
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21870  | https://doi.org/10.1038/s41598-022-26392-8

www.nature.com/scientificreports

Power spectrum and critical 
exponents in the 2D stochastic 
Wilson–Cowan model
I. Apicella 1,2, S. Scarpetta 2,3, L. de Arcangelis 4, A. Sarracino 5 & A. de Candia 1,2*

The power spectrum of brain activity is composed by peaks at characteristic frequencies superimposed 
to a background that decays as a power law of the frequency, f−β , with an exponent β close to 1 
(pink noise). This exponent is predicted to be connected with the exponent γ related to the scaling of 
the average size with the duration of avalanches of activity. “Mean field” models of neural dynamics 
predict exponents β and γ equal or near 2 at criticality (brown noise), including the simple branching 
model and the fully-connected stochastic Wilson–Cowan model. We here show that a 2D version of the 
stochastic Wilson–Cowan model, where neuron connections decay exponentially with the distance, is 
characterized by exponents β and γ markedly different from those of mean field, respectively around 1 
and 1.3. The exponents α and τ of avalanche size and duration distributions, equal to 1.5 and 2 in mean 
field, decrease respectively to 1.29± 0.01 and 1.37± 0.01 . This seems to suggest the possibility of a 
different universality class for the model in finite dimension.

In the last two decades, the hypothesis that the brain operates near a critical point has gained a large evidence. 
The first experiments pointing in this direction were done on organotypic cultures and acute slices of rat cortex1, 
where scale-free distributions of activity avalanches were found. Since then, the hypothesis has been confirmed in 
many systems in vitro and in vivo, from cortical activity of awake monkeys2 to the resting MEG of human brain3. 
The distribution of avalanche sizes is found to scale as P(S) ∼ S−α , that of avalanche durations as P(T) ∼ T−τ , 
while the mean size of avalanches scales as �S� ∼ Tγ as a function of the duration4–8. A good indicator of criti-
cality is believed to be given by the scaling relation γ = τ−1

α−1 , as originally predicted in the theory of crackling 
noise9,10, as well as by the collapse of rescaled shapes of avalanches of different durations4,7,8. The simple branching 
model of avalanche propagation predicts exponents α = 3/2 , τ = 2 and γ = 2 , observed in some experimen-
tal realizations1,11 and in models of neural dynamics, including the fully-connected stochastic Wilson–Cowan 
model7. However, some experimental results have found an exponent γ around 1.3, not compatible with the value 
2 predicted by the branching process universality class, even when the scaling relation is experimentally satisfied. 
For instance, results on spike avalanches measured in the urethane-anesthetized rat cortex12, cultured cortical 
networks4, ex-vivo recordings of the turtle visual cortex5, and somatosensory barrel cortex of the anesthetized 
rat13, have found γ around 1.3 with the scaling relation γ = τ−1

α−1 satisfied.
Another important feature of neuronal dynamics is the power-law decay P(f ) ∼ f −β of the power spectrum 

of EEG, MEG, resting state fMRI, and local field potential as a function of frequency14–18, once the peaks cor-
responding to characteristic frequencies of oscillations have been subtracted. The values of β are found to be 
between 1 and 1.3 in the EEG and MEG of healthy patients16,17, while they are around 2 for epileptic patients19. 
On quite general grounds, the exponent β is predicted to be equal to the exponent γ of the relation �S� ∼ Tγ9. 
It seems therefore that there are at least two universality classes in brain dynamics, one that can be called the 
“mean-field” class, represented by the branching model and the fully-connected Wilson–Cowan model, that is 
characterized by α ≃ 3/2 and β ≃ γ ≃ τ ≃ 2 (the equality is exact for the branching model), and another char-
acterized by a lower value of the exponents, β ≃ γ � 1.3 , α ≃ 1.3 , τ ≃ 1.4 . The experimental measurement of γ 
around 1.3, not compatible with the value of branching process, opened a debate, and it raised the question if a 
different model, with a different universality class12,20, might be required to explain the critical brain data4,5,12,13, 
or if different mechanisms, such as subsampling21, should be invoked to reconcile data with branching model.
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In the present paper we study the 2D version of the stochastic Wilson–Cowan model7,22, where neurons are 
distributed uniformly on a 2D lattice, and connections between them decay exponentially with the distance. 
We can tune the network topology from 2D to fully-connected by changing the ratio between the range � of the 
exponential decay of the connections, and the side of the lattice L. While in the fully-connected case the dynamics 
of the model is completely described by specifying two variables, the fraction of active excitatory and inhibitory 
neurons, in the 2D case one needs to define such fractions at each site of the lattice. As a consequence, while the 
fully-connected model is characterized by just two characteristic relaxation times, in the 2D model one finds a 
whole spectrum of times, related to the different Fourier modes of the neural activity. By making a system size 
expansion one finds that, if the number of neurons on each site of the lattice is large, the dynamical equations 
governing the evolutions of the Fourier modes decouple, and each mode obeys to the same equations of the 
fully-connected model, but with a different relaxation time.

Independently of the network topology, the model shows a critical point at a characteristic value of a param-
eter measuring the difference between the strength of excitatory and inhibitory connections. For values above the 
critical point, the model displays a self-sustained dynamics even in the absence of external input. At the critical 
point, one of the characteristic times diverges, related to the mode k = 0 in spatially extended topologies, while 
the times of the other modes scale as |k|−2 . This feature, together with the density of the wave numbers which 
scales as |k| in two dimensions, gives rise to a power spectrum that is proportional to f −1 (pink noise).

In the next section we introduce the model, then we study the power spectrum and relaxation functions of 
the firing rate in the linear case (large neuron density). We then look at the avalanche size and duration distri-
butions, and show that at the critical point the distributions are scale free, with exponents depending on the 
topology of the system. Finally, we show that the exponents β and γ have approximately the same dependence 
on the inverse frequency and duration of avalanches, respectively, and in the 2D model tend respectively to 1 
and 1.3 at low frequency and large durations.

