was helpful to predict the prognosis of the 
LUAD patients.

Discussion
The risk model we constructed shows that there is a significant difference in prognosis between high-risk and 
low-risk groups. In order to further study the potential causes of poor survival outcomes in high-risk patients, 
we compared the immune cell infiltration, immune checkpoint gene expression and TMB in high-risk and low-
risk patients, and found that the degree of tumor immune cell infiltration, the difference in immune checkpoint 
gene expression, and tumor mutation load may be the potential mechanisms that affect the prognosis of patients.

Tumor associated macrophages (TAMs) are important components of the tumor microenvironment (TME)12 
and are potential targets for tumor immunotherapy13. We found that M0 and M1 macrophages were heavily 
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Figure 9.   TMB between high and low risk groups. (a) Differences in Tumor Mutational Burden (TMB) 
between high and low risk score groups in the The Cancer Genome Atlas (TCGA) cohort. (b) Association 
between risk score and TMB in TCGA queue. (c) Kaplan Meier OS curve of high and low TMB groups. (d) 
Kaplan Meier OS curve of IMscore and TMB. (e) High TMB group in TCGA queue. (f) Low TMB group in 
TCGA queue.
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Figure 10.   Relationship between tumor immune cell infiltration and risk score. (a) Relationship between 
tumor microenvironment and immune risk characteristics. (b) The relationship between risk score and 
immune typing. (c) Association between tumor infiltrating immune cells and immune risk characteristics. (d) 
Correlation analysis of immune cells. (e) Analysis of immune related function among different risk groups in 
The Cancer Genome Atlas (TCGA) cohort. The boxplot shows the scores of 13 immune related functions. The 
pvalue is displayed as: * P < 0.05,** P < 0.01,*** P < 0.001. (f) Correlation between stem cells and risk score.
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Figure 11.   Difference analysis of immune checkpoints and screening of sensitive drugs. (a) Correlation 
between risk score and immune checkpoint. (b) Immune checkpoint difference analysis. (c–h) Risk score and 
anticancer drug sensitivity analysis.
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infiltrated in the high-risk group. Macrophages are the first line of defense against pathogens and play an impor-
tant role in stress response, tissue repair, and remodeling14. A close relationship has been reported between the 
degree of macrophage infiltration and poor prognosis of patients15, and with accelerated angiogenesis, tumor cell 
invasion, infiltration, and distant metastasis16. Macrophages can be polarized into a tumor-promoting phenotype 
during lung tumor progression17. The progression of most tumors from benign to malignant is accompanied by 
a significant increase in vascular density, a process known as “angiogenesis transition”18. Macrophages play an 
important role in this complex vascular remodeling19,20. Macrophages can produce vascular endothelial growth 
factor (VEGF) in human and mouse breast tumors19,20. When macrophages are exposed to interleukin-4 (IL-4), 
they express VEGF and epidermal growth factor (EGF), thus accelerating tumor angiogenesis and breast cancer 
metastasis21, leading to poor prognoses.

The activation of PD-1 and its ligand programmed cell death ligand-1 (PD-L1 or CD274) axis mediates 
T-cell dysfunction and failure22, causing tumor cells to escape immune surveillance, thus promoting tumor cell 
proliferation23. Our study showed that PDL-1 was highly expressed in the high-risk group. A previous study 
demonstrated that the high expression of (PD-L1) was closely related to prognosis in patients with Non-small-cell 
lung cancer(NSCLC)24, Similar conclusions were also reported for liver cancer25. The high expression of PD-L1 
can also enhance immune checkpoint blockade (ICB) in the treatment of NSCLC26, urothelial carcinoma27.

Studies have shown that TMB can predict the efficacy of PD-1 combined with CTLA-4 blockade in patients 
with NSCLC28. In our study, the high-risk group had higher TMB. TMB was also shown to be positively cor-
related with response to ICB in 27 cancers29, and is gradually emerging as a potential marker for the same. 
Patients with high TMB in NSCLC are more likely to benefit from ICB therapy30. In our study, TP53 mutations 
were significantly more frequent in the high-risk group, and are generally associated with poor prognoses31, 
Meanwhile, patients with TP53 mutations also reportedly respond better to ICB therapy32. This supports our 
results in that the higher the expression of PDL-1, tumor mutation load, and frequency of TP53 mutation, the 
greater is the sensitivity of the high-risk group to immune checkpoint inhibitors. Moreover, these results may 
also partly explain the underlying mechanism of poor prognosis in high-risk groups.

