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Comprehensive analysis 
of hypoxia‑related genes 
for prognosis, immune features, 
and drugs treatment strategy 
in gastric cancer using bulk 
and single‑cell RNA‑sequencing
Guoqiang Tao 1,2, Chengwen Jiao 1,2, Yong Wang 1,2 & Qi Zhou 1*

Hypoxia is one of the malignant characteristics of solid tumors and is related to the multiple 
malignant characteristics of the tumor. No study has not yet reported a systematical analysis of the 
characteristics of hypoxia from single‑cell resolution in gastric cancer. In our research, we investigated 
the hypoxia features of various types of cells in single‑cell resolution, identified hypoxia‑related genes 
by the weighted gene co‑expression network analysis method. Through the hypoxia‑related genes 
from single‑cell levels, we screened out 13 genes and established a prognostic model. This model 
performs well in the training dataset and multiple independent verification data sets. We thought 
that tumor hypoxia might affect the DNA methylation of cells and promote the transcription of genes 
associated with malignant features, thereby promoting tumor progression. We found that the more 
tumor associated genes in the high‑risk group showed hypomethylation and high hypoxia‑risk score 
group have more tumor‑related genes, more immunosuppressive immune cells and more enrichment 
of cancer ‑related pathways. The lower risk group is more sensitive to three chemotherapy drugs for 
gastric cancer. Our study illustrates the crucial role of hypoxia in gastric cancer. Hypoxia‑related gene 
prognostic model has been established and has good performance. Hypoxia‑related risk score can also 
be used to guide a patient’s drug treatment strategy.

Abbreviations
GC  Gastric cancer
GEO  Gene expression omnibus
TCGA   The cancer genome atlas
TPM  Transcripts per million
DMPs  Differentially methylated probes
PCA  Principal component analysis
WGCNA  Weighted gene co-expression network analysis
HRRS  Hypoxia-related risk score
KM  Kaplan–Meier
ROC  Received operating characteristic
AUC   The area under the curve
KEGG  The Kyoto encyclopedia of genes and genomes
GSEA  The gene set enrichment analysis
ssGSEA  Single sample gene set enrichment analysis
IC50  The half maximal inhibitory concentration
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Gastric cancer (GC) is the sixth most common cancer and the third leading cause of cancer-related deaths 
 worldwide1. Surgical resection and adjuvant chemotherapy have been considered the mainstay of treatment for 
GC in recent decades. However, many GC patients are always diagnosed at an advanced stage, which severely 
limits the therapeutic effect. Thus, novel prognostic classifiers or therapeutic biomarkers are urgently needed to 
improve the clinical benefits of GC patients.

Hypoxia is one such unfavorable environment that can impair tumor function. Conversely, hypoxia prompts 
tumors to develop more characteristic malignant  behavior2. Hypoxia can promote the formation of new blood 
vessels by inducing Hypoxia-inducible factor 1-alpha (HIF-1a)3, Vascular endothelial growth factor (VEGF)4, 
C–C Motif Chemokine Ligand 28 (CCL28)5 and other cytokines. Hypoxia also affects the immune system 
through multiple pathways, such as induction of transcription factors or target genes to suppress T cell pro-
liferation, and induction of mitochondrial stress to promote T cell  exhaustion6,7. Therefore, we speculate that 
hypoxia-related features can be used to predict prognosis and drug treatment response.

Because tumor tissue is composed of a variety of cells, we used single-cell sequencing data to identify gene 
signatures associated with hypoxia in epithelial cells. The differences between high and low hypoxia scores were 
investigated from the aspects of genome, DNA methylation, and tumor-infiltrating immune cells. We then 
explored the possibility of hypoxia score predicting response to chemotherapy drugs.

