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Region of interest‑specific loss 
functions improve T2 quantification 
with ultrafast T2 mapping MRI 
sequences in knee, hip and lumbar 
spine
Aniket A. Tolpadi *, Misung Han , Francesco Calivà , Valentina Pedoia  & Sharmila Majumdar 

MRI T2 mapping sequences quantitatively assess tissue health and depict early degenerative changes 
in musculoskeletal (MSK) tissues like cartilage and intervertebral discs (IVDs) but require long 
acquisition times. In MSK imaging, small features in cartilage and IVDs are crucial for diagnoses 
and must be preserved when reconstructing accelerated data. To these ends, we propose region 
of interest-specific postprocessing of accelerated acquisitions: a recurrent UNet deep learning 
architecture that provides T2 maps in knee cartilage, hip cartilage, and lumbar spine IVDs from 
accelerated T2-prepared snapshot gradient-echo acquisitions, optimizing for cartilage and IVD 
performance with a multi-component loss function that most heavily penalizes errors in those regions. 
Quantification errors in knee and hip cartilage were under 10% and 9% from acceleration factors R = 2 
through 10, respectively, with bias for both under 3 ms for most of R = 2 through 12. In IVDs, mean 
quantification errors were under 12% from R = 2 through 6. A Gray Level Co-Occurrence Matrix-based 
scheme showed knee and hip pipelines outperformed state-of-the-art models, retaining smooth 
textures for most R and sharper ones through moderate R. Our methodology yields robust T2 maps 
while offering new approaches for optimizing and evaluating reconstruction algorithms to facilitate 
better preservation of small, clinically relevant features.

Magnetic Resonance Imaging (MRI) has emerged as a crucial part of diagnosing pathologies such as osteoar-
thritis, ligament damage, tumors, and others1–3. Within MRI, several sequences can be deployed that exploit 
intrinsic tissue properties, providing images of varying weightings that effectively visualize tissues such as muscle, 
ligaments, bone marrow, and others4. In musculoskeletal (MSK) applications, clinical imaging protocols consist 
mostly of 2D fast spin echo (FSE) acquisitions with T1 or T2 weighting in various acquisition planes, which do 
well in depicting the structure and morphology of the underlying anatomy5. However, compositional MRI (cMRI) 
techniques to assess actual tissue parameters are gaining more attention as a complement of qualitative imaging.

cMRI techniques like T2 relaxometry can provide maps of T2 values (or another intrinsic MR parameter) 
across an imaging volume rather than a morphological image. For MSK applications, T2 relaxometry offers 
sensitivity to water content, collagen content, and collagen fiber orientation in cartilage6, making it sensitive 
to biochemical changes that can precede morphological changes across several tissues and anatomies7,8. Pre-
morphological change sensitivity has been best characterized in the knee, where T2 values are significantly 
higher across most cartilage compartments in healthy patients that later develop osteoarthritis (OA) compared 
to controls9,10. Additionally, T2 relaxometry offers quantitative MSK tissue health assessments, correlating with 
measures of hip cartilage and intervertebral disc (IVD) health11,14–16, whereas in conventional clinical imaging, 
only semiquantitative tissue health assessments are obtainable with expert annotation12,13. All of this makes cMRI 
a promising potential addition to clinical imaging protocols.

A major challenge facing clinical adoption of cMRI, however, is acquisition time: while mapping sequences 
like the magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (MAPSS) 
can provide robust MR parameter maps, their acquisition times can exceed 5–6 minutes, making their addition to 
a clinical scan protocol difficult17. Acquisitions can be accelerated by sampling fewer points in k-space, inducing 
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aliasing artifacts in resulting images that must be removed through subsequent postprocessing. Some proposed 
approaches to these ends are reconstruction strategies such as parallel imaging (PI), compressed sensing (CS), 
model-based reconstructions, deep learning (DL), low-rank and sparse modeling methods, and MR Fingerprint-
ing (MRF). Most of these approaches design an algorithm or exploit the redundancy of k-space acquisition across 
multiple coils to predict the appearance of the fully-sampled reconstructed image.

