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Quantitative structure–activity 
relationship modeling 
for predication of inhibition 
potencies of imatinib derivatives 
using SMILES attributes
Hamideh Hamzehali 1, Shahram Lotfi 2, Shahin Ahmadi 3* & Parvin Kumar 4

Chronic myelogenous leukemia (CML) which is resulted from the BCR-ABL tyrosine kinase (TK) 
chimeric oncoprotein, is a malignant clonal disorder of hematopoietic stem cells. Imatinib is used 
as an inhibitor of BCR-ABL TK in the treatment of CML patients. The main object of the present 
manuscript is focused on constructing quantitative activity relationships (QSARs) models for the 
prediction of inhibition potencies of a large series of imatinib derivatives against BCR-ABL TK. Herren, 
the inbuilt Monte Carlo algorithm of CORAL software is employed to develop QSAR models. The 
SMILES notations of chemical structures are used to compute the descriptor of correlation weights 
(CWs). QSAR models are established using the balance of correlation method with the index of ideality 
of correlation (IIC). The data set of 306 molecules is randomly divided into three splits. In QSAR 
modeling, the numerical value of R2, Q2, and IIC for the validation set of splits 1 to 3 are in the range 
of 0.7180–0.7755, 0.6891–0.7561, and 0.4431–0.8611 respectively. The numerical result of CR2

p
 > 0.5 

for all three constructed models in the Y-randomization test validate the reliability of established 
models. The promoters of increase/decrease for pIC50 are recognized and used for the mechanistic 
interpretation of structural attributes.

BCR-ABL tyrosine kinase (TK) oncoprotein as an oncogene is present in 95% of patients suffering from chronic 
myeloid leukemia (CML). Therefore, tyrosine kinase inhibitors (TKIs), such as imatinib as the first drug against 
the BCR-ABL TK, have been used in the therapy of most cases of CML patients. Imatinib competitively targets 
the ATP-binding site in the TK domain of the BCR-ABL oncoprotein and reduces the activity of BCR-ABL. Due 
to the point mutations in the BCR-ABL kinase domain, some patients particularly in the advanced phases of 
CML, develop imatinib resistance. Therefore, to overcome imatinib resistance, novel analogues of Imatinib such 
as ponatinib, nilotinib, dasatinib, bosutinib, etc., have been developed as TKIs and tested in patients with BCR-
ABL positive CML. Hence, the development and design of more potent BCR-ABL TKIs, specifically imatinib 
derivatives is a matter of great importance and would help in the therapeutic treatments of CML patients1–5.

Quantitative structure–activity relationship (QSAR) is an approach that can be applied to the construction 
of pharmacophore models, new drug discovery, and assessment of the activity/behavior of compounds6–8. Also, 
QSAR is a predictive and diagnostic process employed for finding quantitative relationships between chemical 
structures and biological activity or property. QSAR is the concluding outcome of computational methods that 
begin with an appropriate molecular structure description and conclude with some interpretation, assumption, 
and judgments on the behaviour of molecules in the biological and physicochemical under examination9,10. 
Finding a class of molecular descriptors that indicates variations in the structural properties of the molecule, is 
the main goal of QSAR model development.

The Monte Carlo algorithm of CORrelation And Logic (CORAL) software has been applied for QSAR mod-
eling of different endpoints11–15. Random distribution of dataset into training and validation subsets, production 

OPEN

1Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran. 2Department of Chemistry, 
Payame Noor University (PNU), Tehran  19395‑4697, Iran. 3Department of Pharmaceutical Chemistry, Faculty 
of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. 4Department of 
Chemistry, Kurukshetra University, Kurukshetra, Haryana  136119, India. *email: ahmadi.chemometrics@
gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-26279-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21708  | https://doi.org/10.1038/s41598-022-26279-8

www.nature.com/scientificreports/

of optimal descriptors of correlation weights (DCW), and the construction of predictive models using the phys-
icochemical conditions of corresponding experiments are unique options available in the CORAL software for 
the development of QSAR models16–22. The literature survey shows that the Index of Ideality of Correlation (IIC) 
has been applied to improve the statistical result of the QSAR model23–28. In addition, the most descriptors used in 
common QSAR models do not have physical meaning and can not be associated with mechanistic interpretation. 
It has to be noted that QSAR models developed with CORAL software are developed with SMILES notation based 
molecular descriptors that have mechanistic interpretation and could be associated with molecular fragments.

