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Integrated multiple microarray 
studies by robust rank aggregation 
to identify immune‑associated 
biomarkers in Crohn’s disease 
based on three machine learning 
methods
Zi‑An Chen 1,2,3, Hui‑hui Ma 1,2,3, Yan Wang 1,2, Hui Tian 1,2, Jian‑wei Mi 1,2, Dong‑Mei Yao 1,2* & 
Chuan‑Jie Yang 1,2*

Crohn’s disease (CD) is a complex autoimmune disorder presumed to be driven by complex interactions 
of genetic, immune, microbial and even environmental factors. Intrinsic molecular mechanisms in CD, 
however, remain poorly understood. The identification of novel biomarkers in CD cases based on larger 
samples through machine learning approaches may inform the diagnosis and treatment of diseases. 
A comprehensive analysis was conducted on all CD datasets of Gene Expression Omnibus (GEO); our 
team then used the robust rank aggregation (RRA) method to identify differentially expressed genes 
(DEGs) between controls and CD patients. PPI (protein‒protein interaction) network and functional 
enrichment analyses were performed to investigate the potential functions of the DEGs, with 
molecular complex detection (MCODE) identifying some important functional modules from the PPI 
network. Three machine learning algorithms, support vector machine‑recursive feature elimination 
(SVM‑RFE), random forest (RF), and least absolute shrinkage and selection operator (LASSO), 
were applied to determine characteristic genes, which were verified by ROC curve analysis and 
immunohistochemistry (IHC) using clinical samples. Univariable and multivariable logistic regression 
were used to establish a machine learning score for diagnosis. Single‑sample GSEA (ssGSEA) was 
performed to examine the correlation between immune infiltration and biomarkers. In total, 5 
datasets met the inclusion criteria: GSE75214, GSE95095, GSE126124, GSE179285, and GSE186582. 
Based on RRA integrated analysis, 203 significant DEGs were identified (120 upregulated genes and 83 
downregulated genes), and MCODE revealed some important functional modules in the PPI network. 
Machine learning identified LCN2, REG1A, AQP9, CCL2, GIP, PROK2, DEFA5, CXCL9, and NAMPT; 
AQP9, PROK2, LCN2, and NAMPT were further verified by ROC curves and IHC in the external cohort. 
The final machine learning score was defined as [Expression level of AQP9 × (2.644)] + [Expression 
level of LCN2 × (0.958)] + [Expression level of NAMPT × (1.115)]. ssGSEA showed markedly elevated 
levels of dendritic cells and innate immune cells, such as macrophages and NK cells, in CD, consistent 
with the gene enrichment results that the DEGs are mainly involved in the IL‑17 signaling pathway 
and humoral immune response. The selected biomarkers analyzed by the RRA method and machine 
learning are highly reliable. These findings improve our understanding of the molecular mechanisms of 
CD pathogenesis.
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Crohn’s disease (CD) is a complex genetic disorder likely caused by genetic, microbial, environmental, and 
immune  factors1–3, with chronic diarrhea, abdominal pain, and weight loss being among the most common 
symptoms. Currently, there is no curative medical approach for  CD4. Therefore, the importance of understand-
ing the cellular and molecular mechanisms involved in CD pathogenesis, exploring novel intervention targets, 
and identifying potential biomarkers as diagnostic indicators cannot be overlooked.

Several immune-associated cell types present in the intestinal mucosa are reported to contribute to CD 
pathophysiology, including dendritic  cells5–7 and  lymphocytes8,9. However, the inherent complexity of CD, as 
manifested by a widely variable clinical course, makes it difficult to dissect disease mechanisms and to identify 
biomarkers that play a key role in disease progression. With the development of genomic sequencing technology, 
an increasing number of microarray datasets have been reported, providing an ideal source to investigate various 
molecular roles in CD. In recent years, several studies utilizing microarray technology have been published to 
identify CD  biomarkers10–12. However, as these studies included relatively small sample sizes or lacked verifi-
cation in external datasets, representing the molecular characteristics of this complex disease is difficult. The 
identification of novel biomarkers in CD cases based on larger samples through machine learning approaches 
may inform the diagnosis and treatment of diseases.

In this study, we constructed a CD cohort with the largest sample size to date through the robust rank aggrega-
tion (RRA)  method13. A network of protein‒protein interactions (PPIs) was then built, and several functional 
modules were detected after identifying differentially expressed genes (DEGs). In addition, three machine learn-
ing algorithms, namely, support vector machine-recursive feature elimination (SVM-RFE), random forest (RF), 
and least absolute shrinkage and selection operator (LASSO), were applied to determine characteristic genes 
among multiple CD cohorts. We further illustrate the immune molecule-related functions in CD. This work 
reveals the key role of different immune molecules in the occurrence and development of CD.