PI was one of the earliest techniques to accelerate MRI acquisition and has seen clinical adoption. Here, the 
redundancy of a multiple coil acquisition is leveraged to mitigate aliasing artifacts18–20, reducing clinical scan time 
up to acceleration factor R = 3 for MSK applications21,22. CS23 has also shown promise, where aliased images are 
iteratively reconstructed by minimizing an objective function, retaining fidelity to acquired k-space and imposing 
sparsity on the reconstructed image in another domain. CS has attained clinically acceptable MSK image quality 
through roughly R = 421,22,24,25, and up to R = 8 in research settings for knee cartilage T1ρ mapping26. Similarly, PI 
and CS have also been applied sequentially (and simultaneously) for further acceleration27.

For cMRI acceleration, model-based reconstructions have gained traction, integrating the physics of T2/T2
* 

decay and T1 recovery into an objective function iteratively optimized to reconstruct maps, showing promise in 
brain and lumbar spine T2 mapping28–30. More generally, incorporation of the physics of MRI parameter recovery/
decay has seen applications not just in model-based approaches, but in various aspects of other methodologies 
as well31. DL approaches have gained prominence in solving inverse problems such as reconstruction, allow-
ing for cMRI reconstructions at higher R than other methods. Standalone DL approaches have seen promising 
results in knee MAPSS acceleration, T1 mapping, and T2 mapping sequences32–36. In other methodologies, DL has 
been integrated with model-based approaches while introducing loss functions to maintain fidelity to acquired 
k-space, seeing promise up to R = 8 in knee and brain T1 and T2 mapping37–39. DL has been applied to acceler-
ate T2 mapping in MR Fingerprinting, where DL can remove aliasing artifacts from undersampled acquisitions 
and/or replacing time-consuming dictionary lookup steps to predict MR parameter maps, and exploiting spatial 
correlations within maps to improve reconstructions40,41. Lastly, aside from DL, low-rank and sparse modeling 
methods have emerged as a means of accelerating acquisitions, where several MRI images acquired at different 
echo times are decomposed into temporal basis functions and spatial coefficients to model an MRI parameter, 
showing promise through R = 842.

These works represent great progress, although avenues for improvement remain. Above all, these methods 
have optimized reconstructed images for full-volume performance; however, in MSK applications, clinical assess-
ment relies on the inspection of precise anatomic features in specific anatomic regions, and consequently, the 
reconstruction quality cannot be compromised within these regions. Put differently, given clinical context, strong 
image quality may be most important in specific regions of an image, leaving room for algorithm optimization. 
Furthermore, most recent published approaches leverage k-space data in formal reconstruction approaches, but 
for niche applications such as region of interest (ROI)-focused optimization, such approaches may be outper-
formed by DL-based post-processing algorithms that denoise and fit undersampled T2-weighted images without 
using raw k-space. Moreover, performance of standard reconstruction algorithms is typically evaluated using 
metrics such as structural similarity index (SSIM), normalized root mean square error (NRMSE), and peak 
signal-to-noise ratio (PSNR), but recent works show these metrics may not provide the best correspondence with 
radiologist annotations43,44, leading other groups to propose alternate metrics to fill this niche45.

To these ends, this study proposes a recurrent UNet pipeline to postprocess undersampled coil-combined 
T2-weighted echo images, fitting and predicting T2 maps from accelerated MAPSS acquisitions in the knee, hip 
and lumbar spine46,47. These algorithms are trained with multi-component, ROI-specific losses that optimize 
predicted maps for T2 value and textural retention in cartilage and IVDs. In doing so, our approach allows for 
ROI-specific optimization, facilitating retention of small, crucial clinical features in tissues of interest while 
building on past applications of weighted loss functions for image processing tasks48.

To summarize, the contributions of this work are as follows:

•	 By using a 4-component loss function in network training, we introduce the concept of “ROI-specific opti-
mization” of cMRI accelerated acquisition pipelines.