The model
Let us consider a two-dimensional L× L lattice, where on each site there are nE = NE/L

2 excitatory and 
nI = NI/L

2 inhibitory neurons, with connections depending on the distance rij measured in lattice spacings, 
as shown in the scheme in Fig. 1.  Note that all pairs i and j of neurons belonging to the same site have distance 
rij = 0 , so that inside one lattice site the network is fully-connected. Neurons are modeled as in22, namely they 
can be in two states, active and quiescent. The rate of transition from active to quiescent state is α for all the 
neurons, while the rate from quiescent to active state is given by an activation function f (si) of the input si of 
the i-th neuron, given by

where aj = 0, 1 if the j-th neuron is quiescent or active respectively, wij are the connections between neurons, 
and hi is an external input. We consider the activation function

In the following we set α = 0.1 ms−1 , and β = 1 ms−1 . We study here a version of the model where the connec-
tions between neurons do not depend only on the type of presynaptic neuron, as in the fully-connected case, 
but depend also on the distance between neurons. Namely, the connection between neurons j (pre-synaptic) 
and i (post-synaptic) is given by

(1)si =
∑

j

wijaj + hi ,

(2)f (s) =
{

β tanh(s) if s > 0,
0 if s ≤ 0.

(3)wij =
{

1
2NE

(w̃0,0 + w̃s,0)e
−rij/� if j is excitatory,

1
2NI

(w̃0,0 − w̃s,0)e
−rij/� if j is inhibitory,

Figure 1.   Schematic representation of the 2D model. On each site of the lattice there are nE excitatory and nI 
inhibitory neurons. Connections between neurons depend on the type of neuron (excitatory or inhibitory) and 
on the distance measured in lattice spacings. Neurons on the same site have rij = 0.
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where we have defined w̃0,0 =
∑

j wij as the sum of all the connections incoming in one neuron, which we take 
to be the same for all neurons, w̃s,0 =

∑

j |wij| , and rij is the distance between neurons. The second subscript in 
w̃0,0 and w̃s,0 refers to the wave-number k = 0 , see Eq. (13). The normalization factors NE and NI are defined 
as NE =

∑

j∈E e
−rij/� , NI =

∑

j∈I e
−rij/� , where E and I are respectively the set of all excitatory and inhibitory 

neurons. Note that, when � ≫ L , we recover the fully-connected model, well studied in the past7,22,23. On the 
other hand, when L ≫ � , the topology of the connections changes to two-dimensional.

We consider the same input hi ≡ h for all neurons. As the connections wij depend only on the distance 
between neurons, and the input h is the same for different neurons, the system is translationally invariant. The 
fraction � of active neurons is a stochastic variable that at stationarity fluctuates around the fixed point value, 
given by the equation (see "Methods" section)

with s0 = w̃0,0�0 + h . Note that Eq. (4) does not depend on the chosen topology of the connections, fully-con-
nected or sparse or depending on the distance, but only on the condition that the sum of incoming connections 
w̃0,0 is the same for all neurons, because this makes the system translationally invariant and the fixed point activ-
ity �0 equal for all the lattice sites. In Ref.7 it was shown that there is a critical point at h = 0 and w̃0,0 = β−1α . 
For w̃0,0 larger than the critical value, an attractive fixed point with �0 > 0 exists even when the external input 
h → 0 . In the case of the fully-connected model, the connections wij do not depend on the spatial position of 
neurons, but only on the functional type (excitatory or inhibitory) of the pre-synaptic and post-synaptic neu-
ron. In Refs.7,22,23 a further simplification was considered, that wij depends only on the type of the pre-synaptic 
neuron, and is given by wij = 1

2NE
(w̃0,0 + w̃s,0) if j is excitatory and wij = 1

2NI
(w̃0,0 − w̃s,0) if j is inhibitory. In 

this case, the temporal autocorrelation function of time dependent variables, like the fraction of active neurons 
or the firing rate, can be written in the limit of large number of neurons as23

where X(t) is the variable considered, X0 is its average value in time, A1 and A2 are constant coefficients, and τ1 , 
τ2 are the characteristic relaxation times. While τ2 is always small, and lower than α−1 , the time τ1 diverges at 
the critical point7.

In the fully-connected case, the state of the system depends only on two variables � and � , that correspond 
to the sum and difference between the fractions of activated excitatory and inhibitory neurons; conversely for 
connections depending on the distance, the values �r and �r on each site of the lattice are necessary to charac-
terize the activity. They are defined as

where mr and lr are respectively the number of active excitatory and inhibitory neurons on the lattice site r . 
Equivalently, we can use the Fourier transforms �k and �k , where k ’s are L2 different wave vectors. As the system 
is translationally invariant, the fixed point is characterized by �k = �k = 0 for k  = 0 . Moreover, for the wave 
vector k = 0 , at the fixed point �0 = 0 (this is a consequence of the fact that connections do not depend on the 
post-synaptic neuron), while �0 obeys the same Eq. (4) of the fully-connected case. Therefore, for w̃0,0 ≤ β−1α , 
the fixed point value �0 goes to zero when the external input h → 0 , while for w̃0,0 > β−1α it remains finite 
even for h → 0.

A quantity that will be considered in the following is the local firing rate, defined as

where sr is the input defined by Eq. (1) of neurons on site r . Note that all the neurons on site r have the same 
input. The probability that a neuron on site r fires (makes a transition from inactive to active state) in the interval 
of time �t is Rr(t)�t.

