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A fast kernel independence test 
for cluster‑correlated data
Hoseung Song 1, Hongjiao Liu 2 & Michael C. Wu 1*

Cluster‑correlated data receives a lot of attention in biomedical and longitudinal studies and it is of 
interest to assess the generalized dependence between two multivariate variables under the cluster‑
correlated structure. The Hilbert–Schmidt independence criterion (HSIC) is a powerful kernel‑based 
test statistic that captures various dependence between two random vectors and can be applied to 
an arbitrary non‑Euclidean domain. However, the existing HSIC is not directly applicable to cluster‑
correlated data. Therefore, we propose a HSIC‑based test of independence for cluster‑correlated data. 
The new test statistic combines kernel information so that the dependence structure in each cluster 
is fully considered and exhibits good performance under high dimensions. Moreover, a rapid p value 
approximation makes the new test fast applicable to large datasets. Numerical studies show that the 
new approach performs well in both synthetic and real world data.

Measuring general, possibly nonlinear, dependence between two multivariate variables plays a significant role 
in many scientific applications. For example, assessing the relationship between the overall composition of the 
microbiome, which includes hundreds of microbial taxa, and various host metabolites from a specific metabolic 
pathway is often of central interest in many  studies1–3. Determining and understanding the dependence between 
such variables have successfully provided important clues as to the mechanisms and biological interactions 
among the variables leading to better understanding of the systems underlying many different conditions.

In the meantime, correlated observations are also frequently obtained in many practical situations. Family-
based samples in genome-wide association studies are often used to assess a genetic association to a  disease4. 
Repeated/longitudinal observations are also prevalent in biomedical research and the goal of research is to figure 
out how explanatory variables influence an outcome over  time5. Within this context of cluster-correlated data, 
there is also pressing interest in understanding the general dependency between multivariate variables, e.g. the 
correlation between microbiome composition and metabolic pathways, in longitudinally collected samples.

An example of a study in which we are interested in multivariate dependency in longitudinal samples which 
also motivates this project is the Menopause Studies—Finding Lasting Answers for Symptoms and Health 
(MsFLASH) study. MsFLASH was a randomized clinical trial in which women were randomized to one of three 
arms (two placebo, and one experimental treatment with vaginal estrogen) with the objective of improving 
symptoms of  menopause6. The underlying biological hypothesis was that the introduction of estrogen into the 
vaginal environment would shift the microbiota and result in reduced symptoms. However, despite considerable 
preliminary research and years of effort, the trial was null and no differences in symptom improvement were 
identified across the arms. Thus, in a post mortem evaluation of the trial, investigators have been studying why 
the trial failed despite the preliminary data, including evaluations of whether the underlying hypotheses were 
correct. Initial work concentrated on the microbiome and they were able to show that, in fact, the microbiome 
was altered by the introduction of estrogen. Now, a subsequent analysis is focused on whether these microbes are 
associated with metabolic activity, as one would expected. Ultimately, metabolites are the biochemicals produced 
by the microbes that should impact symptom development. Thus, a central analytic objective was to evaluate the 
general dependency between microbiome composition and pre-specified metabolic pathways across time, yet 
how to optimally conduct this analysis is unclear.

Classical measures of association, such as Pearson  correlation7, Kendall’s τ8, and Spearman’s ρ9, are mainly 
focused on a simple dependence structure and they could be zero even when two random variables are depend-
ent. As we are entering the big data era, challenging data, both in the dimension and size, is becoming prevalent, 
and the attention to the association testing method for detecting complex dependence structures is also natu-
rally increasing. Hence, many methods have been proposed to develop tests of independence against general 
types of alternatives, such as the RV coefficient or its  extensions10–13, the distance covariance coefficient or its 
 extensions14–16, the graph-based  test17, the rank-based  test18,19, and the kernel-based  test20,21.

OPEN

1Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. 2Department 
of Biostatistics, University of Washington, Seattle, WA 98195, USA. *email: mcwu@fredhutch.org

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-26278-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21659  | https://doi.org/10.1038/s41598-022-26278-9

www.nature.com/scientificreports/

In particular, kernel-based tests are often utilized to evaluate the association between overall microbiome 
compositions and outcomes of interest or host gene  expressions22–24. It is well known that kernels can be used 
to embed the microbiome structure and many different kernels have been developed: UniFrac kernels can 
accommodate the phylogenetic  structure25, generalized UniFrac kernels are sensitive to abundance changes 
in moderately abundant  lineages26, and the Bray–Curtis kernel quantifies the taxonomic dissimilarity of two 
microbial  communities22.