•	 We conduct a thorough ablation study of these 4 loss function components, proving the value of all in retain-
ing textures in predicted maps while retaining high fidelity to ground truth T2 values.

•	 Acknowledging that standard evaluation metrics such as SSIM and NRMSE provide suboptimal sensitivity to 
clinically relevant metrics, we conduct a thorough Gray Level Co-Occurrence Matrix (GLCM)-metric-based 
analysis of smooth and sharp textural retention in predicted maps, with an eye towards better evaluation of 
retention of small features crucial to clinical diagnoses49,50.

•	 We build on limited literature in hip and lumbar spine cMRI accelerated acquisition schemes by developing 
and evaluating our pipeline not only in knee cartilage, as several other works have done, but also for hip 
cartilage and lumbar spine IVD in ultrafast acquisitions.

Methods
MAPSS acquisitions.  Retrospective datasets including MAPSS in the knee (n = 244 patients, 446 scans), 
hip (n = 67 patients, 89 scans), and lumbar spine (n = 21 patients, 24 scans) acquired from clinical 3 T MRI scan-
ners was used. Patients were scanned in accordance with all pertinent guidelines, including approval from the 
University of California, San Francisco Institutional Review Board (Human Research Protection Program), and 
informed consent was obtained from all study participants. MAPSS simultaneously acquired multiple T1ρ and 
T2 weighted images, using T1ρ or T2 preparation followed by 3D RF-spoiled gradient-echo Cartesian acquisi-
tion in a segmented radial centric view ordering during a transient state. A fat-selective inversion pulse was 
applied before either T1ρ

51,52 or T2 preparation53. Each acquisition included T1ρ-prepared images at four spin-lock 
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times (TSLs) for T1ρ quantification, and three additional T2-prepared images for T2 quantification (TSL = 0 ms 
images were shared for TE = 0 ms images). In this study, only T2-prepared images at four different TEs and cor-
responding T2 maps from the MAPSS sequence were used. ky-kz space was acquired within an elliptical coverage 
(area = 0.7 compared to rectangular ky-kz, not acquiring corner space). Knee images were acquired from patients 
having ACL injuries, with scans taken at baseline and 3 years post-reconstruction. Hip images were acquired 
from patients having hip OA. Lumbar spine images were acquired from healthy subjects or patients with low 
back pain. Table 1 shows acquisition parameters.

Table 1.   Knee, hip and lumbar spine datasets and splits. MAPSS acquisition parameters for all datasets, 
with corresponding training, validation and test splits. ARC refers to Auto-calibrating Reconstruction for 
Cartesian Imaging70. For hip acquisitions, no phase wrap was applied: ky was oversampled by a factor of 2X, 
with space outside the prescribed y-FOV eliminated after reconstruction. In some cases, multiple acquisitions 
were taken per patient due to having multiple knees/hips scanned, or due to having follow-up scans for the 
same patient. Age and weight are reported mean ± 1 standard deviation (s.d.). Datasets were split into training, 
validation and test, ensuring all scans of a particular patient were only placed into one of the three datasets. 
Unless otherwise noted, all results are reported on the test set are described by this table; to ensure robustness 
of trained pipeline to data splits, additional versions were trained on 2 more splits detailed in Supplementary 
Tables S2 and S13, with results on those splits described in Supplementary Tables S14,  S15, S16.