Temporal correlations and power spectrum
We now consider a variable Xr(t) defined on a site r , that can be for instance the fraction of active neurons �r(t) , 
or the firing rate Rr(t) , given by a superposition of all its Fourier components,

As shown in "Methods", for large number of neurons different Fourier components of the activity decouple, and 
obey the same evolution equation of the total activity in the system with full connectivity. Therefore the autocor-
relation function of Xr(t) will be given by the sum of the autocorrelation functions of its Fourier components,

(4)α�0 = (1−�0)f (s0),

�X(t)X(0)� − X2
0 ∝ A1 e

−t/τ1 + A2 e
−t/τ2 ,

�r =
1

2

(

mr

nE
+

lr

nI

)

,

�r =
1

2

(

mr

nE
−

lr

nI

)

,

(5)Rr(t) = (1−�r)f (sr),

Xr(t) =
1

L

∑

k

Xk(t)e
−ik·r .

CX(t) =
�Xr(t)Xr(0)� − �Xr(0)�2

�Xr(0)2� − �Xr(0)�2
∝

∑

k

(

�Xk(t)Xk(0)� − �Xk(0)�2
)

∝
∑

k

(

A1,ke
−t/τ1,k + A2,ke

−t/τ2,k
)

.
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While A2,k and τ2,k remain always finite and small, A1,k and τ1,k diverge proportionally to |k|−2 at the critical point. 
In particular τ−1

1,k ≃ D0|k|2 , where D0 is a constant defined in "Methods", see Eq. (17). The power spectrum of 
the activity on a site of the lattice is given by the Wiener-Khinchin theorem as the temporal Fourier transform 
of the autocorrelation function,

and given the dependence of A1,k and τ1,k on the wave number at the critical point, in a system with a two-dimen-
sional structure one finds a dependence P(f ) ∝ 1/f  for frequencies between fmin = L−2D0 and fmax = �

−2D0 , 
where L is the linear size of the lattice and � the range of the connections (see "Methods"). Note that the expo-
nent of the power spectrum depends on the dimension of the space, in particular P(f ) ∝ f −1/2 in d = 3 , 
P(f ) ∝ log(1/f ) in d = 4 , and P(f ) = const. (white noise) in dimension d > 4 . At frequencies f ≫ fmax only 
the Fourier components with the fastest relaxation time f −1

max survive in the spectrum, so that P(f ) ∝ f −2 in any 
spatial dimension.

In Fig. 2A,B we show the dependence of the autocorrelation function and of the power spectrum on the 
distance with respect to the critical point, which is given by w̃0,0 = β−1α = 0.1 and h = 0 . Far from the critical 
point, the distribution of times for different wave vectors is narrow, the autocorrelation decays exponentially with 
good approximation and the power spectrum can be described by a Lorentzian. Near the critical point, we have a 
wide distribution of times, that gives rise to a 1/f decay in the spectrum. As shown in Fig. 2A, the corresponding 
relaxation function exhibits the slow decays a− b ln t for a wide interval of times24.

As shown in Fig. 3A,B, the 1/f dependence of the spectrum depends not only on the distance from the critical 
point, but also on the range of the connections. If the range � grows, the autocorrelation functions and power 
spectrum tend to those of the fully-connected system, that is characterized by just two correlation times τ1 and 
τ2 , where τ2 is a short time of the order of α−1 while τ1 is large near the critical point, so that the autocorrelation 
is well described at long times by a single exponential. In Fig. 3C, we show the power spectrum evaluated in 
systems where connections decay as a power law. Namely, in Eq. (3), instead of the factor e−r/� we put a factor 
min(1, r−ω) . The case ω = 0 coincides with the case � = ∞ , and gives again the 1/f 2 decay of the spectrum. 
Larger values of ω correspond to connections decaying more quickly, and for ω ≥ 4 one finds the 1/f decay 
characteristic of short range connections.

Relation between avalanche and power spectrum exponents
In this section we compare the size and duration distributions of avalanches of activity of a site of the lattice in the 
2D case (with short range connections) and in the fully-connected model. In the following we set nE = nI = 108 
neurons for each site, and compare the behaviour of the network with L = 40 and � = 1 (2D), with that of a 
network with L = 1 (fully-connected). We remark here that in a network with L = 1 the distance between all 
neurons is zero, so that in Eq. (3) the connections wij depend only on the type of neuron, and the model coincides 
with the model studied in7,22,23, with full connectivity.

We simulated the system with Langevin dynamics, see Eq. (7). To speed up the simulations, we have set the 
connections wij in Eq. (3) to zero when rij > 3� . We made 60 different runs both for L = 1 and L = 40 , for respec-
tively 3.5× 107 ms and 2.5× 105 ms, discarding the first 107 and 4× 104 ms, and collecting the avalanches on all 
sites in the 2D system. We define an avalanche as follow: we divide the time in discrete bins of width δ = 1 ms, 
and consider the time evolution of the activity on a single site. We identify an avalanche as a continuous series 
of time bins in which there is at least one spike (i.e., a transition of one neuron from a quiescent to an active state 

P(f ) =
∞
∫

0

dt cos(2π ft)C(t),

Figure 2.   (A) Autocorrelation and (B) power spectrum of the single site firing rate in a two-dimensional L× L 
model, in the linear approximation (number of neurons N → ∞ ), as a function of the distance from the critical 
point. We set L = 100 , w̃s,0 = 13.8 , w̃0,0 = 0.1 , and external input h between 10−4 and 10−8 . The connections 
between neurons depend on the distance as in Eq. (3), with � = 1.
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in the site being considered).  Note that, when simulating the system with Langevin dynamics Eq. (7), we extract 
the number of spikes in the interval δ from a Poissonian distribution with mean equal to the temporal integral 
over δ of the firing rate defined in Eq. (5) multiplied by the number of neurons in the site.