Result
Characterization of hypoxia in single cell resolution. Since the GSE183904 single-cell dataset con-
tains a large amount of single-cell sequencing data, we only selected all normal gastric tissue sequencing samples 
and part of gastric cancer sequencing samples (Details of picking samples in Table S1). After quality control 
processing, 43,956 cells remained for further analysis. Annotating all cell clusters according to marker genes, we 
roughly divide all cells into 5 categories (epithelial cells, T cells, B cells, stromal cells and myeloid cells) (detailed 
markers are in Table S2, Fig. 1A and Fig. S1). After extracting the expression matrix of all cells in the tumor 
tissue and calculating the enrichment scores of hypoxia-related gene sets, we found that there were significant 
differences in the enrichment scores of the four hypoxia-related gene sets of the five types of cells (Fig. 1B). 
Therefore, separate analysis of different types of cells is necessary. We further investigated and found that 5 cell 
types differed in 50 hallmark gene sets (Fig. S2). We found that most hallmark gene sets associated with tumors 
were enriched in epithelial, myeloid, and stromal cells. Among them, DNA repair, glycolysis, Notch signaling, 
and p53 pathway have higher levels in epithelial cells (Fig. S2). We then analyzed epithelial cells alone and found 
that epithelial cells in tumor tissues were significantly enriched for hypoxia-related signature genes compared to 
normal tissues (Fig. 1C).

WGCNA. Due to the limitation of single-cell sequencing technology, the single-cell expression is sparse, so 
we only used the first 5000 hyper-variable genes for weighted gene co-expression network analysis (WGCNA). A 
soft threshold = 2 was selected to construct a scale-free network (Fig. 1D). A total of 9 gene modules were identi-
fied after setting the minimum cluster size as 50 (Fig. 1E). The turquoise module exhibited the highest correla-
tion with hallmark hypoxia (R = 0.58, P = 2e − 304) and Harris hypoxia (R = 0.59, P = 8e − 306) (Fig. 1E). Scatter 
plots of module membership and gene significance relationships also demonstrated a high correlation between 
turquoise module and two hypoxia scores (Fig. 1F,G). Finally, we obtained 331 hypoxia-related genes and found 
they are significantly enriched in cancer-related pathways, such as: Focal adhesion, ECM-receptor interaction, 
PI3K-Akt signaling pathway, Pathways in cancer and so on (Tables S3, S4).

Establishment and validation of hypoxia‑related prognostic signature for overall survival in 
gastric cancer. First, we performed log2 processing on the expression matrix of TCGA-STAD, and then 
performed z-score transformation. Subsequently, LASSO Cox algorithm was applied to identify the most 
robust prognostic genes. The optimal λ value of 0.0516241010727967 was selected (Fig. 2A,B). Finally, hypoxia-
related risk score formula was established as follows: hypoxia-related risk score (HRRS) =   0.0 017 821 254 992 
676 4*ACKR3 + 0.046675316980481*ADM  −  0.0699862245428993*APCDD1 + 0.0823475442114259*APOD-
0.018912760227784*BMP4 + 0.0347669705181442*CTHRC1 + 0.0324360308876823*FKBP10 + 0.07233080629
08515*GJA1 + 0.0525503764134501*GPX3 + 0.0118404129802321*LOX + 0.0378815306209615*TCIM + 0.0627
550544666857*TFPI-0.0889186008713304*TNFAIP2. The Kaplan–Meier (KM) plot demonstrated that the high 
HRRS group had unfavorable overall survival (OS) compared with the low-HRRS group (P = 2.5e − 9, Fig. 2C). 
Moreover, the area under the curve (AUC) for 1-year, 3-year and 5-year OS were 0.68, 0.71 and 0.77 (Fig. 2D), 
respectively, which were good classification results. Then, the prognostic value of HRRS was validated in three 
independent cohorts (GPL570 metadata set: HR = 1.87, 95% CI  1.47–2.38, P = 2.2e − 7; GSE26942: HR = 1.91, 
95% CI  1.24–2.93, P = 2.8e − 3; GSE84437: HR = 1.71, 95% CI  1.25–2.34, P = 7.3e − 4; Fig. 2E–G). 13 genes are 
related to prognosis (Fig. S3).

