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Classification with 2‑D 
convolutional neural networks 
for breast cancer diagnosis
Anuraganand Sharma * & Dinesh Kumar 

Breast cancer is the most common cancer in women. Classification of cancer/non‑cancer patients with 
clinical records requires high sensitivity and specificity for an acceptable diagnosis test. The state‑
of‑the‑art classification model—convolutional neural network (CNN), however, cannot be used with 
such kind of tabular clinical data that are represented in 1‑D format. CNN has been designed to work 
on a set of 2‑D matrices whose elements show some correlation with neighboring elements such as in 
image data. Conversely, the data examples represented as a set of 1‑D vectors—apart from the time 
series data—cannot be used with CNN, but with other classification models such as Recurrent Neural 
Networks for tabular data or Random Forest. We have proposed three novel preprocessing methods 
of data wrangling that transform a 1‑D data vector, to a 2‑D graphical image with appropriate 
correlations among the fields to be processed on CNN. We tested our methods on Wisconsin Original 
Breast Cancer (WBC) and Wisconsin Diagnostic Breast Cancer (WDBC) datasets. To our knowledge, this 
work is novel on non‑image tabular data to image data transformation for the non‑time series data. 
The transformed data processed with CNN using VGGnet‑16 shows competitive results for the WBC 
dataset and outperforms other known methods for the WDBC dataset.

In recent times, there are growing interest in the development of machine learning (ML) models for medical 
datasets due to the advancements in digital technology and improvements in data collection methods. Increas-
ingly, several ML-based systems have been designed as an early warning or diagnostic tool for chronic illnesses, 
for example diagnosing depression, diabetes and  cancer1. Breast cancer is arguably one of the deadliest forms of 
cancer amongst women with millions of reported cases around the world of which many cases become  fatal2,3. 
Breast cancer is caused by abnormal growth of some of the breast cells in the lining of the milk glands or ducts 
of the breast (ductal epithelium)4,5. Compared to healthy cells, these cells divide more rapidly and accumulate, 
forming a lump or mass. At this stage, the cells become malignant and may spread through the breast to lymph 
nodes or other parts of the body.

The study of breast cancer has attracted considerable attention in the past decades. Improving data collec-
tion and storage technologies has resulted in various types and amounts of data collected on breast cancer from 
around the world. These include data on Ribonucleic Acid (RNA) signatures for cell mutations that cause breast 
 cancer6,7, mammogram  images8,9 and data on symptoms and  diagnosis10. Many traditional Computer-Aided 
Diagnosis (CADx) systems require hand-crafted feature extraction which is a challenging  task11,12. Even con-
ventional ML techniques require the extraction of an optimal set of features manually prior to model training. 
An extensive review on various feature selection and extraction techniques can be found  in13,14. Some commonly 
used approaches for ML models are Principal Component Analysis (PCA)15, information  gain16, GA-based 
feature  selection17, recursive feature elimination (RFE)18, meta-heuristic  methods19 and rough  sets20. Feature 
selection and extraction, therefore, is an important consideration in the pre-processing step before applying any 
ML algorithm such as decision trees, Bayesian models, Support Vector Machines (SVM) and Artificial Neural 
Networks (ANN). The behavior of ML algorithms and their prediction accuracy is influenced by the choice of 
features  selected21,22. Many times manual feature extraction or knowledge of domain experts is needed to have 
a good understanding on the relevance of the  attributes23.

To address these issues surrounding the use of conventional ML algorithms has propelled the need for new 
approaches and methods to automatically extract features from large datasets. As a result, Deep Learning (DL) 
algorithms such as convolutional neural network (CNN or ConvNet) and Recurrent Neural Networks (RNNs) 
have emerged in recent times that can accept raw data and are automatically able to discover patterns in  them24,25.
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CNN is one of the most popular algorithms for deep learning which is mostly used for image classification, 
natural language processing, and time series forecasting. Its ability to extract and recognize the fine features has 
led to the state-of-the-art performance in various application domains such as computer vision, image recogni-
tion, speech recognition, natural and language  processing26–28. CNN is an enhancement of a canonical Neural 
Networks architecture that is specifically designed for image recognition  in29. Since then many variations have 
been added to the architecture of CNN to enhance its ability to produce remarkable solutions for deep learning 
problems such as  AlexNet26, VGG  Net27 and  GoogLeNet30. CNN eliminates the need for manual feature extrac-
tion because the features are learned directly by different convolutional  layers26,31. It does not require a separate 
feature extraction strategy which requires domain expert and other preprocessing techniques where complete 
features may still not be  extracted32. Despite its huge success with image data, CNN is not designed to handle 
tabular non-image data in non-time series form. Note that all future referencing of non-image data are in non-
time series form unless otherwise specified. Arguably, any problem that can represent the correlation of features 
of a given data example in a single map, maybe attempted via CNN.