In this paper, we base our approach on the most popular kernel-based test, the Hilbert–Schmidt independ-
ence criterion (HSIC), proposed by Gretton et al.21. As a nonparametric approach, the HSIC has the potential 
to capture arbitrary dependence between two random variables. It can be viewed as the distance between the 
joint distribution and the product of the marginals embedded in a reproducing kernel Hilbert space (RKHS).

However, most kernel-based methods assume that pairs are independent and identically distributed (i.i.d.) 
and they thus cannot be directly applied to correlated data, particularly clustered data. Moreover, the asymptotic 
distribution of the HSIC to obtain the threshold of the test given level α of the test is not practical since the null 
distribution has a complicated form, and cannot be evaluated directly. Therefore, a permutation test is usually 
preferred in many applications, however, it is computationally prohibitive when the sample size is large or when 
the alpha level is low, as in the case of our motivating data where we are interested in studying associations 
between the microbiome and numerous metabolic pathways.

Based on the HSIC, we propose a new test of independence for cluster-correlated data. The new test combines 
kernel information so that the dependence structure in each cluster is fully considered. Furthermore, compared 
to other HSIC-based tests that rely on costly Monte Carlo permutation procedures, a closed form of p value 
approximation is proposed, making the new test much faster and more efficient than the existing tests, particu-
larly for large samples. Numerical studies demonstrate that the new method is powerful under high dimensions 
in both synthetic and real world data. Our work is related to recent work of Zhan et al.13, but differs in that the 
new test statistic has a computationally more efficient form.

The organization of the paper is as follows. In “Materials and methods” section, we provide our problem set-
ting on clustered data and briefly review the test based on the HSIC. We then propose the new test statistic and 
the testing procedure for cluster-correlated data. In “Results” section, we examines the performance of the new 
tests under various simulation settings and the new approach is illustrated by a real data application on vaginal 
microbiome data. Finally, the discussion is given in “Discussion” section.

Materials and methods
Problem setting. The goal is to test for association between two sets of variables X and Y, such as microbi-
ome composition, gene expression, or profiles of other types of genomic data. Specifically, let X and Y be multi-
variate random variables with marginal distributions fX on X in Rp and fY on Y in Rq , respectively. Let fXY be 
the joint distribution on X × Y  . Then, we aim to test

We consider samples of clustered data: observations (X1,Y1), . . . , (XN ,YN ) ∈ (X,Y) of total sample size N 
are drawn identically from fXY and can be divided into m clusters of size l (i = 1, . . . ,m) , that is,

Here, ml = N and m clusters are independent from each other while having identical within-cluster correla-
tion structure.

Hilbert–Schmidt independence criterion. The Hilbert–Schmidt independence criterion (HSIC) was 
first proposed by Gretton et al.20. They first map the observations into a reproducing kernel Hilbert space F  
(RKHS) generated by a given kernel k(·, ·) , that is, for each point x ∈ X , there corresponds an element (feature 
map) φ(x) ∈ F  such that < φ(x),φ(x′) >F= k(x, x′) , where k : X × X → R is a unique positive definite ker-
nel. They then consider a cross-covariance operator between feature maps and the squared Hilbert–Schmidt 
norm of the cross-covariance operator, which can be expressed as

where X ′ and Y ′ are independent copies of X and Y, respectively. Here, when characteristic kernels, such as the 
Gaussian kernel or Laplacian kernel, are used for kX and kY , HSIC(fXY ) = 0 if and only if fXY = fX fY.

An empirical estimate of HSIC was proposed by Gretton et al.20:

Let KX and KY  be kernel matrices with entries kX(Xi ,Xj) and kY (Yi ,Yj) , respectively. Then, HSIC can be 
rewritten as

(1)H0 : fXY = fX fY versus H1 : fXY �= fX fY .
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where K̃X = HNKXHN and K̃Y = HNKYHN are the centered kernel matrices of KX and KY , respectively, and 
HN = IN − 1N1

t
N/N  is a centering matrix with IN being an identity matrix of order N and 1N being a N × 1 

vector of all ones.
Gretton et al.21 studied asymptotic behaviors of HSIC and found that HSIC is degenerate under the null 

hypothesis of independence. Hence, they proposed a few approaches to approximate it: a Gamma approximation 
and a permutation approach. Despite the large computational cost, they recommend the permutation approach 
since the Gamma approximation easily loses power due to a very low variance estimate.