Knee Hip Lumbar spine

Acquisition parameters

Scanner (s)
GE Discovery MR750w (GE 
Healthcare, Waukesha, WI),
GE Discovery MR750 (GE Health-
care, Waukesha, WI)

GE Discovery MR750w (GE 
Healthcare, Waukesha, WI),
GE Discovery MR750 (GE Health-
care, Waukesha, WI)

GE Discovery MR750w (GE 
Healthcare, Waukesha, WI),
GE Signa PET/MR (GE Healthcare, 
Waukesha, WI)

Coil(s) 8-channel T/R knee array (Invivo, 
Gainesville, FL)

32-channel cardiac array (Invivo, 
Gainesville, FL)

Geometry embracing method 
(GEM) posterior array (GE Health-
care, Aurora, OH)

FOV 14 × 14 cm2 14 × 14 cm2 20 × 20 cm2

acquisition matrix 256 × 128 256 × 128 256 × 128

Slice thickness 4.0 mm 4.0 mm 8.0 mm

Slices 22 28 12

TEs 0 ms, 12.9 ms, 25.7 ms, 51.4 ms 0 ms, 10.4 ms, 20.8 ms, 41.7 ms 0 ms, 12.9 ms, 25.7 ms, 51.4 ms

Readout BW  ± 62.5 kHz  ± 62.5 kHz  ± 62.5 kHz

Magnetization Recovery time 1.3 s 1.2 s 1.5 s

ARC​ 2X 2X None

no phase wrap None 2X ky oversampling None

Other 64-view acquisition/T2 preparation 64-view acquisition/T2 preparation 64-view acquisition/T2 preparation

Demographics information

Sex (M/F) 140/104 35/32 10/11

Age 29.7 ± 12.9 48.9 ± 13.2 45.3 ± 14.7

Weight 74.3 ± 12.7 kg 69.8 ± 12.4 kg 69.6 ± 11.0 kg

Training information details

Learning rate 0.001 0.001 0.001

Batch size 1 1 1

Number of batches used for 
training

R = 2: 40,390
R = 3: 36,351
R = 4: 36,351
R = 6: 40,390
R = 8: 60,585
R = 10: 36,351
R = 12: 40,390

R = 2: 39,030
R = 3: 28,622
R = 4: 26,020
R = 6: 39,030
R = 8: 36,428
R = 10: 26,020
R = 12: 39,030

R = 2: 1120
R = 3: 1344
R = 4: 1120
R = 6: 1120
R = 8: 2016
R = 10: 1344
R = 12: 3360

Training

Patients 144 39 13

Scans 265 59 14

Slices 5591 1533 112

Validation

Patients 50 15 4

Scans 91 15 5

Slices 1952 390 42

Test

Patients 50 13 4

Scans 90 15 5

Slices 1928 390 40

Total

Patients 244 67 21

Scans 446 89 24

Slices 9471 2313 194
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T2 Fitting and spatial undersampling.  Later T2 weighted echo time images for each slice were registered 
to corresponding TE = 0 ms images using a 3D rigid registration algorithm with a normalized mutual informa-
tion criterion54. Levenberg–Marquardt fitting of registered T2 weighted images yielded ground truth T2 maps55.

To simulate accelerated acquisition, coil-combined T2 weighted magnitude images after reconstruction (ARC 
for knee and hip) were Fourier transformed and retrospectively undersampled using a center-weighted Poisson 
disc pattern, fully sampling a central 5% square in ky-kz (R = 2, 3, 4, 6, 8, 10, 12). Acquisition times associated with 
ground truth and accelerated MAPSS acquisitions in each body part can be found in Supplementary Table S1. As 
MAPSS acquires phase-encode lines with elliptical coverage in ky-kz (relative area of 0.7 compared to rectangular 
coverage), phase encoding lines solely within the sampling ellipse were undersampled. Although working with 
synthesized k-space data generated from coil-combined magnitude images, retrospective undersampling was 
done and R reported with respect to elliptical coverage in ky-kz to accurately simulate an actual undersampling 
pattern and not overstate model performance56. However, for hip acquisitions, reconstructed space outside the 
y-FOV had already been discarded; thus, simulating acquisitions with application of ‘no phase wrap’ was not 
possible and undersampling patterns would differ from those implemented on a scanner. T2 weighted images 
from each echo time were undersampled with a unique pattern. For ky-kz lines not sampled at a given echo 
time, those ky-kz lines were initialized with the corresponding ky-kz from the image with the temporally closest 
echo time for which that ky-kz was sampled. Only ky-kz lines not sampled in images acquired at all echo times 
were zero-filled. k-Space was subsequently inverse Fourier transformed, yielding undersampled, aliased images.