The objective of the present work is to apply the inbuilt Monte Carlo algorithm of CORAL software for the 
building QSAR model to predict inhibition potencies (pIC50) of 306 Imatinib derivatives against BCR-ABL 
tyrosine kinase (TK). The balance of correlation method with IIC is used to develop QSAR models. The reliability 
and predictability of the designed QSAR model are assessed by three random splits.

Method
Data.  Zin et al.29 had extracted the inhibition potential of 306 compounds for the human BCR-ABL tyrosine-
kinase from the ChEMBL v23 (2017) database30. The inhibition potential of compounds was defined as half 
maximal inhibitory concentration in mol/L (IC50). Additionally, the inhibition experimental data of BCR-ABL 
tyrosine kinase was transformed to a negative logarithm value (pIC50 ). The endpoint pIC50 was taken as the 
dependent parameter for constructing QSAR models. The range of pIC50 was between 9.37 and 4.03. Three splits 
were created form the dataset (n = 306) and the compounds of each split was randomly divided into the train-
ing (34%), invisible training (35%), calibration (15%) and validation (16%) sets. The SMILES notations, split 
distribution, experimental pIC50, predicted pIC50, and applicability domain of each compound are depicted in 
Table S1. The task of each set in developing the QSAR models was already described in the literature31,32.

Optimal SMILES‑based descriptors.  In the CORAL software, three types of optimal descriptors i.e. 
SMILES-based, graph-based and hybrid descriptors (combination of SMILES and Graph) can be employed to 
develop QSAR models.

The optimal descriptor is a mathematical function of so-called correlation weights (CW). Correlation weights 
are numerical coefficients associated with various molecular features extracted from SMILES symols. In other 
words, the univariate models investigated in this research are based on the “descriptors of correlation weights” 
(DCW). The Monte Carlo algorithm was used to calculate the DCW. In the present research, the SMILES-based 
descriptor was employed to make the QSAR models. The optimal descriptors used to build pIC50 models are 
calculated as follows:

Here, T is the notation of threshold and N is the notation of the number of epochs. The T is an integer utilized 
to split SMILES attributes (i.e. Sk, SSk, and SSSk) into two classes i.e. active and rare. If a molecular attribute, 
A, takes place less than T times, then this molecular attribute should be omitted from the construction of the 
model ( molecular attribute is calculated from SMILES in the training set), hence the correlation weight of the A, 
CW(A) = 0. Therefore, this molecular attribute has been distinguished as rare. The T* and N* are the numerical 
values of the T and N that yield the best statistical result of a model for the calibration set.

The details of notation given in Eq. (2) are as follows: SSSk, a local SMILES attribute, is a combination of three 
SMILES atoms; NOSP, HALO, and BOND are global SMILES attributes that display the existence or absence 
of nitrogen (N), oxygen (O), sulfur (S), and phosphorus (P) (NOSP), fluorine, chlorine, and bromine (HALO); 
BOND illustrates the presence or absence of double (‘ = ’), triple (‘#’) and stereochemical (‘@’ or ‘@@)’ bonds; 
PAIR imply the combination of BOND and NOSP; HARD displays the presence or existence of NOSP, HALO, 
and BOND; Cmax represents the maximum number of rings; Nmax and Omax are the total numbers of nitrogen 
and oxygen atoms in the molecular structure. The CW(A) demonstrates the correlation weight for the SMILES-
attributes e.g. SSSk, NOSP, BOND, HALO, PAIR, Cmax, Nmax, and Omax. These correlation weights are calcu-
lated using the Monte Carlo optimization33–37.