Related works. The HSIC-based test is widely used in many applications since it is powerful and versa-
tile without strong model assumptions and the new test is also in line with this principle. Recently, several 
approaches have been proposed. For example, Zhan et al.13 proposed a kernel RV coefficient (KRV) to capture 
the dependence between two random variables. KRV is a generalized RV coefficient using kernels and it can 
capture complex relationships, such as nonlinear correlations, among the individual data types. KRV is equiva-
lent to the new test under the permutation null distribution, but the new test has simpler forms since it does not 
require the standardization.

Recently, Liu et al.27 proposed the HSIC-based test for cluster-correlated data, denoted by HSICcl . They derived 
the asymptotic distribution of HSIC under the null hypothesis of independence between two variables but in 
the presence of sample correlations. Compared to the HSIC that has an inflated type I error under the cluster-
correlated structure, HSICcl not only controls the type I error well but also performs better than the HSIC. The 
asymptotic null distribution of HSICcl is the mixture of chi-square distributions, but the weights are unknown 
and it should be estimated with empirical counterparts. A Davies’ exact  method28 is a way to approximate the 
asymptotic distribution of HSIC, so the authors adopt this approach. However, the asymptotic null distribution of 
HSICcl has more complicated expressions of the weigths than the HSIC and it needs to compute the eigenvalues 
of a N2 by m2 matrix, which provides excessive computational burden for large datasets. Moreover, the Davies’ 
method shows too much conservativeness (see Table 1). To address this, we work under the permutation null 
distribution and develop a test statistic in a simple manner. Details are in the following section.

HSIC for cluster‑correlated data. As discussed in the previous section, given a test statistic, the next 
question is to determine the critical value of the test with the correct size. The main challenge of the HSIC 
application is to determine the critical value of the test with the correct size. When using the original HSIC, a 
major difficulty arises in this step since the asymptotic null distribution of the HSIC is an infinite weighted sum 
of chi-square random variables and it cannot be applied in practice. Though the Davies’ method can be used, 
as discussed in the previous section, it is computationally expensive and too conservative. Moreover, this is not 
accurate under the small sample size setting.

To address this, we work under the permutation null distribution and determine whether to reject the null 
hypothesis or not by the permutation test. The permutation approach does not need to resort to the estimation, 
asymptotic properties, or any underlying conditions. Hence, the permutation test has been utilized in many 
 applications29 and the exact cutoff for the test can be obtained from the permutation null distribution. Through 
N! permutations of shuffling rows and columns of one kernel matrix, the p value can be obtained as the propor-
tion of permuted statistic values greater than or equal to the actual test statistic value. This yields a valid level of 
the test for finite samples.

Based on the method of obtaining the critical value of the new test under the clustered data setting in the 
previous section, we now consider testing the null hypothesis of independence H0 : X ⊥ Y  . As discussed in 
the previous section, the HSIC is the cross-covariance operator in RKHS, but it also can be interpreted as a 
Euclidean-like distance measure between kernel values under the permutation distribution. To be more specific, 
the Euclidean-like distance measure between kernel values can be defined as follows:

where kXij  and kYij  are (i, j)-th elements of the kernel matrices KX and Ky , respectively. Then,

where C is a constant under the permutation. When the kernel matrices are centered, the HSIC is equivalent to 
the Euclidean-like distance measure between kernel values under the permutation distribution.