CNNs have proven to work best on data that are in 2-D form, such as images and audio  spectrograms33. 
This is attributed to the fact that the convolution technique in CNN requires data examples to have at least 
two dimensions. Conversely, CNN has been explored on application-specific 1-D data as well. These include 
gene sequencing data such as DNA sequences being treated as text data (sequence of words)34, and signals and 
sequences in text mining, word detection and natural language processing (NLP)35,36. More specifically, CNN for 
Time-Series Classification (TSC) has been recently explored with some new methods such as Multi-Scale CNN 
(MCNN)25 and an ensemble of CNN models with AlexNet on Inception-v4  architecture37,38. These methods 
have made significant improvement in the accuracy of the classifiers with the state-of-the-art ensemble methods 
such as Flat-COTE and HIVE-COTE39,40. Moreover, raw time-series data has also been used into 1-D CNN by 
calculating the area of the signal for convolution with better time complexity and  scalability41,42. Nonetheless, 
much data still exists in a 1-D format such as clinical data of medical records, and therefore, opens challenging 
research questions on whether they can be effectively trained for classification using CNN. This paper is aimed 
at filling this gap by proposing a novel non-time series 1-D numerical data to 2-D data transformation methods 
and processing them with CNN. This would certainly help machine learners to train their data without being 
bothered about issues with feature extraction. This can also reduce a large feature vector to just a single image.

This paper is organized as follows: Section “Motivation” demonstrates the theoretical motivation of the 
proposed method. Section “Proposed methods” describes our three proposed methods of data wrangling from 
non-image Breast Cancer tabular  data10 to image data. Section “Experiments” describes the complete methodol-
ogy of the classification of breast cancer data with CNN. Section “Results” shows the experimental results and 
Section “Discussion” discusses the outcome of the experiments. Lastly, Section “Conclusion” concludes the paper 
by summarizing the results and proposing some further extensions to the research.

Motivation
The main motivation for this paper is to realize the potential of CNN for non-image clinical data for breast cancer 
because it eliminates the need for manual feature extraction. The features are learned directly by CNN whereby 
it also produces state-of-the-art recognition  results43. The key difference between traditional ML and DL is in 
how features are extracted. Traditional ML approaches use handcrafted engineering features by applying several 
feature extraction algorithms and then apply the learning algorithms. On the other hand, in the case of DL, the 
features are learned automatically and are represented hierarchically at multiple levels. This is the strong point 
of DL against traditional machine learning  approaches43.

We have proposed three novel methods to transform non-image clinical tabular data of breast cancer to 2-D 
feature map images in R2 so that a large set of these kinds of data are not deprived of the services of CNN. This 
would also encourage other variations and/or methods for text to image transformation to be developed in the 
future. The scope of this paper is to broaden the usage of CNN to those applications where d-dimensional raw 
data has set of N, 1-D data vectors in R as shown in Fig. 1. Each row represents a 1-D data vector with d elements 
where d, N ≥ 1 . It is a sample of a Wisconsin Original Breast Cancer dataset (WBC) used in the experiments. 
This dataset from  UCI10 is a record of medical examination of patients to diagnose breast cancer, where each 
row is a 1-D vector representing a numerical data example. We demonstrate our method of non-image breast 
cancer data transformation to image data—processed in CNN—produces exceptional results for classification 
accuracy. Some research demonstrates the use of 1-D convolutions on 1D datasets such as data in the form of 
signals and time  sequences44. Though this provides a possibility of using 1-D convolutions in this research, our 
experiments revealed their unsuitability on our experimental datasets. Having applied the data in its raw form 
into 1-D CNN gave highly unpredictable results.