Construction of integrated models to optimize risk stratification and survival prediction in 
gastric cancer. The HRRS, together with other clinical features, including age, Lauren, pathological T stage, 
pathological N stage, pathological M stage, stage and grade were enrolled as covariates to perform the analysis. 
We constructed a nomogram that serves as a clinically relevant quantitative method by which clinicians can 
predict mortality in GC patients (Fig. 3A). In addition, we confirmed the prognostic value of the nomogram, 
which was found to be significantly associated with OS (Fig. 3B,C). At the same time, we also analyzed the prog-
nostic value of the model after removing HRRS (Fig. 3D,E). In the calibration analysis, the prediction lines of the 
nomogram for 1-, 3- and 5-year survival probability were extremely close to the ideal performance (45-degree 
line) (Fig. 3F–H).
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Figure 1.  (A) The UMAP plot of cells in normal tissue and tumor tissue, which are color-coded based on their 
associated clusters. (B) Differences among the four hypoxia-related pathways among the five types of cells. (C) 
Differences among the four hypoxia-related pathways among malignant and non-malignant epithelial cells. (D) 
Analysis of the scale‐free fit index and the mean connectivity for various soft‐thresholding powers. (E) Table 
cells showing Pearson’s correlation coefficients and corresponding P-value between module eigengenes (ME) 
and the variables. (F,G) Scatter plots of the gene significance and module membership in turquoise module. The 
x-axis indicates the module membership (MM) which quantify how close a gene is to a given module. The y-axis 
indicates the gene significance (GS) which is correlated with clinical trait.
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Mutation, DNA methylation, gene enrichment pathway and immune cell infiltration charac‑
teristics of gastric cancers in different hypoxia‑related risk group. As shown in Fig. 4A, among the 
top 20 mutated genes, the low-risk group appears to have a higher mutation rate relative to the high-risk group. 
This may be the reason why the low-risk group has a larger sample size. Three of the top 20 mutated genes in 
gastric cancer differed between the two groups (Fig. 4A and Fig. S4).

For DNA methylation analysis, in order to make the analysis results more credible, we removed CpG sites 
that were both hypermethylated and hypomethylated in both high-risk and low-risk groups. Then, the differ-
ence beta value is set to 0.15. Because DNA hypermethylation inhibits DNA transcription and corresponding 
hypomethylation promotes DNA transcription, we performed differential expression analysis between the two 
subgroups using DESeq2. Finally, 183 low-methylation and high-expression genes were obtained in the high-risk 
group, while only 2 low-methylation and high-expression genes were obtained in the low-risk group (Table S5). 
Hypomethylated and highly expressed genes in the high-risk group were significantly associated with multiple 
tumor-related pathways, such as PI3K-Akt signaling pathway, cAMP signaling pathway, Rap1 signaling pathway, 
ECM-receptor interaction and so on (Fig. 4B). Interestingly, we found that these genes share 17 genes with the 
hypoxia-related turquoise module genes described earlier. And the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways enriched by these 17 genes are also mostly tumor-related pathways (Fig. 4C).

Figure 2.  Construction of hypoxia-related prognostic model. (A,B) Partial likelihood deviance for the lasso 
regression and Lasso regression analysis. (C,D) Patients were divided into high-risk and low-risk subgroup 
based best cutoff, Kaplan–Meier analysis demonstrated that patients with higher hypoxia-related risk score 
exhibited worse overall survival in TCGA-STAD, ROC curves showing the predictive efficiency of the model on 
the 1-, 3-, and 5-years survival rate. (E–G) The prognostic difference was validated in 3 independent cohorts.
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Figure 3.  The nomogram was generated to improve risk stratification and estimate survival probability. (A) 
The comprehensive nomogram for predicting probabilities of gastric cancer patients with 1-, 3- and 5-year 
overall survival in TCGA-STAD dataset. (B) Kaplan–Meier analyses of overall survival for this nomogram. (C) 
Received operating characteristic analyses of 1-, 3- and 5-year overall survival for this nomogram. (D) Kaplan–
Meier analyses of overall survival for the nomogram without hypoxia-related risk score. (E) Received operating 
characteristic analyses of 1-, 3- and 5-year overall survival for the nomogram without hypoxia-related risk 
score. (F–H) The calibration plots for predicting gastric cancer patients with 1-, 3- and 5-year overall survival in 
TCGA-STAD.
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Figure 4.  Differences between high- and low-risk groups. (A) Top 20 differentially mutated genes between two 
risk subgroups in all gastric cancer patients of TCGA-STAD cohort. (B) KEGG signaling pathway enriched for 
genes with low methylation and high expression in high-risk group. (C) KEGG signaling pathway enriched for 
shared genes between low methylation and high expression in high-risk group and turquoise module genes. (D) 
Relative proportion of 6 infiltrating immune cells estimated by TIMER between two risk subgroups of TCGA-
STAD cohort. (E) Stromal score, Immune score and ESTIMATE score between two risk subgroups of TCGA-
STAD cohort. (F) Relative proportion of 22 infiltrating immune cells estimated by CIBERSORT between two 
risk subgroups of TCGA-STAD cohort.
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We then used the GSEA method to analyze KEGG pathway of different risk groups. GSEA results showed 
that as many as 105 KEGG pathways were enriched in the high-risk group, while only 11 pathways in the low-
risk group (Tables S6, S7). The high-risk group was enriched for tumor related pathways such as focal adhesion, 
TGF-beta signaling pathway, PI3K-Akt signaling pathway, cell adhesion molecules, gastric cancer, JAK-STAT 
signaling pathway, microRNAs in cancer, Hippo signaling pathway, Wnt signaling pathway, and others, but the 
low-risk group did not have enrichment for tumor related pathways. This also proves that the high-risk group 
has rich tumor characteristics. In addition, we separately calculated 10 tumor-related pathways and 50 tumor 
hallmark pathways scores in the TCGA-STAD cohort, and found that the vast majority of pathways were more 
highly expressed in the high-risk group (Fig. S5).