Materials and methods
Search strategy for CD microarray datasets. A total of 73 datasets were collected from the Gene 
Expression Omnibus (GEO) database (https:// www. ncbi. nlm. nih. gov/ geo/) by systematic retrieval using the fol-
lowing keywords: ("Crohn Disease"[MeSH Terms] OR Crohn Disease [All Fields]) AND "Homo sapiens"[porgn] 
AND ("Expression profiling by array"[Filter] AND (“2012/01/01”[PDAT]: “2022/01/01”[PDAT])). Inclusion cri-
teria were (1) sample size > 50, (2) both cases and controls included, (3) "ileum/colon" as sample source, and (4) 
available gene annotation information (listed in Fig. 1).

Identification of DEGs in each CD dataset. The gene expression profiles of all datasets in the final 
analysis were downloaded from the GEO database (https:// www. ncbi. nlm. nih. gov/ geo/). For multiple probes 
targeting the same gene, the scaled expression values were averaged. The matrix file was extracted using PERL 
software (PERL version 5.6.1), and quantile normalization was performed using the normalizeBetweenArrays 
 function14 in R software (R version 4.2.0). Due to the large fluctuations of the values in GSE179285, all values in 
these data were logarithmically transformed (e.g., "a" to "log(a + 1)") to make them conform to the requirements 

Figure 1.  Flowchart of the overall study design.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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of a normal distribution and facilitate downstream data analysis. LogFC (log fold change) > 0.7 and adjusted 
P < 0.05 were set as the criteria for identifying DEGs.

RRA analysis and identification of DEGs in the integrated cohort. Using RRA, all genes were 
sorted for each dataset and ranked based on their logFC with the limma package. The DEGs were then ranked 
using the ranked list and aggregated using the "RobustRankAggreg"  package13 of R software. In this method, an 
adjusted P value determines the likelihood that DEGs will be identified in datasets with highly ranked genes. 
LogFC (log fold change) > 0.7 and adjusted P < 0.05 were set as the criteria for identifying DEGs.

Functional and pathway enrichment analyses. We performed Gene Ontology biological process 
(GO-BP) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)  analysis15–17 on the DEGs identified 
by RRA using the limma and clusterProfiler packages. For enrichment analysis of DEGs, adjusted P < 0.05 was 
 used18.

PPI (protein‒protein interactions) network analysis. For the DEGs obtained by RRA analysis, a 
PPI network was constructed using the STRING website (https:// cn. string- db. org/) with a parameter of confi-
dence > 0.4. Visualization of the PPI network was performed by Cytoscape (Cytoscape version 3.7.2), and molec-
ular complex detection (MCODE) (a plug-in in Cytoscape) was used to identify functional  modules19.

Analysis of CD‑ and immune‑associated genes. A list of 2483 immune-associated genes was obtained 
from the Immunology Database and Analysis Portal (https:// www. immpo rt. org/ shared/ genel ists). Candidate 
genes were determined by the intersection of DEGs and immune-related genes, followed by the elimination of 
gene symbols that do not exist in the five RRA analysis-associated datasets.

Feature selection of characteristic biomarkers via three machine learning methods. We used 
 LASSO20, SVM-RFE21, and  RF22 to perform feature selection for diagnostic biomarkers for CD. The LASSO 
algorithm was applied with a turning/penalty parameter using tenfold cross-validation via the glmnet  package23. 
With SVM-RFE, relevant characteristics are selected, and redundant characteristics are removed more effec-
tively than with linear discriminant analysis or the mean squared error method. By using tenfold cross-valida-
tion, SVM-RFE was applied for feature selection, and the top 10 genes were determined as characteristic  genes24. 
The RF algorithm is a randomization algorithm to reduce overfitting of a single decision tree and promote model 
accuracy based on numerous relevant decision trees from one training set; the top 10 genes were determined as 
the characteristic  genes25.

For every dataset included in RRA, the genes obtained from the intersection of genes selected by the three 
methods were identified as characteristic genes. The area under the receiver operating characteristic (ROC) curve 
(AUC) was used to estimate diagnostic efficacy.

Batch correction, data merging and PCA dimensionality reduction. With the combat function 
by the sva package, we reduced the batch differences and merged 3 cohorts: GSE75214 (GPL6244, Affymetrix), 
GSE126124 (GPL6244, Affymetrix), and GSE186582 (GPL570, Affymetrix) from the same company platform. 
The dataset was named the combined dataset. A principal component analysis (PCA) was performed to evaluate 
the magnitude of batch differences before and after correction.