The obtained numerical data in terms of DCW is used to determine the inhibition potential for Imatinib 
derivatives (pIC50) by the least square method using the following one-variable model:

Monte Carlo optimization.  In the present research modified target function (TFm) i.e. the balance of cor-
relation with IIC was employed to compute the DCW32. The following mathematical relationships are used to 
compute TFm:

(1)DCW
(

T∗, N∗
)

= SMILESDCW
(

T∗, N∗
)

(2)
SMILES

DCW (T∗
, N

∗) =
∑

CW(SSSK)+ CW(HALO)+ CW(NOSP)+ CW(HARD)+ CW(PAIR)

+ CW(Cmax)+ CW(Nmax)+ CW(Omax)

(3)pIC50 = C0 + C1 × DCW
(

T∗, N∗
)

(4)TF = Rtraining + RinvTraining −
∣

∣Rtraining − RinvTraining
∣

∣× Const

(5)TFm = TF + IICCAL × Const
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Here, Rtraining and RinvTraining indicate the correlation coefficients for the training and invisible training sets, respec-
tively. The empirical constant (Const) is usually fixed.

The index of ideality if correlation for the calibration set (IICCAL) is calculated using the following equation:

The ‘k’ is the index (1, 2, …. N). The observedk and calculatedk are related to the endpoint.

Applicability domain.  According to the 3rd principle of the OECD, the applicability domain (AD) is rec-
ommended for the validation of the established QSAR model. The physicochemical, structural, or biological 
space, knowledge, or information on which the model’s training set was created and for which it is used to gener-
ate predictions about new compounds is known as the AD38,39.

In the CORAL program, Monte Carlo-based QSAR, scattering of SMILES attributes in the training, invisible 
training and calibration sets is utilized to achieve AD40,41. If a substance does not fall within the scope of AD, it 
is identified as an outlier and cannot be associated with a reliable prediction.

In CORAL, a compound is recognized in the scope of AD if the following inequality is fulfilled, otherwise, 
it is recognized as an outlier:

where DefectTRN  is an average of the statistical defect (D) for the dataset of the training set.
The statistical defect (D) can be described as the sum of statistical defects of all attributes present in the 

SMILES notation.

NA is the number of active SMILES attributes for the given compounds.
The “statistical defect,” Defect(A) for an attribute of SMILES can be defined by the following mathematical 

equation:

PTRN (AK ) and PTCAL(AK ) are the probability of an attribute ’Ak’ in the training and the calibration sets; NTRN (AK )  
and NCAL(AK )  are the number of times of Ak in the training and calibration sets, respectively.

Validation of the model.  The statistical eminence of the created QSAR models for pIC50 of Imatinib 
derivatives is evaluated on the basis of the three methodologies: (i) internal validation or cross-validation by 
determining the R2, IIC, CCC, Q2, and F-test on the training set; (ii) external validation by determining the 
Q2F1, Q2F2, Q2F3, CRp2, s, MAE, r̅m2, and Δrm

2 utilizing the test set substances and (iii) data randomization or 
Y-scrambling (Table 1). The mathematical relationship of these statistical parameters has been provided in the 
literature42–46. In Table 1, Yobs is observation endpoint; Yprd is the prediction endpoint; R2 and R2

0 are the squared 
correlation coefficient values between the observed and predicted endpoints with intercept and without inter-
cept respectively, and R2

r  is squared mean correlation coefficient of randomized models.