We remark here that avalanches are relative to the activity on a single site, so an avalanche begins and ends 
when the activity on the considered lattice site is zero, regardless of the activity on the other sites of the lattice. 
The size of the avalanche is defined as the total number of spikes of neurons belonging to the site considered, 
while the duration is the number of time bins of the avalanche multiplied by the width δ of the bins. Note that 
all the lattice sites are equivalent, because the connections are translationally invariant and boundary conditions 
are periodic, so we expect the same distribution of sizes and durations on all the sites of the network. Therefore, 
to improve statistics, we compute the average of the distributions over all the sites of the lattice.

The distributions of avalanche size and duration are expected to follow power-law scalings, P(S) ∼ S−α 
and P(T) ∼ T−τ . In Fig. 4 we report the results for the 2D system ( L = 40 , blue dots) and the fully-connected 
system ( L = 1 , red dots), for the size distribution (A) and duration distribution (B). The distributions show 
a clear dependence on the topology of the network. In the fully-connected model (red dots), exponents are 
α = 1.48± 0.01 and τ = 2.05± 0.01 , very close to the values characteristic of the branching model of neural 
dynamics, as already observed in7. In the 2D system (blue dots), after a small size and duration regime character-
ized by exponents close to one, one finds, up to the cut-off of the distributions, a scaling regime with exponents 
α = 1.29± 0.01 and τ = 1.37± 0.01 , markedly smaller than the mean-field values.

We have then considered the relation 〈S〉(T) between the duration of an avalanche and its mean size (Fig. 5A), 
for the same system and parameters of Fig. 4. We fit the measured data, in the same ranges of Fig. 4B, with a 
power law Tγ . Also in this case, we observe a marked difference between the fully-connected model (red dots), 
where the exponent is γ = 2.04± 0.01 , and the 2D system where γ = 1.35± 0.01 . Note that in both cases the 
expected relation9,10

Figure 3.   (A) Autocorrelation and (B) power spectrum of the single site firing rate in a two-dimensional 
L× L model, in the linear approximation (number of neurons N → ∞ ), as a function of the range � of the 
interactions. We set L = 100 , w̃s,0 = 13.8 , w̃0,0 = 0.1 , h = 10−8 , and � between 1 and ∞ . Note that in the limit 
� = ∞ the system is no longer 2D but fully-connected. The exponent β of the power-law decay of the power 
spectrum P(f ) ∼ f −β is β = 1 for the 2D model ( � ≪ L ) in agreement with the analytical predictions in section 
"Methods", while β = 2 in the fully-connected case ( � = ∞ ). (C) Power spectrum for connections decaying as a 
power law r−ω , with the same L, w̃s,0 , w̃0,0 and h of panels A and B. In this case β = 2 for ω = 0 , while β = 1 for 
ω ≥ 4.
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is approximately satisfied. As for the size and duration distributions, in the 2D system the scaling regime for 
durations 103 < T < 5× 104 ms is preceded by a different scaling behaviour with an exponent close to 2.

To put in evidence the dependence of the exponent γ on the range of durations chosen for the fit, in Fig. 5B 
we show the exponent γ of a fit of 〈S〉(T) with a power law Tγ in a sliding window [T , 10T] . Intervals of durations 
where the exponent is nearly constant represent ranges where 〈S〉(T) can be well fitted by a power law. In the 

(6)γ =
τ − 1

α − 1
,

Figure 4.   (A) Avalanche size distribution P(S) for a 2D system with L = 40 , with a range of connections 
� = 1 (blue dots) and for a fully-connected system with L = 1 (red dots). Other parameters are w̃s,0 = 13.8 , 
w̃0,0 = 0.1 , h = 10−8 , δ = 1 ms. The number of neurons is 108 per site. (B) Avalanche duration distribution P(T) 
for the same system and parameters. The fits of the power-law exponents are done with the Python program 
“powerlaw”25 in the ranges indicated by the black lines.

Figure 5.   (A) Mean size of an avalanche 〈S〉(T) as a function of its duration, for the same system and 
parameters of Fig. 4; (B) Exponent γ of a fit of 〈S〉(T) with a function Tγ , in a sliding window [T , 10T] . The 
dashed lines show the exponents given by the fits of 〈S〉(T) in panel (A), and used in Fig. 6 for the collapse of 
the avalanche shapes. (C) Same as in (A), but showing also 〈S〉(T) for many sizes between L = 1 and L = 100 . 
(D) Power spectrum P(f) of the single site firing rate; (E) Exponent β of a fit of the power spectrum P(f) with 
a function f −β , in a sliding window [0.1 f , f ] . To make the comparison with panel B easier, the scale on the 
x-axis is inverted: high frequencies (small times) are on the left, low frequencies (large times) on the right, (F) 
Exponent γ of the fit of 〈S〉(T) for different sizes of the lattice. The fit is restricted to mean sizes in the range 
[5× 106, 108].
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fully-connected case (red dots) there is a range of durations, between 102 and 103 ms, where �S�(T) ∼ Tγ with 
γ ≃ 2 , as already observed in7, while for longer durations the exponent drops to lower values due to the cut-off 
of the distribution. On the other hand, in the 2D case (blue dots), we observe a range between 103 and 104 where 
�S�(T) ∼ Tγ with γ ≃ 1.3.