Figure 1.  Snapshot of data file for breast cancer dataset WBC  from10.
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Proposed methods
We have proposed three basic techniques of data wrangling to convert Breast Cancer numerical tabular data to 
image data. The converted image must reflect some patterns to depict a given class. We have used Wisconsin 
Original Breast Cancer (WBC) and Wisconsin Diagnostic Breast Cancer (WDBC) datasets from the UCI  library10 
for the classification of numerical data in this work.

Equidistant bar graphs. The bar graph represents the measurement of every feature of a given dataset. 
There are lots of possibilities of drawing a bar graph but we have used a simplistic approach. The dataset is first 
normalized to [0, 1] then every feature is drawn based on its measured value. The width of the image in pixels is 
ψd + γ (d + 1) where d is total features, ψ is the width of a bar and γ is gap between two consecutive bars. The 
height of the image is normalized to produce a square image. We used 1−pixel length for ψ and 2−pixels length 
for γ in our experiments. This produces the square image of size [3d × 3d] approximately. Few data examples 
of WDBC dataset converted to bar graphs are shown in Fig. 4a with class labels—Benign and Malignant. The 
algorithm for this approach is given in the Fig. 2 (Algorithm 1).

These pictures are only useful to CNN if they depict a pattern in a convolved image. The first convolutional 
layer produces 6 features which are shown in Fig. 4b where some sort of distinguishing features have been 
reflected.

Intuitively, the “correct” order of the bars ought to give better results. The datasets of numerical data were 
reorganized where the related fields were put close to each other according to the order of their similarity. 
Firstly, a covariance matrix on data fields was generated then each value of the matrix is converted to ‘rank’ that 
determines how closely one field is related to the other. This is a shortest-path problem where algorithms such 
as dynamic programming or any metaheuristic  algorithm45 such as Genetic Algorithm (GA)46, Particle Swarm 

Figure 2.  Algorithms for data transformation.
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 Optimization47 or Reincarnation Algorithm (RA)48 can be used to get the optimum order of bars based on their 
respective rank. Thereafter, a new set of images was created using this new order of bars. This process has been 
elaborated more in Section “Discussion”.

Normalized distance matrix. The next method is the formation of a distance matrix which is a squared 
matrix of size [d × d] where d represents total features of a given example. Matrix elements are the differ-
ence between two features i.e., xij = xi − xj where xi and xj represent the measurement of a given feature with 
i, j ∈ [1, d] . We used Euclidean distance in our experiments. The matrix is then normalized between [0− 1] . This 
produces the square image of size [d × d] which has a gain of 3 folds in length compared to bar graphs described 
in Section “Equidistant bar graphs”. Few data examples of WDBC dataset converted to normalized distance 
matrix are shown in Fig. 4c with class labels. The images can be easily scaled up to [3d × 3d] . The first convolu-

Figure 3.  A complete process of non-image tabular data classification with CNN.

Figure 4.  Transformation of tabular data to image and then convolution with CNN.
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tional layer produces 6 features similar to bar graphs is shown in Fig. 4d. Its pseudocode and further description 
is given in Fig. 2 (Algorithm 2).

Combination of options (bar graph, distance matrix, normalized numeric data). Apparently, 
the above two strategies can be combined to give a third option for generating an image from numerical data. 
We create a colored image of 3 layers of size [3d × 3d] where the first layer has a normalized distance matrix, the 
second layer has bar graphs, and the third layer has a copy of numerical data stored row-wise, i.e., xij = xi where 
i, j ∈ [1, d] shows row and column of a matrix and xi represents the measurement of a given feature. Few data 
examples of WDBC dataset converted to the combination of options are shown in Fig. 5a with the class labels.

The first convolutional layer in this case, is not able to produce any distinct feature but the scaled up image 
shows different colors with some bars in Fig. 5b. The 3rd convolved block (12th layer) produces some blobs 
scattered in the images in Fig. 5c.

Experiments
CNN completes the classification process in two steps. The first step is the auto-feature extraction of the images 
and the second step is the classification of the same images with backpropagation neural  networks49,50. In the case 
of a numerical dataset that is not in the form of images, first goes through the data wrangling process described 

Table 1.  Parameter setting for CNN.