Construction of the diagnostic machine learning score. Univariate logistic regression analysis was 
performed to identify diagnostic genes in combined dataset patients (p < 0.05). The identified genes were further 
included in a multivariate logistic regression analysis to construct a potential machine learning score in CD. 
Finally, a formula for the risk score was established, and we calculated the risk score of each case as follows:

Coefi indicates the correlation coefficient of each gene, and X indicates the level of gene expression.

Landscape of immune cell infiltration. To combine the datasets, the limma package and the combat 
function of the sva  package26 were applied to preprocess and remove the batch effects of these three datasets. 
Based on the expression profiles of 29 immunity-relevant signatures, the single-sample gene set enrichment 
analysis (ssGSEA) method was utilized to determine the degree of immune cell infiltration.

Gene set enrichment analysis. GSEA was performed on characteristic genes to elucidate their biologi-
cal  significance27. To achieve a normalized enrichment score for each analysis, 1000 gene set permutations were 
conducted. A false discovery rate (FDR) < 0.05 was regarded as significant enrichment to identify significant 
KEGG pathways.

Verification of CD‑associated characteristic genes by immunohistochemical (IHC) stain‑
ing. To validate the results of genetic analysis at the transcriptional level, 6 patients with chronic colitis or 
CD were consecutively recruited between March and May 2021 in the Department of Gastroenterology at the 
Second Hospital of Hebei Medical University. Written informed consent was obtained from all individuals. In 

RiskScore =

n∑

t=1

Coefi× Xi

https://cn.string-db.org/
https://www.immport.org/shared/genelists
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addition, the study was approved by the Ethics Committee of Second Hospital of Hebei Medical University. All 
research was performed in accordance with relevant guidelines/regulations. A total of 3 chronic colitis samples 
and 3 CD samples from human intestinal mucosal tissues were collected to perform histopathologic diagnosis 
by two pathologists.

The collected intestinal mucosa samples were fixed with 4% PFA and embedded in paraffin. IHC staining was 
performed as previously  described28. Antibodies against the following were used: AQP9 (A8540; 1:200 dilution) 
and PROK2 (A6705; 1:200 dilution). HRP-labeled goat anti-rabbit antibody (AS014; 1:200 dilution, all from 
ABclonal, Wuhan, China) was used as the secondary antibody.

Statistical analysis. All statistical tests were implemented using R software 4.1.3. The Wilcoxon test was 
applied to analyze the significant difference between two groups, and Spearman’s correlation test was used to 
determine the correlation between the variables. A statistically significant P value was regarded as 0.05.

Results
Characteristics of the microarrays included in RRA analysis. The flow diagram of the CD dataset 
search strategy and inclusion and exclusion criteria is described in Fig. 1. According to the criteria described 
in the methods, a total of five datasets were included in further analysis:  GSE7521429, GSE95095,  GSE12612430, 
 GSE17928531, and  GSE18658232. Among these five datasets, 671 CD cases (including 308 inflamed samples of 
CD) were enrolled in the CD group, and 109 were enrolled in the control group. An overview of the microarray 
datasets included in the study is shown in Table 1.

RRA integrated analysis. Before RRA analysis, all included cohorts were standardized to reduce batch 
differences among multicenter data (displayed in Supplementary Fig. 1). DEGs in each dataset were identified; 
volcano maps are illustrated in Fig. 2A–E.

After the RRA method, a total of 203 DEGs (83 downregulated and 120 upregulated) were identified. A heat-
map including the top 15 DEGs (upregulated or downregulated) is illustrated in Fig. 2F. According to the analysis, 
the top 10 significant genes expressed in CD included five upregulated genes [REG1B (P = 2.76E−11), REG1A 
(P = 7.43E−10), MMP1 (P = 3.60E−09), S100A8 (P = 3.39E−08), and LCN2 (P = 7.78E−08)] and five downregu-
lated genes [HMGCS2 (P = 3.60E−08), AQP8 (P = 1.55E−07), SLC16A9 (P = 1.55E−07), TRPM6 (P = 8.21E−07), 
and CA1 (P = 9.62E−07)]. Interestingly, the top 10 significant genes were somewhat similar to another RRA analy-
sis from our previous study in ulcerative colitis (UC) (five upregulated genes: DUOX2, SLC6A14, MMP3, REG1A, 
and REG1B; and five downregulated genes: AQP8, HMGCS2, PCK1, SLC26A2, and ABCG2), indicating high 
homogeneity in clinical inflammatory bowel disease (IBD)33. Supplementary Table 1 lists the overall RRA results.