To investigate the relation between the exponent γ of 〈S〉(T) and the exponent β of the power spectrum, 
in Fig. 5D we plot the power spectrum P(f) of the single site firing rate defined in Eq. (5), for the same system 
size and parameters of Fig. 5A,B and Fig. 4. The power spectrum of the fully-connected system is well fitted 
by a Lorentzian, with a white noise behaviour for frequencies lower than 1 Hz, and a decay with an exponent 
β = 1.98± 0.02 for frequencies larger than 1 Hz. Conversely the spectrum of the 2D system, as anticipated 
analitically for the N → ∞ case, shows a decay with an exponent β = 1.02± 0.02 for frequencies between 
0.05 and 1 Hz, intermediate between white noise at lower frequencies (not shown) and brown noise at higher 
ones. As we have done with the exponent γ in Fig. 5B, in Fig. 5E we plot the exponent β of a fit P(f ) ∼ f −β in 
a sliding window of range [0.1 f , f ] . Comparing Fig. 5E with Fig. 5B, it can be seen that exponents γ and β have 
a similar dependence respectively on the avalanche duration and on the inverse frequency. In the case of the 
fully-connected system (red dots) both exponents are around 2 in the ranges [102, 103] ms and [1, 10] Hz, and 
decay to lower values for longer avalanches or smaller frequencies. In the case of the 2D system the exponents are 
nearly constant in the ranges [103, 104] ms and [0.1, 1] Hz, although they tend to quite different values, namely 
β ≃ 1 , γ ≃ 1.3 . The reason of this discrepancy is to be further investigated.

In Fig. 5C we show 〈S〉(T) for different sizes of the lattice, from L = 1 (fully-connected case) to L = 40 , 
while in Fig. 5F we plot the exponent γ measured by fits of the data in panel C in a range of mean sizes between 
5× 106 and 108 . It can be seen that the exponent remains near to γ = 2 for small sizes, and drops to a value near 
γ = 1.3 for large lattices.

Scaling of the shape of avalanches
Together with the relation Eq. (6), another test of the “criticality” hypothesis for avalanche activity, is the scal-
ing of the shape of the avalanches. Denoting with V(t) the mean number of spikes observed at time t during an 
avalanche of duration T, the total size of the avalanche is given by S =

∫ T
0 dtV(t) ∼ Tγ , so it is expected that the 

normalized shape V(t)T1−γ depends only on the rescaled time t/T. This relation should hold as long as the mean 
size 〈S〉(T) is well fitted by a power law Tγ , that is for durations where the exponent of the sliding window fits are 
nearly constant in Fig. 5B. Looking at Fig. 5B, we expect a collapse of the shapes in the interval 102 < T < 103 ms 
for the fully-connected system, with a value γ ∼ 2.04 , and in the interval 103 < T < 104 ms for the 2D system, 
with a value γ ∼ 1.35 . We highlight such values of γ by dashed lines in the figure. The collapse of the shapes is 
indeed quite well verified, for such values and duration ranges, as shown in Fig. 6A,B. Note that, as expected, an 
exponent γ ≃ 2 corresponds to a shape that is nearly parabolic (fully-connected system), while in the case of 
the 2D system the exponent γ ≃ 1.3 corresponds to a more flattened shape26.

Dependence on the fraction of inhibitory neurons
In this section we investigate the role of the ratio between excitatory and inhibitory neurons, by simulating the 
system also for a fraction 80/20 of excitatory and inhibitory neurons, more similar to cortical networks. The total 
number of neurons on each site of the lattice is 2× 108 as in the previously studied (50/50) case, so that we have 
nE = 1.6× 108 and nI = 4× 107 . Note that, as it is apparent from Eq. (3), the strength of the excitatory/inhibi-
tory synapses is inversely proportional to the number of excitatory/inhibitory neurons, so that if the number of 
inhibitory neurons is decreased, the strength of inhibitory connections is correspondingly increased. In this way 
we ensure that the critical point corresponds to the same value of w̃0,0 = β−1α and h = 0.

In Fig. 7 we compare the four cases considered: fully-connected 50/50, fully-connected 80/20, 2D 50/50 and 
2D 80/20. We note that the fraction of inhibitory neurons affects only the cut-off in the distributions P(S) and 

Figure 6.   (A) Average shape of the avalanches having duration in an interval [T/1.09, 1.09T] centered on the 
duration T listed in the legend, divided by T1−γ , for the same parameters of Fig. 4 and for the fully-connected 
system ( L = 1 ); (B) The same for the 2D system ( L = 40).
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P(T), while the mean avalanche size 〈S〉(T) and the power spectrum P(f) are not affected. Moreover the cut-off has 
a significative change only in the 2D system, and is much less affected in the fully-connected case. In the insets 
of Fig. 7A,B, we report a collapse of the 50/50 and 80/20 distributions in the 2D case, showing that the cutoff is 
approximately four (three) times smaller in the 80/20 case for the size (duration) distributions.

In conclusion, we can affirm that the observed dependence of critical exponents on the spatial dimensionality 
is preserved also for different fractions of inhibitory neurons.

Conclusions
We have studied the stochastic Wilson–Cowan model on a 2D lattice, with connections decaying exponentially 
with the distance. We use a connection weight that decays exponentially with distance to model the structural 
anatomical connectivity that exhibits exponential decay with distance. Recent research indeed, using data from 
retrograde tracer injections, shows that influence of interareal distance on connectivity patterns is conform to 
an exponential distance rule (EDR), according to which the projection lengths decay exponentially with inter-
areal separation28–31. Spatial decay constant is of order of few mm for white matter, and few tenths of mm for 
gray matter, in mouse and macaque,28,29. Notably, in the 2D model, as in the fully-connected case, varying the 
difference between the strength of excitatory and inhibitory connections, the model undergoes a second order 
transition from a phase where the activity tends to zero in absence of external input, to a phase where the activity 
is self-sustained even in absence of external inputs. At the critical point, one of the relaxation times diverge. While 
the fully-connected model is characterized by just two relaxation times, one of which is always lower than α−1 , 
where α is the deactivation rate of neurons, the 2D system has a spectrum of relaxation times, related to the dif-
ferent Fourier modes that can be defined on the lattice. Such relaxation times become proportional to D−1

