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The conjugate shift differential method, based on Fourier transforms, is critical for surface error 
testing of high-precision optical elements. However, this common approach is also prone to periodic 
spectrum loss. As such, this paper proposes conjugate double shift differential (CDSD) absolute 
testing, which can effectively compensate for spectrum loss and achieve accurate wavefront 
reconstructions. Spectrum loss in the single shift differential method is analyzed through a study 
of the Fourier reconstruction process. A calculation model for the proposed CDSD method is then 
established and constraint conditions for shift quantities are provided by analyzing double shear 
effects observed in transverse shear interference. Finally, the reconstruction accuracies of various 
spectrum compensation methods are compared. Results showed that spectrum loss became 
more evident with increasing shift amounts. However, the CDSD method produced the smallest 
measurement error compared with conventional direct zero filling and adjacent point averaging, 
suggesting our approach could effectively improve absolute shape measurement accuracy for planar 
optical elements.

High-precision measurements are a prerequisite for precision machining. Specifically, systems utilizing inertial 
confinement  fusion1 or extreme ultraviolet  lithography2,3 include stringent requirements for the surface shape 
accuracy of optical  elements4. Absolute testing technology based on traditional  interferometry5–7 improves mir-
ror shape measurement accuracy by eliminating the influence of reference mirror shape errors. As such, the 
absolute testing principle for conjugate shift  differentials8 is similar to that of transverse shear interferometry, 
as both calculate the absolute shape of a measured surface after reconstructing the differential shape. However, 
the use of a Fourier method for reconstruction leads to missing spectrum information at coordinate points that 
are integer multiples of n/s, which causes uncertainty in some wavefront coefficients and affects surface shape 
reconstruction  accuracy9. To solve this problem, spectrum compensation methods are applied in transverse 
shearing interferometry, including the direct zero compensation, adjacent point averaging, interpolation, and 
double shearing methods.

Uncertain points can be processed by zero filling, but the resulting error is  large10. In 2000, Elster et al.11 
proposed a double shear scheme to compensate for a missing spectrum in the reconstruction of transverse shear 
interference wavefronts. In this process, two groups of differential phases, corresponding to two shear quanti-
ties without common factors, were calculated and used to determine exact expansion coefficients. Measured 
wavefronts were then reconstructed using an inverse Fourier transform of these coefficients. In 2006, Liang 
et al.12 used the average values of adjacent points to interpolate a missing frequency spectrum. This approach is 
applicable to relatively continuous and gentle wavefront reconstructions in which the shear amount is no more 
than 1/8 the diameter of the measured mirror (high reconstruction error). In 2007, Claas et al.13 proposed a 
spectrum compensation method based on Shannon interpolation, in which a sinc-based function was inserted 
into the Fourier coefficient points for each differential phase, then the points that could not be determined in the 
spectrum were avoided during resampling, it is suitable for wavefront reconstruction of abrupt phase. In 2012, 
Guo et al.14 proposed a multi-shear interferometry technique that effectively solved the problem of spectrum loss 
and improved the signal-to-noise ratio by using multiple groups of interference data. The resulting reconstruc-
tion accuracy improved with an increasing number of shear quantities. In the present study, a conjugate double 
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shift differential (CDSD) method is proposed, based on double shearing in transverse shearing interferometry, 
which can accurately reconstruct wavefronts and solve the problem of missing spectra in the absolute testing of 
conjugate shift differentials. A series of experiments were conducted to validate the proposed methodology, as 
discussed in the following sections.

Spectrum compensation in the conjugate double shift differential method
The conjugate double shift differential (CDSD) method involves adding interferometry data on the basis of the 
original conjugate single shift differential (CSSD)  method8. During this test, the position of a reference mirror 
is held fixed, and the test mirror is conjugate translated a distance  sj along the orthogonal direction of the refer-
ence mirror, as shown in Fig. 1. The term A(x,y) denotes the shape profile of the reference mirror, B(x,y) is the 
measured mirror shape, and W(x,y) is the measured interference wave surface. The eight groups of measurement 
results can be represented as:

The differential surfaces �W
j
x(x, y) and �W

j
y(x, y) on the tested mirror can then be acquired in two orthogo-

nal directions by processing data at conjugate positions in the same direction on the tested mirror. Shape errors 
for the reference mirror can be eliminated as follows:

The absolute surface shape of the mirror being tested can be obtained from wavefront reconstruction cal-
culations based on a Fourier transform of the differential surface shape represented by Eq. (2). The measured 
wavefront can be described by a Fourier series and the Fourier transform coefficients of the measured wavefront 
can be obtained from the differential wavefront. Wavefront information can then be reconstructed using an 
inverse Fourier transform of the resulting  coefficients15,16.