Among the six genes (PLK1, HMMR, ANLN, SLC2A1, SFTPB, and CYP4B1) in the prognosis model, four 
genes (PLK1, HMMR, ANLN, SLC2A1) were risk factors and two genes (CYP4B1 and SFTPB) were protective 
factors. PLK1 (polo-like kinase) is a member of a new serine/threonine protein kinase family33, and has been 
shown to be highly expressed in human cancers. Its overexpression is related to poor prognoses in cancers such as 
neuroblastoma34, rectal cancer35, and epithelial ovarian cancer36. Research showed that inhibition of PLK1 can up 
regulate the expression of PD-L1. The combination of PD-L1 blocker and PLK1 inhibitor can produce synergistic 
effect in mice, significantly reduce the tumor burden and prolong the survival period of mice37.The proliferation 
of tumor cells can be inhibited by inhibiting the expression of PLK1, which may thus be a potential target for 
cancer therapy38. Hyaluronic acid mediated motor receptor (HMMR) is an extracellular matrix component that is 
closely related to cell proliferation39. It is associated with poor prognoses and is overexpressed in various cancers 
such as pancreatic cancer40, bladder cancer41, and glioblastoma42,among others. HMMR was associated with the 
reduction of the overall survival of lung cancer patients. In addition, it can pass HCG18/miR-34a-5p/HMMR axis 
that accelerate the progression of lung adenocarcinoma43. ANLN is an actin binding protein that is associated 
with poor prognosis and is highly expressed in many malignant tumors such as pancreatic cancer44,LUAD45, and 
nasopharyngeal carcinoma46,among others. ANLN played a key role in human lung cancer by participating in 

Figure 12.   Model validation. (a–d) Kaplan Meier OS curve of Gene Expression Omnibus (GEO) datasets. 
(e–h) Receiver operating characteristic (ROC) curve analysis of GEO datasets.
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phosphoinositide 3-kinase/AKT pathway. Selective inhibition of ANLN may be a new strategy for the treatment 
of lung cancer47.Solute carrier family 2 member 1 (SLC2A1), also known as glucose transporter 1 (GLUT1), is a 
glucose transporter coding gene related to the growth and proliferation of tumor cells48. Its overexpression is s 
imilarly related to poor prognosis in cancers such as colorectal cancer49,breast cancer50,and pancreatic cancer51, 
among others. It has a particularly essential role in the occurrence and progression of tumors, and may be one 
of the driver genes of lung cancer52. Surfactant protein B (SFTPB), secreted by type II alveolar epithelial cells, 
is the main component of pulmonary surfactant53, and its precursor form can predict the risk of lung cancer54. 
CYP4B1 is a cytochrome P450 monooxygenase. The loss of CYP4B1 gene expression is related to bladder urothe-
lial carcinoma55, and its low expression is related to the poor prognosis of LUAD patients. Therefore, it can be 
used as an independent prognostic marker and a potential therapeutic target for patients with LUAD56.

All in all, this study used WGCNA to identify the module genes related to immunotherapy, and screened out 
the genes related to prognosis through differential analysis and univariate Cox regression. Through consensus 
classification, patients were divided into three clusters. Subsequently, 125 DEGs were identified after the inter-
section of the three clusters. Six key genes were determined to construct a prognosis model through univariate 
Cox regression analysis and LASSO analysis. Patients were divided into high-risk and low-risk groups. Through 
analysis and comparison, patients in high-risk and low-risk groups had significant differences in prognosis, 
tumor immune microenvironment, tumor mutation burden, immunotherapy and immune checkpoints. Finally, 
the validity of the prediction model was successfully verified in the dataset of four external queues (GSE30219, 
GSE31210, GSE50081, GSE72094).These findings may provide new ideas for the treatment of lung cancer. How-
ever, this study still has some limitations. Our research was only based on the public database, which requires a 
larger sample size and further experiments to verify the predictive ability of the prognosis model. In addition, 
the role of key genes in the model also needs to be verified by a large number of experiments.

Conclusion
In conclusion, Our study has constructed a prediction model based on 6 genes, which divided LUAD patients 
into high-risk and low-risk groups. The IMscore played an important role in predicting clinical prognosis and 
sensitivity to anti-tumor drug treatment, which may help us to provide new strategies for personalized treat-
ment of LUAD patients.

Data availability
All data were publicly available from TCGA (https://​portal.​gdc.​cancer.​gov/) and GEO (https://​www.​ncbi.​nlm.​
nih.​gov/​geo/) datasets. These data are available from the corresponding author upon reasonable request.
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