One simple way to accommodate cluster-correlated structure is to analyze data at the cluster/subject level, 
such as utilizing averaged observations at different clusters. However, this could result in loss of information. 
Moreover, variations across clusters may not be reflected (see Table 3, Fig. 2) To accommodate both differences 
between kernel values and variations across clusters, we define cluster-wise kernel matrices Kcl

X  and Kcl
Y  . Specifi-

cally, we combine kernel information for each cluster by averaging kernel values so that the similarity within 
and between clusters is well reflected. In other words, the original N × N kernel matrices KX and KY become 
m×m cluster-wise kernel matrices Kcl

X  and Kcl
Y  , respectively. Note that Kcl

X  and Kcl
Y  are still symmetric and posi-

tive semi-definite. Figure 1 illustrates the formulation of the cluster-wise kernel matrix.
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Let K̃cl
X = HmK

cl
XHm and K̃cl

Y = HmK
cl
Y Hm be centered cluster-wise kernel matrices where Hm = Im − 1m1

t
m/m 

is a centering matrix. Then, a new HSIC under the clustered data setting is defined as

For small or moderate sample sizes, we can conduct the permutation test directly and this provides a valid 
level of the test. However, permutations may be computationally cumbersome when the number of clusters is 
large. Hence, when the number of clusters is very large, we need to estimate the permutation null distribution of 
the test statistic. To estimate the p value of the test based on HSICnew without permutations, we propose a moment 
matching approach using a Pearson type III  approximation30,31. Specifically, we approximate the permutation null 
distribution of HSICnew by the Pearson type III distribution. This requires the first three moments of the exact 
permutation distribution of HSICnew . Let µ , σ 2 , and γ be the mean, variance, and skewness of HSICnew obtained 
from the permutation null distribution Detail expressions are provided in Supplementary A). Then, the p value 
of the HSICnew can be analytically computed by the Pearson type III distribution

where a = 4/γ 2 , s = σγ/2 , and � = µ− 2σ/γ . We check the efficacy of this approach and it is provided in the 
following “Results” section.

The choice of kernel and the bandwidth parameter have been studied for two-sample comparison. For exam-
ple, Gretton et al.32 studied a linear combination of Gaussian kernels to maximize the power of the test and 
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,

Figure 1.  Illustration for Kcl
X  when N = 9 and m = 3.

Table 1.  Empirical size of the tests under different number of samples (N) and dimensions (p = q) at 0.05 
significance level.

Type N p = q Pearson Perm Davies

Normal 50 50 0.049 0.050 0.000

100 0.050 0.051 0.000

200 0.055 0.061 0.000

100 50 0.048 0.053 0.005

100 0.049 0.050 0.000

200 0.058 0.057 0.000

200 50 0.048 0.050 0.016

100 0.052 0.053 0.006

200 0.053 0.053 0.001

Log-normal 50 50 0.055 0.056 0.024

100 0.049 0.047 0.009

200 0.041 0.040 0.005

100 50 0.053 0.050 0.041

100 0.052 0.053 0.038

200 0.050 0.050 0.017

200 50 0.054 0.054 0.058

100 0.044 0.044 0.047

200 0.055 0.055 0.036
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Ramdas et al.33 found that, under some conditions, the power of the test based on the Gaussian kernel is inde-
pendent of the bandwidth when the median heuristic, the median of all pairwise distances among observations, 
is used. Song and  Chen34 studied the bandwidth choice under the permutation null distribution and showed 
that the median heuristic is a reasonable choice. Therefore, since the main data variation is well captured by 
the median heuristic under the permutation null distribution, we propose to use the Gaussian kernel with the 
median heuristic for the proposed test.

Results
Efficacy of the testing procedure. In this section, we briefly check how accurate the Pearson type III 
approximation defined in the previous section is compared to the permutation approach as well as the Davies’ 
 method28. To this end, we observe the empirical type I error rate of the HSIC tests from 1000 simulation runs and 
compare the performance of the Pearson type III approximation with the permutation approach and the Davies’ 
method for the p-dimensional Gaussian and log-normal data, Np(0p,�) and logNp(0p,�) with �(i,j) = 0.4|i−j| , 
respectively, under the independent and identically distributed (i.i.d.) setting.

Table 1 shows the empirical size of the HSIC tests based on the Pearson type III approximation (Pearson), the 
permutation approach with 1000 permutations (Perm) and the Davies’ method (Davies) under different sample 
sizes and dimensions. We see that the permutation distribution can be well approximated by the Pearson type 
III approximation and the Pearson type III approximation in general controls the type I error well, while the 
Davies’ method is too conservative.