DEG‑based functional enrichment analysis. The DEGs, including 120 upregulated and 83 downregu-
lated genes, were subjected to GO-BP analysis and KEGG analysis, and the top five results are listed in Fig. 3A,B. 
The results showed humoral immune response, antimicrobial humoral immune response mediated by anti-
microbial peptide, leukocyte migration, antimicrobial humoral response, and leukocyte chemotaxis to be the 
top five enriched BPs. The IL-17 signaling pathway, the TNF signaling pathway, viral protein interaction with 
cytokine and cytokine receptor, rheumatoid arthritis, and Staphylococcus aureus infection were found to be the 
top five enriched KEGG pathways (Fig. 3A). The detailed results are listed in Supplementary Table 2. Summariz-
ing the results of our gene enrichment analysis and those in similar studies, we found that the results of KEGG 
analysis were similar to those of previously reported articles, i.e., IL-17 and TNF-α were significantly enriched 
in  CD11,34; however, in BP analysis, our study found that a variety of humoral immunities, especially microbial-
associated humoral immunity, were significantly enriched in CD, which has not been previously reported in the 
literature.

PPI network analysis and identification of characteristic genes. Using the STRING website, a vis-
ual network of PPIs based on RRA analysis was constructed, including 203 nodes and 940 edges. The network 
was then imported into Cytoscape software for further analysis, with upregulated genes shown with orange 
markers and downregulated genes with blue markers (Fig. 4A). The top two modules with the highest scores 

Table 1.  Characteristics of the included microarray datasets.

GSE ID Participants (control/CD) Analysis Type Platform Year Tissues Links

GSE75214 22/75 Array GPL6244 2017 Colon/Ileum https:// www. ncbi. nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= GSE75 214

GSE95095 12/48 Array GPL14951 2019 Colon/Ileum https:// www. ncbi. nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= GSE95 095

GSE126124 19/37 Array GPL6244 2019 Colon https:// www. ncbi. nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= GSE12 6124

GSE179285 31/168 Array GPL6480 2021 Colon/Ileum https:// www. ncbi. nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= GSE17 9285

GSE186582 25/343 Array GPL570 2021 Ileum https:// www. ncbi. nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= GSE18 6582

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75214
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75214
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE95095
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE95095
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126124
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126124
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE179285
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE179285
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE186582
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE186582
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were determined by MCODE. Module 1 comprised MMP9, CCL2, SERPINE1, MMP10, PLAU, MMP7, CCL25, 
MMP12, CD274, CHI3L1, LCN2, SPP1, MMP1, SELE, MMP3, CXCL5, CXCL6, CXCL9, CCL20, CXCL2, 
CXCL1, CXCL10, IL6, CXCL8, and IL1RN, with the seed gene IL1β (Fig. 4B). Module 2 comprised S100A9, 
NCF2, FPR1, MNDA, AQP9, S100A12, VNN2, and S100A8, with the seed gene CSF3R (Fig. 4C). The detailed 
scores of each module are shown in Supplementary Table 3.

Based on GO-BP enrichment analysis of module 1, the genes are mainly involved in cellular response to 
lipopolysaccharide, myeloid leukocyte migration, and cellular response to molecules of bacterial origin. KEGG 
analysis showed that these genes play a major role in the IL-17 signaling pathway, the TNF signaling pathway, 
and rheumatoid arthritis (Fig. 4D).

GO enrichment analysis of module 2 revealed the DEGs to be mainly related to neutrophil chemotaxis, neu-
trophil migration, and granulocyte chemotaxis. KEGG analysis revealed that these genes are mainly involved in 
the IL-17 signaling pathway (Fig. 4E).

Determination of characteristic genes. Considering that the immune response is an important factor 
leading to the occurrence, progression and prognosis of CD, we next extracted immune-related genes among 
the DEGs, eliminated those not present in the five datasets, and obtained a total of 46 candidate immune genes 
(Supplementary Table 4).

In the following investigation, three different machine learning methods (LASSO, SVM-RFE and RF) were 
employed for feature selection and to determine characteristic genes in each dataset. As described above, when 
a gene was selected by the three methods at the same time, the gene was identified as a characteristic gene in 
each dataset.