The Fourier series expansion of the measured mirror shape is given by:

where α is the expansion coefficient and p and q are the corresponding frequency domain coordinates. The fol-
lowing relationship is evident from Eq. (3):
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Figure 1.  The proposed conjugate double shift differential absolute testing principle.
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Substituting Eq. (3) into (2) allows the differential shape of the measured surface in the x direction to be 
expressed as:

Similarly, the differential shape of the measured surface in the y direction can be represented by:

Fourier coefficients for the measured surface can be acquired using a least-squares method:

It is evident from Eq. (8) that in the case of only one group of interference results (i.e., the value of j is 1) the 
denominator of the wavefront coefficient is zero, since αpq = p and q = KN/2 s (k is a positive integer). In other 
words, part of the spectrum is missing, which increases surface reconstruction errors. Therefore, accurately 
reconstructing measured surface shapes requires determining all of the spectral coefficients αpq. As a result, at 
least two shift quantities must be used to achieve relative measurements since the shift quantities  s1 and  s2 have 
no common factors. These shift constraints are given by:

where GCD is the maximum common divisor and N is the number of sampling points. When the p and q values 
in Eq. (8) are equal to KN/2s1, the denominator term is 0. However, the denominator corresponding to  s2 is not 0, 
due to the coprime relationship in the shift amount. The spectrum coefficient loss for a shift amount of  s1 can be 
compensated for using the spectrum coefficient for a shift amount of  s2. In other words, the spectrum coefficient 
loss for a larger shift can be compensated for using the spectrum coefficient for a smaller shift. In addition, all 
spectral coefficients (excluding α00) can be determined using two shift quantities without common factors. The 
coefficient α00 only affects the offset of a reconstructed surface and not the surface accuracy.

Simulations and analysis of surface reconstruction accuracy
The proposed conjugate double shift differential method was used to perform numerical calculations of surface 
shape reconstruction accuracy. Shape errors were first simulated for an initial reference surface and a measured 
surface. Low-frequency errors were generated using Zernike polynomial fitting, while intermediate-frequency 
errors were produced using a characteristic autocorrelation function. PV represents the difference between the 
maximum peak value and the minimum valley value of elements in the surface shape error matrix. RMS is the 
square root of the average of the square of a set of statistical data. It is a common indicator used to evaluate the 
surface shape of optical components, primarily for representing slow changes in the wave surface. As shown 
in Fig. 2, the PV value for the low-frequency shape error of the initial reference surface was 17.79 nm and the 
RMS value was 2.99 nm. The PV value for the initial measured surface was 33.87 nm and the RMS value was 
6.49 nm. The simulation aperture was 100 mm in size and included a 500*500 grid of sampling points, with a 
corresponding resolution of 0.2 mm/pixel.

Various spectrum compensation principles were used to reconstruct the Fourier transform wavefront on 
the simulation surface shown in Fig. 2. Since the Fourier algorithm can only process data in a rectangular 
domain, differential wavefronts in a circular domain were subject to continuation pretreatment prior to surface 
reconstruction. The two sets of shift quantities without a common factor were set as  s1 = 4 mm(20 pix) and 
 s2 = 4.2 mm(21 pix), while the residual shape of the measured surface was determined using direct zero filling. 
The average adjacent point and conjugate double shift methods are demonstrated in Fig. 3, where it is evident 
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the residual error PV20 value produced by the direct zero compensation method was 5.74 nm and the RMS 
value was 0.97 nm. PV20 is the difference between the average of the top 10 points in the wave surface and the 
average of the bottom 10 points. This value can be used to reduce the influence of defects or remove outliers 
from the test data. The PV20 value acquired from adjacent points (in the averaging method) was 5.13 nm and 
the RMS value was 0.84 nm. The PV20 value produced by the conjugate double shift method was 3.71 nm and 
the RMS value was 0.72 nm. As such, the spectrum compensation accuracy produced by optimizing the shift 
method was superior to that achieved by interpolating existing data. The RMS values of surface reconstruction 
errors, calculated using different spectrum compensation methods, are shown for other shift quantities in Fig. 4.

A comparison of the three groups of broken lines in Fig. 4 indicates that larger shifts are indicative of more 
obvious spectrum loss and larger surface reconstruction errors. For a shift amount of 1 mm, the RMS value of 
the residual error was 0.51 nm for the zero-filling method, 0.49 nm for the averaging of adjacent points, and 
0.42 nm for the conjugate double shift method  (s1 = 1 mm and  s2 = 1.2 mm). In other words, when the shift 
amount is small, less spectral information is lost and the resulting reconstruction accuracy of the conjugate 
shift differential method is equivalent for different spectrum compensation techniques. However, the conjugate 
double shift  (s1 = 8 mm and  s2 = 8.2 mm) algorithm also produced the highest accuracy for a shift value of 8 mm. 
In this case, the RMS value of the measurement residual error was reduced from 1.57 to 0.97 nm, which confirms 
the proposed technique can improve surface reconstructions by compensating for a lack of spectral response.

Validation experiments
Absolute testing of different spectrum compensation methods. The effectiveness of the CDSD 
method in improving surface reconstruction accuracy was verified using a Zygo PE Fizeau phase-shifting inter-
ferometer with a high-precision displacement table. A plane standard mirror with a diameter of 100 mm was 
used in the experimental configuration, producing an interferometer pixel size of 0.1 mm/pix. Aperture effects 
were considered by removing 5% of the measured data at the edges. Noise was assumed to follow a random dis-
tribution with a mean value of µ = 0 and a standard deviation of σ = 2 nm. The PV value of the tested mirror was 
λ/40 and further analysis showed the optimal shift interval was 0.6–6.8  mm17. Figure 5 demonstrates a scenario 

Figure 2.  An error diagram for the initial middle and low frequency surface shapes. (a) The initial reference 
plane. (b) The initial measured surface.