Accumulating evidence suggests that hypoxia is an important feature of tumors that can modulate the tumor’s 
immune response. TIMER database showed that CD4 T cells, Neutrophil, macrophages and DC cells are highly 
infiltrated in high-risk groups (Fig. 4D). Immuno-infiltration analysis showed that high-risk group had the 
higher immune-microenvironment infiltration in the TCGA-STAD, followed by low-risk group had the lower 
immune-infiltration score (Fig. 4E). CIBERSORT along with the LM22 matrix was used to assess immune cell 
infiltration in the low- and high-risk groups of TCGA-STAD. Nine types of cells were different between the 
two groups, and only T cells CD4 memory activated, T cells follicular helper and NK cells resting were highly 
infiltrated in the low-risk group (Fig. 4F). We then found that multiple immune cells associated with tumor pro-
gression, including: M2 macrophages, dendritic cells, and mast cells, had higher level infiltration in the high-risk 
group. Perhaps these immune cells enabled the high-risk group of gastric cancer cells to achieve their purpose 
of immune escape (Fig. 4F). The high infiltration of T cells CD4 memory resting in the high-risk group may be 
the result of a compensatory increase after the suppression of immunity by these myeloid cells (Fig. 4F). But this 
needs to be verified by subsequent experiments.

HRRS–based treatment strategy for gastric cancer. The Cancer Genome Project (CGP) database 
was used to predict chemotherapeutic response. In CGP, we found 5 commonly used chemotherapy drugs for 
gastric cancer, but only three of them had significant differences in the estimated IC50 between the two sub-
groups (Fig. 5A–E). The low-risk patients were more sensitive to the anticancer drugs 5 − Fluorouracil, Mitomy-
cin C and Paclitaxel.

Small molecule drugs with therapeutic effects on GC were screened using CMap database. Based on up-
regulated genes and down-regulated genes, we screened out 2 potential gene-targeting small molecule drugs 
(Fig. 5F,G).

Figure 5.  The estimation of chemotherapy response and potential therapeutic drugs for gastric cancer. (A–E) 
The chemotherapy response of two metabolic subtypes for 5 common chemotherapy drugs. (F,G) The molecular 
structure of the 2 small-molecule drugs for gastric cancer (F, ketoconazole; G, parthenolide).
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Discussion
Hypoxia is a common feature of  tumors8. Hypoxia has broad effects on various biological processes, such as 
angiogenesis and  metastasis9–11. Then, intact tumor tissue includes not only cancer cells, but also surrounding 
blood vessels, lymphatic vessels, fibroblasts, inflammatory cells, and extracellular matrix. Traditional sequenc-
ing analysis is a holistic analysis of the entire tumor tissue. In our study we parsed the hypoxia feature of tumor 
cells at single-cell resolution and found out the genes and pathways related to hypoxia-related tumorigenesis 
and development. As GC prognostic outcomes vary widely, it is important to develop a robust classifier based 
on hypoxia signatures to classify patients with different risks and outcomes, which is critical to maximize the 
benefits of personalized treatment and timely follow-up of.