The results were as follows. For GSE75214, CXCL1, STAT1, CXCL6, AQP9, LCN2, REG1A, GIP, and VIPR1 
were selected by LASSO; LCN2, MMP12, VIPR1, REG1A, CCL20, FPR2, AQP9, IL1β, PYY, and CXCL2 were 
selected by SVM-RFE; and NOS2, IDO1, DMBT1, STAT1, AQP9, CXCL1, REG1A, LCN2, SOCS3, and CXCL6 
were selected by RF. For GSE95095, PYY, SOCS3, CXCL1, SPP1, PROK2, DEFA5, CXCL10, LCN2, REG1A, 
PLAU, GIP, CCL2, and VIPR1 were selected by LASSO; CCL2, LCN2, VIPR1, PROK2, DEFA5, PYY, DES, 
CXCL6, GIP, and CXCL2 were selected by SVM-RFE; and CCL25, S100A12, DEFA5, SOCS3, SERPINA3, PROK2, 
GIP, CCL2, CXCL6, and PLAU were selected by RF. For GSE126124, STAT1, PROK2, LCN2, REG1A, CXCL11, 
and CXCL9 were selected by LASSO; IDO1, MMP12, PROK2, GREM1, CXCL5, AQP9, CXCL9, S100A8, LCN2, 
and CHP2 were selected by SVM-RFE; and AQP9, CXCL6, S100A8, IDO1, CSF3R, CXCL11, CXCL9, LCN2, 
CXCL1, and CXCL5 were selected by RF. For GSE179285, FPR1, SPP1, NOS2, CXCL10, GREM1, CHP2, LCN2, 

Figure 2.  Identification of DEGs from a single dataset and RRA analysis. Volcano plots of DEG distributions 
in GSE75214 (A), GSE95095 (B), GSE126124 (C), GSE179285 (D), and GSE186582 (E). Upregulated genes 
are marked by red points, and downregulated genes are marked by green points; genes with no significant 
differences are marked by black points. (F) Heatmap of the top 15 DEGs (upregulated or downregulated) 
identified in RRA.
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GIP, DES, CCL20, DMBT1, and VIPR1 were selected by LASSO; PROK2, CXCL10, LCN2, VIPR1, SPP1, FPR1, 
CSF3R, SERPINA3, S100A9, and DES were selected by SVM-RFE; and DEFA5, DEFA6, REG1A, LCN2, PROK2, 
CXCL1, SERPINA3, DUOX2, NOS2, and S100A8 were selected by RF. For GSE186582, PYY, CSF3R, SPP1, 
STAT1, NOS2, GREM1, LCN2, NAMPT, REG1A, GIP, DES, CCL2, and MMP9 were selected by LASSO; NAMPT, 
GIP, STAT1, LCN2, PROK2, SPP1, CXCL1, GZMB, PLAU, and PYY were selected by SVM-RFE; and NAMPT, 
GIP, STAT1, LCN2, PROK2, SPP1, CXCL1, GZMB, PLAU, and PYY were selected by RF. These results are detailed 
in Supplementary Table 5.

Characteristic genes were finally obtained by taking the intersection of the results of the three feature selection 
methods, as depicted in Fig. 5. The selected characteristic genes were LCN2, REG1A, and AQP9 for GSE75214; 
CCL2, GIP, PROK2, and DEFA5 for GSE95095; LCN2 and CXCL9 for GSE126124; LCN2 for GSE179285; and 
GIP and NAMPT for GSE186582.

Figure 3.  Functional enrichment analysis of DEGs. (A) GO-BP analysis and (B) KEGG pathway analysis.
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Verification of characteristic genes in RRA datasets and clinical samples. To further verify the 
value of the characteristic genes as diagnostic markers, we explored ROC curves in different cohorts included 
in the RRA analysis (Fig. 6). The results showed that the AUCs of AQP9 and PROK2 were greater than 0.75 and 
those of LCN2 and NAMPT were greater than 0.70 in all five cohorts included in the RRA. Therefore, these genes 
have good application value as biomarkers in CD diagnosis and treatment.

Figure 4.  Visualization and module identification of the PPI network. (A) A total of 203 DEGs were mapped 
using Cytoscape software. Two PPI network modules were identified using the MCODE plug-in. (B) Module 1 
comprised MMP9, CCL2, SERPINE1, MMP10, PLAU, MMP7, CCL25, MMP12, CD274, CHI3L1, LCN2, SPP1, 
MMP1, SELE, MMP3, CXCL5, CXCL6, CXCL9, CCL20, CXCL2, CXCL1, CXCL10, IL6, CXCL8, and IL1RN, 
with the seed gene IL1β. (C) Module 2 comprised S100A9, NCF2, FPR1, MNDA, AQP9, S100A12, VNN2, and 
S100A8, with the seed gene CSF3R. In functional enrichment analyses of the genes in module 1 (D) and module 
2 (E), the red points represent upregulated genes, and the blue points represent downregulated genes.

Figure 5.  Determination of characteristic genes in GSE75214 (A), GSE95095 (B), GSE126124 (C), GSE179285 
(D), and GSE186582 (E).
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To verify the accuracy of the results, chronic colitis and CD tissue specimens were examined by IHC for the 
expression levels of AQP9 and PROK2. Representative images of IHC staining are illustrated in Fig. 7A–D. We 
found that IHC expression of AQP9 and PROK2 in CD tissues was higher than that in chronic colitis tissues.