0 |k|−2 
at the critical point, where D0 is a constant and, as a consequence, the model in 2D shows a logarithmic decay 
of the relaxation functions and a f −1 behaviour of the power spectrum, in an interval of frequencies between 
fmin = L−2D0 and fmax = a−2D0 , where L is the lattice size, � is the range of connections, and D0 is defined in 
Eq. (17). We emphasize that the 1/f behaviour is observed for the single site activity (or the activity of a localized 
group of sites), being the superposition of all the Fourier components with a spectrum of relaxation times. Con-
versely, the activity of the entire system corresponds to the single Fourier component k = 0 and therefore exhibits 

Figure 7.   (A) Avalanche size distribution P(S) for the fully-connected and 2D models, and two different 
fractions of excitatory and inhibitory neurons, 50/50 and 80/20. The total number of neurons on each site is 
2× 108 in all cases. Other parameters as in Figs. 4 and 5 . Inset: collapse of the distributions in the 2D case. 
The cut-off Sc is 4× 108 in the 50/50 case and 108 in the 80/20 case. (B) Avalanche duration distribution. Inset: 
collapse of the distributions in the 2D case. The cut-off Tc is 3× 104 in the 50/50 case and 104 in the 80/20 case. 
(C) Mean size of the avalanche as a function of the duration. (D) Power spectrum of the firing rate.
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a 1/f 2 behavior. Moreover, we have shown that the change in the behaviour of the power spectrum is related to a 
marked change in the exponents of the avalanche distributions. Note that, in the case of the 2D system, we have 
defined avalanches considering the activity on a single site and not in the whole system, in order to use the same 
signal considered to define the power spectrum. This choice has been also determined by the observation that, 
in a large 2D system, activity in the entire system never goes to zero, which would make the introduction of a 
thresholding procedure necessary to define avalanches. Clearly, although avalanches are measured locally, their 
distribution reflects the activity of all the sites of the system. In the 2D case, the exponents α and τ of the size 
and duration distributions become smaller than the ones predicted in the mean-field case, respectively α ≃ 1.3 
and τ ≃ 1.4 , while the exponent γ that relates the mean size to the avalanche duration decreases from 2 to 1.3. 
It remains to be understood the discrepancy between γ and the exponent β of the power spectrum. Notably in 
the 2D model the avalanche shape collapse is quite well verified with a value γ ≃ 1.35 , showing a more flattered 
shape, while it is γ ≃ 2 in the fully-connected case.

Discrepancy between the fully-connected γ ≃ 2 prediction and the exponent γ ≃ 1.3 observed in some 
experiments12, with a large interval of exponents α and τ of the size and duration distributions all falling on the 
γ ≃ 1.3 line, may be attributed to the effective topology of the measured activity. For example measurement 
able to record spiking activity of large areas of neuronal populations may reflect the structured topology of the 
network, while more localized measures (in highly connected areas) may be better approximated by mean-field 
i.e. fully-connected topology. It would be interesting to compare the corresponding scaling behavior of the 
power spectra of experimental activity in different topological conditions, to confirm the existence of different 
universality classes.

Methods
We consider a two-dimensional lattice of L× L sites. On each site there are nE = NE/L

2 excitatory neurons and 
nI = NI/L

2 inhibitory ones. Define mr and lr respectively the number of active excitatory and inhibitory neurons 
on the site r = (x, y) , with x, y = 0, . . . , L− 1.

In the Gaussian noise approximation, the temporal evolution of the system can be effectively described in 
terms of the coupled non-linear Langevin equations32 

 where α is the rate of deactivation of the neurons, f(s) is the input dependent rate of activation, s(e)r  and s(i)r  are 
respectively the inputs of the excitatory and inhibitory neurons on site r . They are given by

where n−1
E w

(ee)
rr′  is the strength of the connection between excitatory neurons on site r′ and those on site r , etc...h(e)r  

and h(i)r  are the external inputs, ηE,r(t) and ηI ,r(t) are Gaussian white noise functions.
The fractions of active neurons xr = mr/nE , yr = lr/nI obey therefore the equations 

Let us suppose now that connections depend only on the distance |r − r
′| , and the external input is independ-

ent of the site, h(e)r = h
(e)
0  , h(i)r = h

(i)
0  . In these hypotheses the fixed point of Eq. (8) is the same for all sites, and 

corresponds to xr = x0 , yr = y0 , with

and
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We can perform a system size expansion, changing variables from the fractions of active neurons xr and yr to 
the deviations of the fractions with respect to the fixed point. Defining xr = x0 + n

−1/2
E ξE,r , yr = y0 + n

−1/2
I ξI ,r , 

substituting in Eq. (8), and neglecting terms that are small when the number of neurons is large, we obtain the 
linear Langevin equations 

The Eq. (9) are translationally invariant and linear, therefore it is convenient to perform a Fourier transform 
and define

where k = 2π
L (kx , ky) , with kx , ky = 0, . . . , L− 1.

Substituting in (9), we obtain the decoupled equations for each of the L× L pairs of Fourier modes ξ̃E,k and 
ξ̃I ,k,

where w̃(ee)
k

=
∑

r

eik·(r−r
′)w

(ee)
rr′  , etc..., �ηE,k(t)ηE,k′(t′)� = δk′ ,−kδ(t − t ′) , etc...