Through single-cell analysis, we found that not only epithelial cells showed hypoxic characteristics, but 
myeloid cells and stromal cells showed a higher hypoxic state, which forced us to consider that hypoxia not only 
affects malignant epithelial cells, but more myeloid and stromal cells. Then myeloid and stromal cells further 
promote tumor progression. Many previous studies have shown that macrophages and fibroblasts are associ-
ated with many features of GC, such as tumor malignant progression, epithelial-mesenchymal transition, and 
chemotherapeutic drug  resistance12–16. But how hypoxia affects myeloid cells and stromal cells, and how they 
contribute to tumor progression, remains unclear. This is a good research direction and needs to be confirmed 
in our future research. Then we extracted the gene expression matrix of epithelial cells and performed WGCNA. 
WGCNA results are more reliable due to the large number of epithelial cells. Both hypoxia-related gene sets were 
significantly associated with the turquoise module, which also proved the reliability of the analysis results. The 
turquoise module genes were also enriched in many tumor-related pathways, suggesting that these pathways 
may be associated with hypoxia. By lasso cox method, we got a signature consisting of 13 genes for predicting 
prognosis. The 13-gene prognostic model has good predictive performance both in the training dataset and in 
multiple independent validation datasets. After removing the influence of other clinical characteristics, we found 
that the risk score derived from this model was an independent prognostic factor, and it was able to significantly 
increase the predictive power.

Both GSEA and single sample gene set enrichment analysis (ssGSEA) methods demonstrated that the high 
hypoxia score group was associated with more enrichment of tumor-related pathways, as expected. By analyzing 
the tumor-infiltrating immune cells predicted by the CIBERSORT algorithm, we found that among the 9 differen-
tially infiltrating immune cells, only T cells CD4 memory activated, T cells follicular helper and NK cells resting 
were highly infiltrated in the low-risk group. We speculated earlier that macrophage hypoxia may play a role 
in tumor progression, which is consistent with the high infiltration of M2 macrophages in the high-risk group.

In the genomic mutation analysis, we found that the low-risk group instead had more mutations, which may 
be due to the larger sample size of the low-risk group. Epigenetic analysis indicated that high risk had more genes 
with both hypomethylation and high expression, and these genes were enriched in multiple tumor-related path-
ways. So, we thought that tumor hypoxia might affect the DNA methylation of cells and promote the transcription 
of genes associated with malignant features, thereby promoting tumor progression.

We predicted the therapeutic effects of 5 common chemotherapeutic agents in different hypoxia risk score 
subtypes. Patients in the low-risk group were more sensitive to three of the five chemotherapy drugs. We also 
predicted possible 2 potential gastric cancer drugs based on differentially expressed genes in high and low risk 
groups. This allows medical staffs to more accurately select a more suitable therapy program for patients.

Conclusion
Our study illustrates the crucial role of hypoxia in GC. Hypoxia-related gene prognostic model has been estab-
lished and has good performance. HRRS can also be used to guide a patient’s drug treatment strategy.

Materials and methods
Data acquisition and processing. We systematically searched publicly available gene expression datasets 
from GC. After removing datasets with no prognostic survival information, a total of 6 datasets come from 
the Gene Expression Omnibus (GEO; https:// www. ncbi. nlm. nih. gov/ gds/) (GEO:  GSE6225417,  GSE1545918, 
 GSE5730319,  GSE3494220,  GSE8443721 and  GSE2694222, and an RNA-sequencing dataset (TCGA-STAD) from 
The Cancer Genome Atlas (TCGA; https:// portal. gdc. cancer. gov/) were found. Four datasets (GSE62254, 
GSE15459, GSE57303, and GSE34942) from the GPL570 platform were combined into one dataset, named the 
GPL570 metadata set, using the “oligo” package in  R23. The TCGA-STAD count expression data files and clini-
cal data were downloaded using the “TCGAbiolinks” software package in  R24. RNA-sequencing count values 
were converted to transcripts per million (TPM) values. The TCGA-STAD somatic mutation and the DNA 
methylation profile of the illumina human methylation 450 platform were downloaded using the R package 
“TCGAbiolinks”, and the somatic mutation data were analyzed using the R package “maftools”25. Methylation 
analysis was performed using the R package "ChAMP" 26. It is generally considered that a β value greater than 
0.6 is fully methylated, 0.2–0.6 is partially methylated, and less than 0.2 is completely unmethylated. For differ-
entially methylated probes (DMPs) analysis, we first removed fully methylated and fully unmethylated CpG sites 
in high-risk group and low-risk group and |diffBeta| is set to 0.15.