Establishment of a machine learning score with 3 screened genes. To better explore the role of 
the four genes in the diagnosis of CD, we further constructed a machine learning score using machine learning 
scores for the four genes AQP9, LCN2, NAMPT, and PROK2. First, three datasets from the array platform of 
Affymetrix: GSE75214 (GPL6244. Affymetrix), GSE126124 (GPL6244, Affymetrix), and GSE186582 (GPL570, 
Affymetrix) were batch corrected and merged by the Combat function of sva packages, and the merged datasets 
were named Combined Datasets. We explored the batch differences of the 3 datasets before and after process-
ing by PCA (Fig. 8A,B). The results showed that the batch differences were significantly reduced after Com-
bat function treatment. We then performed univariable logistic regression analysis with the combined data-
sets as the training set and selected genes with P < 0.05 for multivariable logistic regression analysis (Table 2). 
The results showed that all four genes had P < 0.05 in the univariable logistic regression, and a total of three of 
these genes were included in the further multivariable regression analysis. The final machine learning score 
was defined as [Expression level of AQP9 × (2.644)] + [Expression level of LCN2 × (0.958)] + [Expression level of 
NAMPT × (1.115)].

We then performed an ROC curve analysis and compared it with three single gene examinations, AQP9, 
LCN2, and NAMPT. The results showed an AUC of 0.969 for diagnosis using machine learning scores in the 
combined datasets (training group) (Fig. 8C), compared to 0.833 in GSE95095 (validation set 1) (Fig. 8D) and 
0.838 in GSE179285 (validation set 2) (Fig. 8E). The diagnostic value of the scores was compared with other 
single-gene AQP9, LCN2, and NAMPT3, and the results showed good robustness of the machine learning scores 
across cohorts in multiple centers.

Signaling pathways involving characteristic genes in the combined cohort. The signaling 
pathways associated with the selected characteristic genes were evaluated using GSEA in the combined cohort 
(Fig. 9A–D). Our analysis indicated that AQP9, PROK2, LCN2, and NAMPT were positively linked to the IL-17/
IL-17-associated signaling pathway (rheumatoid arthritis, systemic lupus erythematosus, and type 1 diabetes 

Figure 6.  Diagnostic efficacy of characteristic genes in the prediction of CD progression and external 
verification of the expression of characteristic genes. ROC curves estimating the diagnostic performance of 
characteristic genes, including LCN2, REG1A, AQP9, CCL2, GIP, PROK2, DEFA5, CXCL9, and NAMPT, in 
the identification of CD patients in the GSE75214 (A), GSE95095 (B), GSE126124 (C), GSE179285 (D), and 
GSE186582 (E) datasets.
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mellitus), immune-related disorders (allograft rejection and graft-versus-host disease) or infection (leishmania-
sis and malaria)8.

Analysis of correlation between related biomarkers and infiltrating immune cells. By perform-
ing ssGSEA, we compared the infiltration levels of most immune cell populations between CD and normal 
samples in the combined cohort. The results showed several immune cell types, including dendritic cells, mac-
rophages, regulatory T cells and NK cells, to be more abundant in CD patients than in controls in most of 
the datasets included in the RRA analysis (Fig. 10A). Further analysis showed that AQP9, PROK2, LCN2, and 
NAMPT correlated mainly positively with the differentially expressed cell types, indicating their value as bio-
markers in CD (Fig. 10B).

Discussion
CD is a chronic and relapsing inflammatory condition of the gastrointestinal tract that occurs following immune 
system  dysregulation35,36. In this study, we integrated multiple datasets by RRA analysis to thoroughly identify 
DEGs and several immune-related genes via three machine learning methods. Currently, the pathogenesis of CD 
is still unclear, and relapse easily occurs after  treatment37. Therefore, identifying novel intervention targets and 
investigating potential biomarkers as diagnostic indicators are essential to clarifying the cellular and molecular 
mechanisms contributing to CD  pathogenesis38.

Our RRA analysis was conducted using five CD cohorts, identifying 203 DEGs. To the best of our knowledge, 
this study involves one of the largest sample sizes in current research on CD, including 671 cases of CD and 109 
controls. The advantage of RRA analysis is that it can integrate different sequencing platforms and multicenter 

Figure 7.  Validation of the expression of two prognostic genes in tissue samples. The IHC staining figures show 
representative images of the expression levels of AQP9 (A,B) and PROK2 (C,D) in chronic colitis and CD colon 
samples. The black arrow indicates the positive area of the IHC test.
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studies and effectively reduce batch differences to better identify  DEGs13. In this study, most of the datasets 
published to date were retrieved and reviewed, and the retrieval strategies of the included and excluded datasets 
were clearly defined, which improves the credibility of the conclusions.