Results and discussion
QSAR models.  With the mentioned data in “Data”, three splits were generated randomly. Each split was 
further divided into four sets namely training, invisible training, calibration and validation sets. To establish the 
QSAR model, a balance of correlation with the IIC technique was employed. The values of IICweight (weight of 
IIC) and dRweight (weight for dR in the balance of correlations) were 0.2, and 0.1, respectively. The result for the 
preferable T* and N* was 1 and 15 for all splits. With the best-preferred values of T* and N*, the pIC50 (endpoint) 
for each split was computed and the developed QSAR models are as the following:

(6)IIC = RCAL ×
min(−MAECAL,

+MAECAL)

max(−MAECAL,+MAECAL)

(7)−
MAECLB = −

1

N

N−
∑

y=1

|�k | �k < 0,
−
N is the number of �k < 0

(8)+
MAECLB = +

1

N

N+
∑

y=1

|�k | �k ≥ 0,
+
N is the number of �k ≥ 0

(9)�k = Observedk − Calculatedk

(10)Defectmolecule < 2× DefectTRN

(11)DefectMolecule =

NA
∑

k=1

DefectAK

(12)DefectAK
=

|PTRN(AK)− PCAL(AK)|

NTRN(AK)+NCAL(AK)
IfAK > 0

DefectAK
= 1 IfAK = 0
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The statistical characteristics of the generated QSAR models computed by relationships 13–15 are depicted 
in Table 2. The outcomes in Table 2 demonstrate that all generated QSAR models from the statistical point of 
view are appropriate and match the requirements of various validation criteria. The robustness of established 
QSAR models was demonstrated by the numerical value of R2 and Q2 values which were more than 0.5 and 
0.747,48. In addition, the numerical value of the R2m metric for the validation set of all designed QSAR models 
was satisfactory and follows the criteria suggested by Roy et al.49. Also, the R2

m-scaled and �R2
m-scaled introduced 

as modified R2m metric by Roy et al. were computed50, these values were 0.6928 and 0.0216, 0.6878 and 0.0929, 
and 0.7339 and 0.1230 for split 1 to 3, respectively. The trustworthiness of the constructed QSAR models was 
also confirmed by the Y-randomization test.

After several repetitions of new random models were developed and the values of R2 were found below 0.1 (see 
Table S2 as supplementary information). These result indicates that the correlation between pIC50 and molecular 
attributes is not based on chance correlation. Moreover, for three splits, the CR2p was obtained greater than 0.75, 
which confirmed the non-chance correlation of developed models51.

(13)Split1 pIC50 = 3.6679(±0.0196)+ 0.2889(±0.0016)× DCW(1, 15)

(14)Split2 pIC50 = 1.5438(±0.0259)+ 0.2660(±0.0017)× DCW(1, 15)

(15)Split3 pIC50 = 3.4165(±0.0126)+ 0.2696(±0.0010)× DCW(1, 15)

Table 1.   The mathematical equation of different statistical benchmark of the predictive potential for CORAL 
models.

Type of validation Criterion of the predictive potential

Internal
R2 = 1−

∑

(Yobs−Yprd )
2

∑

(Yobs−Y)
2

Q2 = 1−

∑

(Yprd−Yobs)
2

∑

(Yobs−Ytrain)
2

External

Q2
F1 = 1−

∑

(Yper(test)−Yobs(test))
2

∑

(Yobs(test)−Ytrain)
2

Q2
F2 = 1−

∑

(Yprd(test)−Yobs(test))
2

∑

(Yobs(test)−Yext )
2

Q2
F3 = 1−

∑

(Yprd(test)−Yobs(test))
2/next

∑

(Yobs(test)−Ytrain)
2
/ntrain

R2
m = R2 ×

(

1−

√

R2 − R2
0

)

CCC =
2
∑

(X−X)(Y−
−

Y)
∑

(X−X)
2
+
∑

(Y−Y)
2
+n((X−Y)

2

MAE = 1

n ×
∑

∣

∣Yobs − Yprd

∣

∣

Y-randomization CR2p
= R

√

(

R2 − R2
r

)

Table 2.   The summary statistical characteristics and criteria of predictability of the QSAR models for three 
random splits.