Screening of hypoxia‑related genes. To explore the characteristics of hypoxia at the single-cell level, we 
downloaded the GSE183904 single-cell dataset from the GEO database. Genes expressed in more than three cells 
and cells expressed in more than 300 genes were considered for subsequent analysis. Cells with mitochondrial 
RNA percentages of > 20 were filtered out. We use the “DoubletFinder” package to remove the “doublets cell”27. 
We used principal component analysis (PCA) to perform dimensionality reduction and then perform cluster 
analysis, and perform cell annotation based on marker genes of different types of cells.

https://www.ncbi.nlm.nih.gov/gds/
https://portal.gdc.cancer.gov/
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According to the epithelial cells annotated by gene markers, we extracted the normalized expression matrix of 
the top 5000 highly variable genes. To find modules of highly correlated with hypoxia, WGCNA was performed 
using the WGCNA R  package28 and carried out on top 5000 highly variable genes. Finally, modules that were 
significantly associated with hypoxia traits were selected for further analysis.

Construction of hypoxia related risk model. Based on the hypoxic-related module genes obtained 
by single-cell analysis, we obtained the expression files of the corresponding genes of the TCGA-STAD dataset 
transformed by log2 and the z-score. Then, we used the R software package “glmnet” to perform the lasso-cox 
analysis. In addition, we also set up tenfold cross-validation to obtain the optimal model. Finally, a HRRS was 
constructed: HRRS = ∑(C × EXP), where EXP is the expression value of the gene and C is the regression coef-
ficient for the corresponding gene in lasso Cox model.

Hypoxia signature model validation. The samples of the TCGA-STAD dataset were divided into high-
risk and low-risk groups based on the calculated hypoxia scores. The optimal cut-off value was determined 
through the R package “maxstat”. The minimum sample number is set to greater than 25%, and the maximum 
sample number is set to less than 75%. The KM method with log-rank test was used to further analyze the prog-
nostic differences between the two groups. To evaluate the predictive efficiency of the hypoxia risk signature 
in the 1-, 3-, and 5-years survival rate, we performed the received operating characteristic (ROC) curve and 
AUC. We integrated prognostic and clinicopathological features to construct a nomogram to visually assess the 
patient’s 1-, 3- and 5-year survival rate in TCGA-STAD.

Gene enrichment analysis and gene set enrichment analysis. KEGG pathway enrichment analyses 
were performed using KOBAS 3.0 online  database29. We download the latest KEGG pathway data using R pack-
age “KEGGREST” and performed enrichment analysis sing the R package “clusterProfiler” to obtain the results 
of gene set  enrichment30. We downloaded hallmark gene sets from  MSigDB31. We downloaded the GSEA soft-
ware (version 4.3) from the gene set enrichment analysis (GSEA: http:// softw are. broad insti tute. org/ gsea/ index. 
jsp) website. NOM p-value < 0.05 were considered statistically significant. To evaluate the gene set enrichment 
level of individual samples, ssGSEA was adopted through the GSVA  package32.

Evaluation of infiltrating immune cells in the TME. The proportions of 22 immune cell types in GC 
samples were estimated using the CIBERSORT algorithm (https:// ciber sortx. stanf ord. edu/) with batch-cor-
rected mode, relative mode and 1000 permutations of b  mode33. Stromal cells and immune cells in tumor tissue 
were estimated using the ESTIMATE  algorithm34. TIMER is also used to assess the proportions of six types of 
immune  cells35. Wilcoxon test was used to difference test.

Additional bioinformatic and statistical analyses. The DESeq2 package in R was used to identify the 
differentially  expressed36. Differences between the two groups were compared using Wilcoxon test. The ANOVA 
is used to detect the differences between multiple groups. The half maximal inhibitory concentration (IC50) is 
estimated by R package “pRRophetic”37. The Connectivity Map (CMap, https:// clue. io/) was used to predict the 
small candidate molecules based on differentially expressed genes. All of the above analyses were performed 
using the R software (version 4.0.2, http:// www. rproj ect. org). Statistical differences not specifically stated were 
set at p < 0.05.

Data availability
The data that support the findings of this study are available in GEO (https:// www. ncbi. nlm. nih. gov/ geo/, 
GSE62254, GSE15459, GSE57303, GSE34942, GSE84437, GSE26942 and GSE183904), TCGA (https:// portal. 
gdc. cancer. gov/ repos itory, TCGA-STAD), and the Supporting Information.
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