If the connections do not depend on the post-synaptic neuron, but only on the pre-synaptic one, that is 
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k

 , w̃(ei)
k

= w̃
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k
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k

 , and the external input is h(e)0 = h
(i)
0 = h , we can further simplify the 

equations, making the variable substitution ξ̃�,k = ξ̃E,k+ξ̃I ,k
2  , ξ̃�,k = ξ̃E,k−ξ̃I ,k

2  . In this case, the fixed point val-
ues x0 and y0 of the excitatory and inhibitory fraction of active neurons are the same, so that we can define 
x0 = y0 = �0 , and s(e)0 = s

(i)
0 = s0 , and the matrix in Eq. (10) becomes upper triangular

where 

 and 

 where we have used the fact that w(e)
rr′ = w

(e)
r′r , w

(i)
rr′ = w

(e)
r′r . Note that τ2,k is independent of k . The fixed point input 

s0 can be written as s0 = w̃0,0�0 + h , and we report here for convenience the form of the fixed point equation,

As we have seen, each of the Fourier modes behaves exactly as the total fraction of neurons in the model with 
all-to-all connections, but with parameters τ1,k , w̃ff,k that depend on the Fourier mode k . The autocorrelation 
function of the fluctuations ξ̃�,k is therefore given by23
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By performing an inverse Fourier transform, we can find the autocorrelation function of ξ�,r = ξE,r+ξI ,r
2  , which 

is given by

The power spectrum of the variable ξ�,r(t) is therefore given by the Wiener-Khinchin theorem as

The linear Eq. (10) depend basically on parameters defined at the fixed point. The fixed point can undergo dif-
ferent kinds of transitions (bifurcations). We will consider here the case of the transcritical bifurcation, where 
one of the eigenvalues of the matrix in Eq. (11) vanishes, in particular we will consider the case in which the 
eigenvalue τ−1

1,0  corresponding to the mode k = 0 vanishes, so that

For values of |k| smaller than �−1 , where � is the range of the connections w(e)
rr′ and w(i)

rr′ , taking the first two terms 
of the Taylor expansion of the cosine in Eq. (13a), we have

where θ is the angle between k and r − r
′ , d is the dimension of the space, and Ŵ(x) is the Gamma function. Put-

ting this expression in Eq. (12a), and using Eq. (15), we obtain that τ−1
1,k ≃ D0|k|2 , where

The values of τ1,k therefore diverge for |k| → 0 , so that we can consider τ1,k ≫ τ2,k for low values of the wave 
number. In this case, we can approximate

Therefore both τ1,k and A1,k diverge for |k| → 0 , while τ2,k , A2,k e w̃ff,k remain finite. Neglecting terms relative to 
τ2,k in the power spectrum, we obtain

In d spatial dimensions, the density of wave numbers is 
(

L
2π

)d
kd−1dk , and changing the sum with an integral

where fmax = �
−2D0 with � the range of the connections, while fmin = L−2D0 . For fmin ≪ f ≪ fmax and d < 4 , 

the integral is approximately independent of f, so that P(f ) ∼ f (d−4)/2 . In particular P(f ) ∼ 1/f  in d = 2 and 
P(f ) ∼ 1/f 1/2 in d = 3 . In d = 4 there is a divergence x−1 in the integrand, so that P(f ) ∼ − log f  , while for 
d > 4 the divergence exactly cancels the factor f (d−4)/2 , so that the spectrum becomes constant (white noise). 
Note that the previous derivation holds only for � ≪ L , otherwise the condition fmin ≪ f ≪ fmax cannot be met.
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Received: 19 July 2022; Accepted: 14 December 2022

A1,k =
α�0τ

2
1,kτ

2
2,k

2(τ 21,k − τ 22,k)

(

τ1,kτ
−2
2,k + τ1,kw̃

2
ff,k − τ−1

1,k

)

,

A2,k = −
α�0τ

2
1,kτ

3
2,kw̃

2
ff,k

2(τ 21,k − τ 22,k)
.

C�(t) = �ξ�,r(t)ξ�,r(0)� =
1

L2

∑

k

�ξ̃�,k(t)ξ̃�,−k(0)�.

P(f ) =
∞
∫

0

dt cos(2π ft)C�(t) =
1

L2

∑

k

(

A1,kτ1,k

1+ 4π2τ 21,k f
2
+

A2,kτ2,k

1+ 4π2τ 22,k f
2

)

.

(15)α + f (s0)− (1−�0)f
′(s0)w̃0,0 = 0.

(16)

w̃0,k ≃ w̃0,0 −
|k|2

2

∑

r

(

w
(e)
rr′ − w

(i)
rr′

)

|r − r
′|2 cos2 θ = w̃0,0 −

πd/2|k|2

2Ŵ(1+ d/2)

∞
∫

0

dr rd+1
(

w(e)
r − w(i)

r

)

,

(17)D0 =
πd/2(1−�0)f

′(s0)

2Ŵ(1+ d/2)

∞
∫

0

dr rd+1
(

w(e)
r − w(i)

r

)

.

A1,k ≃
α�0

2

(

1+ τ 22,kw̃
2
ff,k

)

τ1,k .

P(f ) =
α�0

2L2

(

1+ τ 22,kw̃
2
ff,k

)

∑

k

D−2
0 |k|−4

1+ 4π2D−2
0 |k|−4f 2

.

(18)P(f ) =
α�0L

d−2

(4π)2D
d/2
0

�

1+ τ 22,kw̃
2
ff,k

�







f /fmin
�

f /fmax

x(2−d)/2

1+ x2
dx






f (d−4)/2,



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21870  | https://doi.org/10.1038/s41598-022-26392-8

www.nature.com/scientificreports/

References
	 1.	 Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167 (2003).
	 2.	 Petermann, T. et al. Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc. Natl. Acad. Sci. 106, 

15921 (2009).
	 3.	 Shriki, O. et al. Neuronal avalanches in the resting meg of the human brain. J. Neurosci. 33, 7079 (2013).
	 4.	 Friedman, N. et al. Universal critical dynamics in high resolution neuronal avalanche data. Phys. Rev. Lett. 108, 208102 (2012).
	 5.	 Shew, W., Clawson, W. W. & Pobst, J. Adaptation to sensory input tunes visual cortex to criticality. Nat. Phys. 11, 659 (2015).
	 6.	 Scarpetta, S., Apicella, I., Minati, L. & de Candia, A. Hysteresis, neural avalanches, and critical behavior near a first-order transition 

of a spiking neural network. Phys. Rev. E 97, 062305 (2018).
	 7.	 de Candia, A., Sarracino, A., Apicella, I. & de Arcangelis, L. Critical behaviour of the stochastic Wilson–Cowan model. PLoS 

Comput. Biol. 17, e1008884 (2021).
	 8.	 Nandi, M. K., Sarracino, A., Herrmann, H. J. & de Arcangelis, L. On the scaling of avalanche shape and activity spectrum in 

neuronal networks. Phys. Rev. E 106, 024304 (2022).
	 9.	 Kuntz, M. C. & Sethna, J. P. Noise in disordered systems: The power spectrum and dynamic exponents in avalanche models. Phys. 