DL pipeline training.  DL architecture.  An overview of the data processing and training schemes is shown 
in Fig. 1, while a detailed diagram depicting our proposed network architecture is in Supplementary Fig. S1 
(“Full Model”; 39,808,710 trainable parameters). Magnitude images from data undersampled as specified were 
fed into a recurrent UNet network. The network contains an initial recurrent portion: aliased images from each 
T2 echo time have a 5-layer processing stream of 2D 3 × 3 convolutions with stride 1, yielding layers of depth 
64, 128, 256, 512, and 1. Residual connections connect input aliased images with processing stream outputs. 
2D 3 × 3 convolutions with stride 1 and residual connections transfer information between temporally adjacent 
corresponding hidden echo time processing layers with weighting parameter λw = 0.257. This soft-weighted view-

Figure 1.   Proposed pipeline. Experiments in proposed study entail generating ground truth T2 maps from 
MAPSS, simulating accelerated acquisition of T2-weighted MAPSS images, and training a network to predict T2 
maps from undersampled images. (1) MAPSS contains 7 images, 3 that are T2 weighted, 3 T1ρ weighted, and 1 
shared; the T2 and shared image weightings are extracted, registered, and fitted slice-wise to yield ground truth 
T2 maps. To simulate accelerated acquisition, each volume of coil-combined magnitude T2 weighted images 
acquired at a given echo time are Fourier transformed, undersampled along the ky–kz plane with a center-
weighted Poisson disc pattern, and inverse Fourier transformed to yield a simulated accelerated acquisition of 
a volume. Finally, undersampled T2 weighted images acquired at all echo times for the same anatomic slice are 
concatenated and fed to the proposed recurrent UNet architecture, which predicts the T2 map appearance for 
the slice. Training is done slice-wise with a multi-component loss function that includes a novel ROI-specific L1 
loss that optimizes predicted T2 maps in cartilage and IVD ROIs, with other components that improve training 
stability and encourage retention of textures.
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sharing of neighboring T2 weighted echo time images facilitated sharing of feature map information between 
temporally adjacent echo time images, which can augment sharing of ky-kz initializations to improve network 
image predictions. Outputs of all 4 echo time image processing streams were concatenated and fed to a UNet 
that predicted T2 maps. 2D 3 × 3 convolutions with stride 2 were used for the encoder, and 2D 4 × 4 transpose 
convolutions with stride 2 for the decoder. Two additional architecture versions were also trained: one UNet 
with no recurrent portion (“No RNN”; 35,116,037 trainable parameters) and a second in which all layers apart 
from inputs to the recurrent portion and UNet had half the depth listed in Supplementary Fig. S1 (“Reduced 
Parameters”; 9,958,246 trainable parameters).

Loss function.  Networks were trained with the multi-part loss function shown in Eq. (1):

in which LL1 is a scaled global L1 loss detailed in Eq. (2):

where T2 represents ground truth T2, T̂2 represents predicted T2, and S(x) is a translated and scaled sigmoid 
operator that assigns more weight to higher T2 values. Sharp contrasts and high T2 values can easily be lost in 
accelerated acquisition schemes, so S(x) proved useful through empirical testing in focusing networks to preserve 
these details. S(x) is defined below in Eq. (3):

where xl , xh were the low and high T2 value limits where the sigmoid operator weighting will transition from yl to 
yh . Parameters selected for the knee were as follows: xl = 0 ms, xh = 100 ms, yl = 0.1, yh = 1.0. In the hip: xl = 0 ms, 
xh = 60 ms, yl = 0.5, yh = 1.0. In the lumbar spine: xl = 0 ms, xh = 150 ms, yl = 0.25, yh = 1.0. A schematic of the 
operator that results from parameters of all three anatomies can be found as Supplementary Fig. S2.