Parameter Value

Max iterations 1000

Attempts 30

Filter size 3 × 3

Initial learning rate η (with log transformation) 0.02

Momentum 0.88

L2 regularization 9.4E−7

Batch size 8

Figure 5.  Combined transformation technique and its corresponding convolution with CNN for some data 
examples of WDBC dataset.
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in Section “Proposed methods”, where either of the three options is used for non-image to image data conver-
sion. The transformed images may not make logical sense to human eyes but CNN is capable to extract relevant 
features out of it. Figure 3 illustrates the complete flowchart of the training process of CNN with non-image 
data sets. The process contains four important parts: Firstly, numeric input data (A) undergoes pre-processing 
of data wrangling (B) where it is normalized and converted to 2D image format using one of the data wrangling 
techniques described in Section “Proposed methods” (the figure shows distance matrix method of Section 
“Normalized distance matrix”). The generated image is filtered through the CNN convolution layers for feature 
extraction (C). The features are trained in the fully connected layers to obtain classification outputs (D).

Results
The objective of the experiment is to provide an alternative classification method with CNN for the non-image 
dataset of Breast Cancer and other similar datasets without any need for manual feature selection. We have used 
WBC and WDBC datasets from the UCI  library10 for the experiments. The properties of these datasets are given 
in Table 2. We have tested the efficacy of our method with other published state-of-the-art methods used for 
breast cancer diagnosis, namely, variations of Neural Networks (NN)51, Support Vector Machine (SVM)16,52,53, 
Decision Tree (DT)54 and Naïve Bayes (NB)55. These methods are generally supported by additional feature 
selection methods such as IG, Rough set or weight NB.

For CNN, we used  VGG1627 architecture with 4 convolutional blocks. Each convolutional block has 2D 
convolutional layer with the filter size of [3× 3] , 0.5× Layer ×

∣

∣

√

� image �
∣

∣ filters, ReLU layer and lastly max 
pooling layer with of pool size and stride of [2× 2] . Additionally, Bayesian optimization was used for parameter 
tuning. All parameter settings are shown in Table 1. For regularization and initial learning rate we used log 
transformation.

Initially, both datasets are divided into 80% training and 20% testing then 20% of training data is kept aside 
for validation data. After 30 attempts on each dataset, we have collected best and average classification accura-
cies on validation and test data sets shown in Tables 3 and 4 respectively. Bold figures represent the overall best 
result. CNN types 1, 2 and 3 represent equidistant bar graph, normalized distant matrix, and combined options 

Table 2.  Experimented dataset.

Dataset Attributes Instances Missing values Class ratio (Benign:Malignant)

WDBC 32 569 0 357:212

WBC 10 699 16 458:241

Table 3.  Best results obtained on classification accuracy. Significant values are in bold.

Dataset Transformation type

Image size

px1 px2 px4

Val Test Val Test Val Test

WDBC

1 - Bar graph 100.00 99.12 98.90 97.35 98.90 98.23

2 - Dist matrix 98.90 94.69 97.80 96.46 97.80 97.35

3 - Combined 98.90 100.00 98.90 99.12 100.00 98.23

WBC

1 - Bar graph 100.00 98.54 100.00 98.54 100.00 99.27

2 - Dist matrix 100.00 97.08 99.08 99.27 98.17 97.81

3 - Combined 100.00 99.27 100.00 98.54 100.00 99.27

Table 4.  Average results for classification accuracy. Significant values are in bold.

Dataset Transformation type

Image size

px1 px2 px4

Val Test Val Test Val Test

WDBC

1 - Bar graph 96.37 95.19 96.81 95.25 96.56 95.87

2 - Dist matrix 93.99 91.21 92.60 91.47 93.19 91.95

3 - Combined 96.70 96.02 96.15 95.01 96.19 95.07

WBC

1 - Bar graph 97.22 95.99 97.71 96.23 97.71 95.55

2 - Dist matrix 94.25 92.77 94.31 93.67 95.60 94.11

3 - Combined 97.06 96.40 97.49 96.55 97.19 96.08
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respectively. px1 shows that the image is formed with bars of 1-pixel width only. Similarly px2 and px4 show 
width of 2 and 4 pixel sizes respectively for bars in an image.