Rev. B 62, 11699 (2000).
	10.	 Sethna, J. P., Dahmen, K. A. & Myers, C. R. Crackling noise. Nature 410, 242 (2001).
	11.	 Miller, Stephanie R., Yu, Shan & Plenz, Dietmar. The scale-invariant, temporal profile of neuronal avalanches in relation to cortical 

γ–oscillations. Sci. Rep. 9, 1–14 (2019).
	12.	 Fontenele, A. J. et al. Criticality between cortical states. Phys. Rev. Lett. 122, 208101 (2019).
	13.	 Mariani, B. et al. Neuronal avalanches across the rat somatosensory barrel cortex and the effect of single whisker stimulation. 

Front. Syst. Neurosci. 15, 709677 (2021).
	14.	 Novikov, E., Novikov, A., Shannahoff-Khalsa, D., Schwartz, B. & Wright, J. Scale-similar activity in the brain. Phys. Rev. E 56, R2387 

(1997).
	15.	 Bedard, C., Kroeger, H. & Destexhe, A. Does the 1/f frequency scaling of brain signals reflect self-organized critical states?. Phys. 

Rev. Lett. 97, 118102 (2006).
	16.	 Dehghani, N., Bedard, C., Cash, S., Halgren, E. & Destexhe, A. Comparative power spectral analysis of simultaneous elecroencepha-

lographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media. J. Comput. Neurosci. 
29, 405 (2010).

	17.	 Pritchard, W. The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. Int. J. Neurosci. 66, 
119 (1992).

	18.	 Zarahn, E., Aguirre, G. & Esposito, M. D. Empirical analyses of bold fmri statistics. Neuroimage 5, 179 (1997).
	19.	 He, B. J., Zempel, J. M., Snyder, A. Z. & Raichle, M. E. The temporal structures and functional significance of scale-free brain 

activity. Neuron 66, 353 (2010).
	20.	 Dalla Porta, Leonardo & Copelli, Mauro. Modeling neuronal avalanches and long-range temporal correlations at the emergence 

of collective oscillations: Continuously varying exponents mimic m/eeg results. PLoS Comput. Biol. 15, e1006924 (2019).
	21.	 Carvalho, T. T. A. et al. Subsampled directed-percolation models explain scaling relations experimentally observed in the brain. 

Front. Neural Circuits 14, 576727 (2021).
	22.	 Benayoun, M., Cowan, J. D., van Drongelen, W. & Wallace, E. Avalanches in a stochastic model of spiking neurons. PLoS Comput. 

Biol. 6, e1000846 (2010).
	23.	 Sarracino, A., Arviv, O., Shriki, O. & de Arcangelis, L. Predicting brain evoked response to external stimuli from temporal cor-

relations of spontaneous activity. Phys. Rev. Res. 2, 033355 (2020).
	24.	 Hooge, F. N. & Bobbert, P. A. On the correlation function of 1/f  noise. Phys. B 239, 223 (1997).
	25.	 Alstott, J., Bullmore, E. & Plenz, D. A python package for analysis of heavy-tailed distributions. PLoS One 9, e95816 (2014).
	26.	 Baldassarri, A. Universal excursion and bridge shapes in abbm/cir/bessel processes. J. Stat. Mech. Theory Exp. 8, 083211 (2021).
	27.	 Ercsey-Ravasz, M. et al. A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80, 184–197 

(2013).
	28.	 Gămănuţ, R. et al. The mouse cortical connectome characterized by an ultra dense cortical graph maintains specificity by distinct 

connectivity profiles. Neuron 97(3), 698 (2018).
	29.	 Horvát, S. et al. Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates. 

PLoS Biol. 14, e1002512 (2016).
	30.	 Markov, N. T. et al. Cortical high-density counterstream architectures. Science 342, 1238406 (2013).
	31.	 Markov, N. T. et al. The role of long-range connections on the specificity of the macaque interareal cortical network. Proc. Natl. 

Acad. Sci. 110v, 5187–5192v (2013b).
	32.	 van Kampen, N. G. Stochastic Processes in Physics and Chemistry (North Holland, 2007)

Acknowledgements
AdC, IA and LdA acknowledge financial support from the MIUR PRIN 2017WZFTZP “Stochastic forecasting in 
complex systems”. AS acknowledges financial support form MIUR PRIN 201798CZLJ. LdA and AS acknowledge 
support from Program (VAnviteLli pEr la RicErca: VALERE) 2019 financed by the University of Campania “L. 
Vanvitelli”.

Author contributions
All authors designed the project, conceived the model and planned the simulations. I.A. performed the simula-
tions and analyzed data. All authors wrote and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.d.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

www.nature.com/reprints


13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21870  | https://doi.org/10.1038/s41598-022-26392-8

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	Power spectrum and critical exponents in the 2D stochastic Wilson–Cowan model
	The model
	Temporal correlations and power spectrum
	Relation between avalanche and power spectrum exponents
	Scaling of the shape of avalanches
	Dependence on the fraction of inhibitory neurons
	Conclusions
	Methods
	References
	Acknowledgements