Figure 3.  The residual shape of measured surfaces corresponding to different frequency spectrum 
compensation methods. (a) Direct zero filling. (b) Average neighboring points. (c) Conjugate double shift.
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in which shift values were  s1 = 4 mm (40 pixels) and  s2 = 4.3 mm (43 pixels). The test mirror was translated along 
the x and y directions of the reference mirror to obtain eight groups of wavefronts. Absolute surface shape testing 
based on zero filling and averaging of adjacent points was also performed for the interference wavefronts (a–d) 
shown in Fig. 5. Testing based on a conjugate double shift was performed for (a–h). Reconstruction results for 
the measured surface wavefronts are shown, along with measurement deviations, in Fig. 6.

Results. The three-sided mutual inspection function module in the Zygo optical measurement software was 
used for comparative experimental analysis. Although three-sided mutual inspection can only acquire contour 
lines in a single direction, this is an ideal approach for comparative analysis of absolute surface testing because 
there is no principal  error18,19. Figure 7 shows comparison results for the CSD and three-sided mutual inspec-
tion methods using different frequency spectrum compensation techniques. It can be seen from Fig. 7 that the 
CSD method based on Fourier transforms could reconstruct median and low-frequency shape errors for the 
measured surface. In Fig. 7a, the residual error (PV20 value) for the direct zero filling method is 11.35 nm and 
the RMS value is 1.72 nm. In Fig. 7b, the PV20 value for the average of adjacent points is 10.59 nm and the RMS 
value is 1.66 nm. In Fig. 7c, the PV20 value for the conjugate double shift method is 8.03 nm and the RMS value 
is 1.14 nm. Thus, the results of surface shape reconstruction using the proposed CDSD method are in good 
agreement with those of trihedral mutual testing, producing high measurement accuracy.

Repeatability experiments. The CDSD algorithm includes several measurement steps. As such, the 
measurement cycle is long and multiple uncertain factors are involved in the process, which can seriously affect 
algorithm stability. Therefore, measurement repeatability was evaluated using a series of experiments. The shift 
value  s1 was 4 mm, while  s2 was 4.3 mm across 40 sets of surface reconstruction errors, as shown in Fig. 8. Under 
the conditions of random noise and initial surface shape distributions, the optimal shift amount determined 
by the inverse optimization model can suppress the influence of random noise on measurement  results17. In 
addition, the shift errors introduced by precision shift tables were small, so the repeatability of this approach is 
high. The RMS value for repeatability, calculated using Bessel’s formula, was 0.49 nm, which approaches that of 
commercial interferometers. These results suggest the proposed conjugate double shift differential method to be 
highly repeatable.

Conclusion
This study combined conjugate shift differential absolute testing technology with the double shear effect in trans-
verse shear interferometry, thereby introducing a novel conjugate double shift differential (CDSD) method for 
accurate measurement of optical element surfaces. This technique can reduce the influence of missing spectra on 
measurement accuracy in Fourier wavefront reconstructions, particularly for high-precision absolute testing of 
optical elements. When no common factors exist between two groups of shift quantities, spectrum information 
lost in the first group of shape measurements can be compensated for using the second group of experimental 
data. Accurately measured profiles can then be obtained by an inverse Fourier transform of the wave surface coef-
ficients after spectrum compensation. Experimental results for planar optical elements using different spectrum 
compensation methods showed that, compared with direct zero compensation and adjacent point averaging, the 
RMS value of the measurement error for the CDSD method was reduced from 1.72 to 1.14 nm, with a repeat-
ability of 0.49 nm. This verifies the effectiveness and repeatability of the proposed algorithm in compensating 
for missing spectra and improving the accuracy of wavefront reconstructions. This work could further improve 

Figure 4.  The influence of spectrum compensation on measurement results using various shift quantities.
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surface measurements for planar optical elements, thereby promoting the wide applicability of Fourier recon-
struction algorithms in absolute testing technology.

Figure 5.  An interference wavefront diagram showing the resulting interference in various directions and at 
specific positions, including: (a)  s1 = 4 mm in the − x direction, (b)  s1 = 4 mm in the + x direction, (c)  s1 = 4 mm in 
the − y direction, (d)  s1 = 4 mm in the + y direction, (e)  s2 = 4.3 mm in the − x direction, (f)  s2 = 4.3 mm in the + x 
direction, (g)  s2 = 4.3 mm in the − y direction, and (h)  s2 = 4.3 mm in the + y direction.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21751  | https://doi.org/10.1038/s41598-022-26380-y

www.nature.com/scientificreports/

Figure 5.  (continued)

Figure 6.  Wavefront reconstruction of measured surfaces using various spectrum compensation methods, 
including: (a) direct zero filling, (b) average neighboring points, and (c) conjugate double shift. (d) Surface 
shape deviations for the results shown in (b and c).
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