We also check how much faster the Pearson type III approximation is compared to the permutation approach 
with 1000 permutations (perm=1000) and 10,000 permutations (perm=10,000). Notice that the permutation 
approach becomes more accurate as the number of permutations increases, which increases the computational 
time as well. Table 2 shows average runtimes for each sample size when p = q = 100 . In comparison to the 
permutation approach, we see that the Pearson type III approximation can save a significant amount of com-
putational cost.

Power analysis. We now examine the performance of the new test through simulations. We compare the 
new test with the existing HSIC-based test for cluster-correlated data proposed by Liu et al.27, denoted by HSICcl , 
and the original HSIC. Here, we follow the simulation setup in Liu et al.27 for power comparison. In addition, we 
check the computational cost of the tests.

Specifically, we generate m clusters from the p-dimensional (p = q) Gaussian data: N3p(5× 13p,�X) , where 
�X = �W

⊗

�c with

where 
⊗

 is the Kronecker product. Here, we fix the cluster size 3 for all i = 1, . . . ,m . We also consider an 
exchangeable correlation structure �W across p variables in X and AR(1) correlation structure �c across three 
time points.

We use the Gaussian kernel and the median heuristic bandwidth. We simulate 1000 datasets and the signifi-
cance level is set to be 0.05.

Table 3 shows the empirical size of tests at 0.05 significance level by 1000 simulation runs under different 
dimensions (p = q) and within-cluster correlations (ρc) when m = 100 and ρW = 0.5 . Corresponding standard 
errors are provided in Supplementary D. We see that the original HSIC does not control the type I error at all 
and the inflation increases as the within-cluster correlation increases. HSICcl is too conservative. In contrast, 
HSICnew controls type I error well.

To compare the power of the tests, we choose one exposure variable from X at random as the causal exposure, 
and make the first η proportion of the outcomes in Y depend on the exposure. Specifically, within each cluster, 
outcomes in Y are generated as follows: a single exposure (say, the r-th variable in X) affects multiple outcomes,

where ǫ ∼ N3p(03p,�X) and the effect sizes βs ’s are generated from a Uniform(0,
√
25/m) (s = 1, . . . , ηp).
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,
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)t =
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β1Xr1,β1Xr2,β1Xr3, . . . ,βpXr1,βpXr2,βpXr3

)t + ǫ,

Table 2.  Average runtimes in seconds from 10 simulations for each sample size N. All experiments were run 
by R on 2.2 GHz Intel Core i7.

N 100 500 1000 2000

Permutation approach (perm=1000) 0.146 4.116 17.22 78.63

Permutation approach (perm=10,000) 1.582 26.03 106.95 465.78

Pearson approximation 0.102 0.986 7.408 47.89
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In addition to HSICcl , we consider another HSIC-based test statistic HSICmean , the original HSIC test 
with averaged observations at different time points for each cluster, i.e., (

∑3
j=1 X1j/3, . . . ,

∑3
j=1 X1p/3)

t and 
(
∑3

j=1 Y1j/3, . . . ,
∑3

j=1 Y1p/3)
t.

The estimated power are presented in Fig. 2. Corresponding standard errors are provided in Supplementary 
D. We see that the new test outperforms HSICmean in all cases. HSICcl shows better performance than the new 
test when ρc = 0.3 , but the performance decreases as ρc increases. This is expected since averaging data at the 
cluster level will result in reduced evident information loss under high within-cluster correlation, while the new 
test keeps using the kernel information and still captures this signal. In addition, the new test works well under 
high dimensions.

In addition, we conduct power comparison between the new test and HSICmean by the permutation test, 
Pearson type III approximation, and Davies’ method, and results are provided in Supplementary B.

We also compare the computational cost of the new test with HSICmean and HSICcl and the results are shown 
in Table 4. We see that the new test is much faster than HSICcl with good performance. HSICmean is the fastest, 
but it has lower power than the new test.

Lastly, we also compare the performance of the new test to other existing independence tests,  dCov14 and 
 HHG35 that are based on the distance covariance and ranking of interpoint distances, respectively, and results 
are provided in Supplementary C.