Analysis of PPI networks was performed for all DEGs, and MCODE was used to identify key functional gene 
 modules39. Functional enrichment analysis revealed that the IL-17 signaling pathway plays an important role in 
the progression of CD for both DEGs and the top two modules with the highest score. IL-17 is the key cytokine 
produced by Th17 cells and has versatile  functions8. Although Th1 and Th2 cells were once considered to be 
the only T-cell lineages resulting from progenitor CD4+ helper T cells, the discovery of Th17 cells as a distinct 
lineage of CD4+ helper T cells has changed our understanding of chronic inflammatory diseases such as CD and 
indicated a new way in which immune responses trigger intestinal tissue  damage8,40,41. Studies have reported 
the role of IL-17 in a group of seemingly unrelated diseases that are triggered by or result from dysregulation 
of the innate and adaptive immune systems, including CD, UC,  psoriasis42,43, rheumatoid  arthritis44–48, and 
systemic lupus  erythematosus49–51, among others. Interestingly, although overexpression of IL-17 in CD has 
been reported, its exact role in IBD is still  controversial8,40,52,53. Nevertheless, similar to our results, high IL-17 
mRNA expression levels have been detected in intestinal mucosa samples of patients with active CD as well as 
those with  UC54,55. Mice deficient in IL-17 or treated with anti-IL-17 exhibit severe epithelial damage in the 
colon, indicating that IL-17 acts as a protective  factor56,57. KEGG analysis also highlighted the role of the TNF 
pathway in CD. In the clinic, anti-TNF therapy was approved for use in CD in 1998, leading to increased rates 
of response and  remission58. Our GO-BP analysis showed the DEGs and two modules to be mainly involved in 
inflammation. Notably, gene enrichment analysis showed the DEGs to mainly participate in the humoral immune 
response/antimicrobial humoral immune response. A widely accepted theory about the etiopathogenesis of CD 
is that the disorder is caused by an aggressive immune response to microorganisms of the intestinal microbiota 
in genetically predisposed  individuals59. Immunoglobulin A (IgA) and immunoglobulin M (IgM) antibodies 
generated by the immune system are essential for maintaining mutualism between our bodies and the microbes 
that colonize our mucosal  surfaces60. In addition, although intestinal IgG responses are limited in the healthy 

Figure 8.  Establishment of a machine learning score with 3 screened genes. The GSE75214, GSE126124 and 
GSE186582 datasets were merged, and batch effects were further removed. PCA plots of different datasets are 
illustrated before (A) and after (B) batch effects were removed. To investigate the effects of the machine learning 
score, ROC curves were illustrated in the combined datasets (C) and GSE179285 (D) and GSE95095 (E).

Table 2.  Univariable and multivariable logistic analysis for machine learning scores.

Genes

Univariable logistic regression Multivariable logistic regression

B SE OR CI Z P B SE OR CI Z P

AQP9 2.822 0.656 16.81 4.65–60.79 4.3  < 0.001 2.644 0.934 14.07 2.25–87.74 2.83 0.005

LCN2 0.928 0.17 2.53 1.81–3.53 5.445  < 0.001 0.958 0.262 2.61 1.56–4.36 3.662  < 0.001

NAMPT 2.235 0.49 9.34 3.58–24.42 4.563  < 0.001 1.115 0.556 3.05 1.03–9.06 2.004 0.045

PROK2 1.912 0.517 6.76 2.46–18.63 3.694  < 0.001 NA NA NA NA NA NA
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adult gut, several studies have demonstrated the importance of B cells and IgG in the pathogen containment and 
elimination effects that dominate those of IgA and  IgM61–66.

We selected immune-related genes from among 203 DEGs. Traditionally, the multifactor logistic regression 
model is utilized for model building, the premise of which is that all included factors are independent of each 
other. However, this is certainly difficult to achieve for high-dimensional data such as array datasets, which may 
lead to overfitting of the model due to serious gene multicollinearity, resulting in reduced generalization ability of 
the model. Therefore, three machine learning methods, namely, LASSO, SVM-RFE, and RF, were applied to select 
characteristic genes, and the intersecting genes were further examined by ROC curve and IHC analyses. Four 
characteristic genes, AQP9, PROK2, LCN2, and NAMPT, exhibited superior diagnostic value in multiple cohorts.