Additionally, it is highly desirable in medical diagnosis to have high sensitivity and specificity measures. 
Sensitivity is the ability of a test to correctly identify those with the disease, and specificity is correctly identifying 
those without the disease. Alternatively, the F1 score can be used as a derived metric that merges both sensitiv-
ity and precision measures. Tables 6 and 7 show the best and average of these additional metrics respectively, 
for WDBC and WBC datasets on classification. The confusion matrix for the best cases is shown in Table 5. We 
have also performed experiments using CNN with 1-D convolutions on raw data without any sophisticated data 
transformation. However, we have obtained poor results when compared to our method with the average clas-
sification accuracy of 76.11% and 89.64% for WDBC and WBC datasets respectively.

The comparison of our methods with other state-of-the-art methods is shown in Table 8. The table shows 
different methods from 2009–2019. The results show accuracy, sensitivity and specificity of WBC and/or WDBC 
datasets. Authors  in11 have used mammogram images of breast cancer as CNN works on images. In some cases, 
authors got 100% accuracy with 10-fold cross-validation for WBC dataset. Lower fold of cross-validation gener-
ally gives lower  accuracy16,51,52.

Table 5.  Confusion matrices.

Predicted

(0) malignant (1) benign

(a) Confusion matrix format

Real

(0) malignant TN FP

(1) benign FN TP

(b) WDBC (best sensitivity (1.00) & specificity (1.00))

Real

(0) malignant 71 0

(1) benign 0 42

(c) WBC for best sensitivity (1.00)

Real

(0) malignant 88 1

(1) benign 0 48

(d) WBC for best specificity (1.00)

Real

(0) malignant 89 0

(1) benign 2 46

Table 6.  Best score with Type3 on px1.

Dataset Score type

Score

Sensitivity Specificity F1 Run time (s)

WDBC
Best sensitivity 1.00 1.00 1.00 13.3

Best specificity 1.00 1.00 1.00 9.8

WBC
Best sensitivity 1.00 0.99 0.99 15.9

Best specificity 0.96 1.00 0.98 12.8

Table 7.  Average score with Type3 on px1.

Dataset Score type Avg score Run time

WDBC

Specificity 0.96

13.2 sSensitivity 0.96

F1 0.94

WBC

Specificity 0.97

13.5 sSensitivity 0.97

F1 0.96
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Discussion
The experimental results of data transformation from non-image tabular breast cancer datasets to image have 
been promising for the utilization of CNN for classification accuracy. Although the proposed methods are in the 
early stages, the obtained results are very significant in the development of new strategies with data wrangling 
for deep learning. This also provides an opportunity to derive even better alternatives for CNN in the future. 
It was observed that our proposed combined approach, i.e. Type-3 transformation and bar width of 1 pixel i.e. 
px1, has been the most significant method as it carries the most information about the data in three dimensions 
of an image. It has outperformed other methods for the WDBC dataset by clocking 100% accuracy (with 1.0 
sensitivity, specificity and F1 score). It has also shown very competitive results for the WBC dataset with 99.27% 
accuracy and 1.0 sensitivity 0.99 specificity and 0.99 F1 score.

As discussed in Section “Proposed methods”, different order of bar graphs for Type-1 and Type-3 transforma-
tions produce different images. A bar represents its corresponding field value of a given sample. We have tried 
to bring the related bars closer to each other by using a covariance matrix that determines the “closeness” of two 
fields. For example Fig. 6a shows the Adjacency Matrix of co-variance of each field for WBC dataset. The data 
is arranged row-wise such that each value represents the rank of ith row with jth column of a given field. To get 
the “best” arrangement of fields, we minimize the total co-variance rank by using a meta-heuristic algorithm 
GA to solve this shortest path problem. The process of minimization for WDBC is shown in Fig. 6b where the 

Table 8.  Comparison of the proposed method with other methods. Significant values are in [bold/italics].