Split Set n R2 CCC​ IIC Q2 Q2

F1 Q2

F2 Q2

F3 R2
m CR2

p R
2

m �R2
m S MAE F

1

Training 105 0.7785 0.8755 0.8021 0.7691 0.7757 0.630 0.512 362

Invisible training 107 0.7783 0.8533 0.6423 0.7703 0.7745 0.661 0.536 369

Calibration 47 0.8473 0.9130 0.9205 0.8343 0.8507 0.8448 0.8601 0.6664 0.8398 0.7394 0.1461 0.503 0.413 250

Validation 47 0.7755 0.8762 0.8611 0.7561 0.6499 0.6835 0.0672 0.5634 0.4587 -

2

Training 94 0.8353 0.9102 0.7382 0.8282 0.8328 0.574 0.446 466

Invisible training 98 0.7882 0.8837 0.7953 0.7799 0.7661 0.565 0.436 357

Calibration 56 0.8070 0.8934 0.8982 0.7953 0.8077 0.8057 0.8061 0.7961 0.7703 0.7230 0.1462 0.578 0.432 226

Validation 57 0.7180 0.8463 0.4708 0.6891 0.5761 0.6095 0.0669 0.7092 0.5371 -

3

Training 104 0.8058 0.8924 0.7997 0.7996 0.8796 0.619 0.487 423

Invisible training 95 0.8060 0.8641 0.5237 0.7980 0.8742 0.627 0.480 386

Calibration 61 0.7579 0.8696 0.8699 0.7403 0.7427 0.7417 0.7968 0.6589 0.8049 0.6612 0.0047 0.613 0.485 185

Validation 46 0.7680 0.8202 0.4431 0.7468 0.7473 0.6437 0.2072 0.6972 0.5274 -
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The AD for each compound in models 1 to 3 shown in Table S1 based on the results of defectvalue. The per-
centages of compounds in the AD of models were 81, 83, and 87% for splits 1–3, respectively. It showed that the 
three prediction models were able to predict more than 80% of the new data.

Figures 1 and 2 demonstrate the pictorial presentation of experimental data of pIC50 versus predicted pIC50 
and residual pIC50 versus predicted pIC50 of three models. As can be seen in Fig. 1, there is good agreement 
between experimental and predicted data in the suggested models. It can also be seen in Fig. 2 that the dispersion 
of residual pIC50 near the horizontal line centred around zero. All these results confirmed that all constructed 
QSAR models were robust and well fitted.

Interpretation of the QSAR model.  Mechanistic interpretation of models helps in understanding the 
effectiveness of descriptors in the predicted endpoint. The mechanistic interpretation of built-up QSAR models 
utilizing the CORAL program is done with correlation weights (CW) of SMILES-attributes which are achieved 
from several runs of the Monte Carlo optimization. The CW for each SMILES attributes in various probs of a 
model likely positive, negative, or both positive and negative. The positive and negative promoters are consid-
ered as promoters of increase and decrease of the activity or an endpoint, respectively. Consequently, promoters 
of increase of pIC50 have positive CW and promoters of decrease of pIC50 have negative CW. But, if the struc-
tural attribute in all runs both positive and negative values of CW, then these attributes are undefined. Table 3 
represents the list of the structural features as the promoters of increase or decrease of pIC50 achieved in the 
results of three probs of the Monte Carlo optimization with optimum T* and N* along with the interpretation of 
the promoters (NT is number of attributes in the training set, NiT is number of attributes in the invisible train-
ing set, and NC is number of attributes in the calibration set). According to the results, the important SMILES-
descriptors as the promoter of increase/decrease of pIC50 were distinguished and recognized. The SMILES-based 
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Figure 1.   The graph of the experimental versus predicted values of pIC50 for split 1 to split 3.
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Figure 2.   The graph of the residuals versus predicted values of pIC50 for split 1 to split 3.

Table 3.   List of structural attributes (SAk) as a promoter of increase/decrease extracted from three split of the 
constructed model.