Analysis of MsFLASH data. As noted previously, the MsFLASH study was a randomized study of vagi-
nal estrogen vs. two different placebos. To understand why the trial was negative, investigators were interested 
in studying whether microbiome is associated with metabolic pathways. Vaginal microbiota and vaginal fluid 
metabolites were characterized longitudinally and available in 141  participants36. For each arm, we have 45, 
46, and 50 clusters (corresponding to a separate subject) with the equal cluster size 3 (corresponding to three 
clinical visits in which vaginal swabs were obtained). The vaginal microbiome profiles include abundance data 
of 381 taxa. The metabolome profiles comprise the abundance data of 171 metabolites that are grouped into 95 
metabolic pathways. Across all 95 pathways, we conduct the association tests to detect the dependence between 
metabolites in each pathway and the overall vaginal microbiome compositions.

Here, we use the Gaussian kernel as well as the Bray–Curtis kernel that can be useful when the phylo-
genetic tree information is unavailable. For each test, the Bonferroni-corrected significance level is set to be 
0.05/95 = 5.3× 10−4 . Table 5 shows the number of detected metabolic pathways associated with the vaginal 
microbiome composition. We see that the new method identifies a larger number of pathways than HSICmean 
and HSICcl for all cases, indicating the consistent improvement of the new test. In particular, the new test using 
the Gaussian kernel is more powerful than the Bray–Curtis kernel, indicating a possible non-linear relationship 
between some metabolites and microbial taxa abundances.

Collectively, these results indicate that for many key biological pathways, the link between the microbiota 
and metabolome remains in place and as expected. Thus, the failure of the MsFLASH trial may not result from 
a failure in this part of the hypothesis and additional work is needed to understand why the trial failed.

Discussion
We have introduced the new kernel-based test of independence for cluster-correlated data. The new approach is 
versatile and robust in that it avoids any parametric assumptions or settings. We have also proposed the analytic 
formulas for type I error control, offering easy off-the-shelf tools for large datasets. We have experimentally 
demonstrated that the new test exhibits superior power and work well particularly for high-dimensional settings 
with large within-cluster correlation.

As demonstrated, our approach is effective in assessing the generalized dependency between two sets of data 
when the samples are clustered. However, while our approach accommodates the correlation arising from the 
fact that multiple samples come from the same individual, we do not explicitly harness the longitudinal nature. 

Table 3.  Empirical size of the tests at 0.05 significance level under different dimensions (p = q) and within-
cluster correlations (ρc).

p = q ρc HSIC HSICcl HSICnew

100 0.3 0.114 0.001 0.050

0.5 0.821 0.000 0.045

0.7 1.000 0.003 0.048

200 0.3 0.107 0.002 0.039

0.5 0.893 0.004 0.046

0.7 1.000 0.001 0.045

300 0.3 0.127 0.003 0.053

0.5 0.912 0.002 0.054

0.7 1.000 0.002 0.047

400 0.3 0.126 0.000 0.043

0.5 0.919 0.002 0.040

0.7 1.000 0.003 0.049
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Figure 2.  Estimated power of the tests under different exposures (η) , within-cluster correlations (ρc) , and 
dimensions p = q when m = 100.
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Specifically, we primarily treat the samples as repeated measurements rather than true longitudinal profiles in 
assessing association. How to bring in the longitudinal structure remains a question of importance and a topic 
for further investigation.

Our approach begins with pre-constructed kernel measures capturing pair-wise similarity in samples and is 
valid for any positive definite kernel metrics. However, kernel metrics that better capture the true relationship 
between the data will lead to improved power. Choosing an optimal kernel represents a general problem within 
the statistical learning literature. Some have proposed omnibus tests based on weighted averages of kernels, but 
this is a sub-optimal strategy since the HSIC statistics depend on the scale of the different kernels. A better solu-
tion is to move from the HSIC statistic to the p value scale with incorporation of permutation testing. However, 
this is again slow. One potential solution is to use the Cauchy-Combination method within this  context37, but 
further evaluation is necessary.

A major contribution of this work is the computational efficiency of the proposed strategy which general-
izes to both clustered and un-clustered data settings. The use of the Pearson type III approximation of the finite 
sample permutation distribution is fast which allows for accurate computation of tailed p values. For example, in 
an mbGWAS study looking at relationship between groups of SNPs and microbiome  composition38, it is neces-
sary to compute tens of thousands of tests and get p values at alpha levels as low as 10−6 , for which permutation 
is infeasible. Consequently, the relevance and importance of our strategy will only continue to grow as such 
studies become more common.

Data availability
The data generated during and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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