Authors Year Method Accuracy (%) Sensitivity Specificity Dataset

Akay 2009 SVM with F-score feature selection 99.51 100 97.91 WBC

Chen et al. 2011 Rough set (RS) and SVM 100 100 100 WBC

Onan 2015 Fuzzy-rough nearest neighbor 99.72 100 99.47 WBC

Bhardwaj et al. 2015 Genetically Optimized NN 100 98.77 100 WBC

Karabatak 2015 Naïve Bayesian (NB) 98.54 99.11 98.25 WBC

Wang et al. 2018 SVM based ensemble learning 97.10 97.11 97.23 WBC

Na Liu et al. 2019 IGSAGAW with CSSVM 95.80 – – WBC

Of this paper 2020 CNN with Type-3 Transformation 99.27 100 98.88 WBC

Ahn et al. 2009 Novel CBR 99.12 – – WDBC

Sun et al. 2017 CNN on mammogram images 82.43 81.00 72.26 Mammogram

Wang et al. 2018 SVM based ensemble learning 97.68 94.75 99.49 WDBC

Na Liu et al. 2019 IGSAGAW with CSSVM 95.70 – – WDBC

Of this paper 2020 CNN with Type-3 Transformation 100 100 100 WDBC

Table 9.  Order of fields based on minimization of total co-variance of adjacency matrix.

Dataset Order of fields

WBC [5, 4, 6, 2, 3, 7, 9, 1, 10, 8]

WDBC [5, 27, 14, 16, 4, 11, 2, 10, 3, 6, 1, 7, 13, 29, 20, 24, 8, 21, 22, 17, 25, 26, 12, 30, 9, 18, 23, 19, 28, 15, 31]

Figure 6.  Minimization of covariance for WBC dataset.
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minimum rank is obtained by the end of 10th generation. The dataset fields were reorganized where the related 
fields were put close to each other according to the order of their similarity. The final order of fields for WBC 
and WDBC produced through minimum ranks are shown in Table 9. The images of these datasets were gener-
ated accordingly for the experiment. Notably, this order of fields does not have significant improvement over the 
original arrangement as the CNN produces similar convolved images.

The only shortcoming of the CNN algorithm is its high processing cost than other methods, especially with 
bigger sized images. Generally, it takes 9–15 s for a MATLAB 2018 program to complete the training process on 
DELL XPS i7-9700 @ 3GHz machine with 8 CPUs and NVIDIA GEFORCE RTX 2060 GPU. Despite this, the 
experimental results demonstrate the size of data has no direct impact on the performance of CNN. Additionally, 
with the advent of quantum  computing56 and parallel GPUs with enough memory can produce results in a rea-
sonable time frame. The data wrangling process of converting non-image data to the image is not too expensive 
either. The every-case time complexity of the bar graph approach has the order of O(Nd) and the normalized dis-
tance matrix has the order of O(Nd2) . The Matlab code and data is available at https:// github. com/ anura ganan ds.

Conclusion
The objective of this paper was to process non-image data (in a non-time series form) of Breast Cancer datasets 
WDBC and WBC into CNN due to its state-of-the-art performance and elimination of manual feature extraction 
for image recognition applications. The utilization of CNN has been confined largely to image data only except 
for some domain-specific data conversion techniques such as NLP and voice recognition. We have proposed 
three novel approaches to convert numerical non-time series data to image data. This process of conversion is 
very straightforward with the efficiency of the order of not more than O(Nd2) . The experimental results on clas-
sification accuracy show the competitiveness of these methods. There is also a high potential for improving these 
approaches further to have more outstanding results. For example, bar graphs with different shapes, sizes, color 
and even arrangements can be tried. Similarly, distance matrix can be enhanced to have more information such 
as the mean/variance of the neighboring elements. It still needs to be seen how other applications with various 
types and orientations of numerical data would respond to CNN after non-image data conversion to image data. 
Intuitively, the more the information on data would produce the better the results as observed with the combined 
approach. Moreover, the imminent future work is to try our methods on time-series data to have competitive 
results with its counterpart of 1-D transformation. Finally, the classification accuracy of numerical data without 
any sophisticated data transformation on 1-D CNN did not produce acceptable results.

Data availability
The datasets analysed during the current study are available in the UCI repository, [https:// archi ve. ics. uci. edu/ 
ml/ datas ets/ breast+ cancer+ wisco nsin+ (diagn ostic) and https:// archi ve. ics. uci. edu/ ml/ datas ets/ breast+ cancer+ 
wisco nsin+ (origi nal)].
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