No Structural attributes (SAk) Split
CWs
Probe 1

CWs
Probe 2

CWs
Probe 3 NT NiT NC Defect [SAk] Comments

Promoter of increase

1 c…c…c…

1 0.29321 0.31987 0.17186 103 103 43 0.0005

Three successive aromatic carbon2 0.13281 0.15897 0.13236 92 95 52 0.0003

3 0.41397 0.00538 0.44783 100 92 60 0.0001

2 c…c…1…

1 0.491 0.18688 0.28507 80 82 35 0.0001

Two successive aromatic carbon in ring no. 12 0.28522 0.33232 0.08556 74 70 45 0.0001

3 0.07861 0.25241 0.07268 47 46 30 0.0005

3 Cmax.3……

1 1.36827 0.17551 0.3596 54 56 25 0.0002

Maximum no. of cycles in compound2 0.05655 1.10274 0.62154 52 49 27 0.0009

3 1.17714 2.22122 0.88535 52 42 32 0.0003

Promoter of decrease

1 C…(…(…

1 −0.0558 −0.3626 −0.06209 7 9 3 0.0003

Aliphatic carbon with two branching2 −0.16545 −0.21343 −0.12731 8 4 4 0.0011

3 −0.06639 −0.30183 −0.2403 6 6 6 0.0034
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descriptors as promoters of increase of pIC50 were c…c…c…, c…c…1… and Cmax.3……, and the promoter of 
decrease pIC50 was C…(…(….

Comparison with prior reports.  Kyaw Zin and colleagues29 reported a QSAR model by the same data 
relying on deep neural nets (DNN) and hybrid sets of 2D/3D/MD descriptors to predict the inhibition potencies 
of 306 imatinib derivatives. The dataset was divided into two sets i.e. training set (260 compounds) and a test set 
(46 compounds). They built multiple DNN and RF regressors with hybrid 2D/3D/MD descriptors and showed 
high predictive power through rigorous validation tests. Through rigorous validation tests, they reported that 
their DNN regression models resulted excellent external prediction performances for the pIC50 data set. The R2 
of training and validation setes was 0.99 and 0.68 respectively and the MAE of training and test set was 0.08 and 
0.67 respectively.

The comparison QSAR model here with the previous study showed that the structure, physicochemical 
parameters or previous calculations of the chemicals descriptors for the construction of the models were required 
by the model, while in the case of CORAL software, a text file containing SMILES notations of compounds and 
endpoint was used for model development. Here, we used 3 splits to establish three QSAR models using four sets 
(training, invisible training, calibration and validation set), but in previously constructed models, a single split 
utilizing two sets (training and test set) was used. In the present research, the molecular features responsible for 
the increase/decrease of endpoint were also detected for mechanistic interpretation.

In terms of statistical characterization, the proposed QSAR model by CORAL for the prediction of pIC50 was 
superior to the reported model. The statistical parameters Q2

F1 , Q
2
F2 , Q

2
F3 , CR2

p , CCC and IIC were not reported in 
the previous report. The R2 of training and validation setes for split 1 to 3 are between 0.76–0.85 and 0.71–0.78, 
respectively and the MAE of training and validation sets for split 1 to 3 are between 0.41–0.54 and 0.46–0.54, 
respectively. Therfore, the QSAR models established here are more reliable and have better predictability.

Conclusion
In this work, to predict pIC50 of 306 Imatinib derivatives, QSAR models were created using the Monte Carlo 
method and validated with several parameters. The QSAR models were established using a modified target 
function (TFm). The statistical characterization of constructed models was justified using internal and external 
validation metrics such as R2, IIC, CCC, Q2, Q2

F1 , Q
2
F2 , Q

2
F3 , F, s, MAE, RMSE, R2

m , �R2
m , scaled-R2

m , scaled-�R2
m , 

CR2
p , and Y-randomization test. In the constructed QSAR model, the numerical value of R2, Q2, and IIC for the 

validation set of splits 1 to 3 were in the range of 0.7180- 0.7755, 0.6891–0.7561, and 0.4431–0.8611 respectively. 
The domain of applicability (AD) was applied to identify the outliers in the generated QSAR models. The struc-
tural features as promoters of pIC50 increase/decrease were also identified.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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