Figure 9.  GSEA identifies signaling pathways involving characteristic genes. The main signaling pathways 
significantly enriched in highly expressed characteristic genes (A) AQP9, (B) LCN2, (C) PROK2, and (D) 
NAMPT.
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Aquaporin 9 (AQP9) belongs to the aquaporin family of water-selective membrane channels that play a role 
in specialized leukocyte functions such as immunological response and bactericidal activity. Several studies have 
reported that AQP9 is a promising biomarker in CD  patients12,67,68. Interestingly, AQP9 has also been reported 
as a prognostic indicator of many cancers in recent years and is related to immune  infiltration69–72. Similar to 
CD, AQP9 expression is significantly increased in colon  cancer69. In view of the correlation between long-term 
chronic IBD and AQP9, determining whether AQP9 plays a role in the transformation of IBD into cancer is a 
very valuable research direction. Although the mechanism of AQP9 in CD is not clear at present, it has been 
reported that AQP9 is required for inflammatory responses and DC maturation and that its expression level is 
markedly elevated by LPS  exposure73. The inflammatory cytokine PROK2 (prokineticin 2) is produced primar-
ily by macrophages and neutrophils invading sites of tissue damage, and increased levels of PROK2 have been 
reported in gut  inflammation74,75. It remains to be determined exactly how elevated PROK2 causes visceral 
nociception. Several reports have shown that PROK2 released by inflammatory cells may cause inflammatory 
pain by attracting monocytes and macrophages as well as by stimulating the secretion of inflammatory and 
analgesic  cytokines76–81.

LCN2 (lipocalin 2) belongs to the lipocalin family. LCN2 has been reported as a biomarker of IBD not only 
in the intestinal mucosa but also in  feces82–84. In our research, LCN2 was selected using multiple CD samples in 
datasets including GSE75214, GSE126124 and GSE179285. Mechanistically, LCN2 is produced by a variety of cell 
types, including myeloid and intestinal epithelial cells, which seem to be particularly important in IBD. In IBD 
remission, persistent mucosal overexpression of LCN2 makes it a promising candidate for molecular inflamma-
tion that warrants  investigation85. NAMPT (nicotinamide phosphoribosyltransferase) belongs to the nicotinic 
acid phosphoribosyltransferase (NAPRTase) family, and by catalyzing the rate-limiting step of NAD salvage, 
it is critical for maintenance of the cellular nicotinamide adenine dinucleotide (NAD)  supply86. Considering 
that NAD is a major coenzyme in bioenergetic processes, NAMPT is biologically indispensable, and it has been 
implicated in a variety of inflammatory disorders, such as tumorigenesis, diabetes, rheumatoid arthritis and 
 sepsis87–90. Moreover, NAMPT overexpression has been identified as a marker of severity in pediatric  IBD91,92. A 
small molecule inhibitor, FK866, inhibits NAMPT enzymatic activity with little toxicity, making it a potentially 
useful drug for various inflammatory  conditions89,93,94.

There are also some deficiencies in this study. (1) Although RRA analysis reduces batch differences in different 
study combinations, the inclusion criteria for cases, sample size and treatment received by the patients in these 
studies differ, which introduces bias in the final results. (2) Due to differences in gene probes between different 
technical platforms, some key genes may not be detected in a cohort, which results in a significant reduction in 
the number of candidate genes for analysis in the combined cohort, thus omitting some important biomarkers. 
(3) Larger-scale experimental validation is needed to prove the clinical value of these markers.

Conclusion
In conclusion, our analysis reveals putative key biomarkers in CD, i.e., AQP9, PROK2, LCN2, and NAMPT. 
ssGSEA showed obviously elevated levels of DCs and innate immune cells, such as macrophages and NK cells, 
in CD, consistent with the gene enrichment results that the DEGs are mainly involved in the IL-17 signaling 
pathway and humoral immune response. Importantly, the identified biomarkers were validated by multiple 
external datasets and by IHC in independent clinical samples. Finally, the identified biomarkers correlate with 
elevated immune cell types, representing key features of the immune response, which might—in addition to 
serving as biomarkers for diagnostic purposes—prove to be efficient indicators of disease risk or improvement.

Figure 10.  Immune cell infiltration analysis. (A) Level of immune infiltration between CD and normal 
samples. (B) Correlation heatmap showing the correlation between 23 kinds of infiltrating immune cells and 4 
characteristic genes. Red denotes a positive correlation, blue denotes a negative correlation, and the size of the 
colored square denotes the correlation intensity.
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Data availability
The datasets analyzed during the current research are all available in Gene Expression Omnibus (http:// www. 
ncbi. nlm. nih. gov/ geo/). The data used to support the findings of this study are available from the corresponding 
author upon request.
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