LL1,φ is the ROI-specific L1 loss, and is described in Eq. (4):

where T2,φ were ground truth T2 values in the tissue of interest φ (IVD or cartilage), scaled by S(x) (Eq. (3)), and 
T̂2,φ is the same for predicted T2. Pixels corresponding to φ are obtained from segmentation masks, the genera-
tion of which is described in “Training and Segmentation Details”. For both LL1 and LL1,φ , L1 norms were used 
instead of L2 due to reduced sensitivity to outliers, leading to more stable trainings.

LSSIM is an SSIM loss, described in Eq. (5):

where SSIM was the structural similarity index between predicted and target maps.
LFeature is a feature-based loss function designed to retain sharper textures, calculated as in Eq. (6):

where VGGT2 and VGGT̂2
 were the outputs of the 21st layer of a VGG-1958 network pretrained on ImageNet 

when fed resized and normalized target and predicted T2 maps, respectively. Maps were resized to 224 × 224 × 1, 
concatenated with themselves along the channel axis to yield 224 × 224 × 3 inputs, and normalized such that the 
channels had mean pixel values of 0.485, 0.456 and 0.406, with standard deviations of 0.229, 0.224, and 0.225, 
respectively.

�L1,�L1,φ , �SSIM , �Feature were loss component weightings. All were positive-valued and optimized through 
constrained random hyperparameter searches with the following ranges:

•	 Knee: �L1 = 1,�L1,φ = 50− 150 , �SSIM = 0− 2 , �Feature = 0− 0.5

•	 Hip: �L1 = 1,�L1,φ = 0− 3 , �SSIM = 0− 2 , �Feature = 0− 1.
•	 Spine: �L1 = 1,�L1,φ = 1− 10 , �SSIM = 10− 100 , �Feature = 5− 55.

Training and segmentation details.  Scans of all three anatomies were split into training, validation and test sets 
as shown in Table 1. In the knee, cartilage was segmented manually. In the hip, cartilage was segmented manually 
for 4 central slices per volume. Segmentation in both was performed by research assistants trained by radiolo-
gists with over 20 years of experience. Since the hip dataset had substantially fewer segmented than unsegmented 
slices, the hip training set was bootstrapped to equalize the number of slices with and without segmentations 
(1068 bootstrapped slices). Finally, in the lumbar spine, IVDs were segmented with an ensemble of coarse-to-
fine context memory (CFCM) networks59. To calculate performance metrics and implement ROI-specific train-
ing losses, these segmentation masks were leveraged to identify pixels in tissues of interest (cartilage or IVD).

Signal values were scaled per slice for the middle 95% of pixel values to fall between 0 and 500 for the knee 
and lumbar spine, and 0 and 100 for the hip; these ranges were optimized empirically. During training, imag-
ing volumes were augmented with random translation (± 10 pixels across phase and frequency directions) and 
random rotation (± 5 degrees about slice direction). All models were trained with learning rate 0.001 and Adam 

(1)Lnetwork = �L1LL1 + �L1,φLL1,φ + �SSIMLSSIM + �FeatureLFeature

(2)LL1 =
∣∣∣S(T2)− S

(
T̂2

)∣∣∣

(3)S(x) = yl +
(
yh − yl

)(
1+ exp(−(10/(xh − xl))(x − (xl + xh)/2))

)−1

(4)LL1,φ =
∣∣∣S
(
T2,φ

)
− S

(
T̂2,φ

)
)

∣∣∣

(5)LSSIM = 1− SSIM

(6)LFeature =
∣∣∣VGGT2 − VGGT̂2

∣∣∣
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optimizer on an NVIDIA Titan Xp 12 GB GPU with batch size of 1 so the model would fit on a single GPU. 
Separate pipelines were trained for all 3 anatomies at R = 2, 3, 4, 6, 8, 10, and 12. For each pipeline, and at each 
trained R, a constrained random hyperparameter search was done for 15 iterations at 10 epochs per iteration 
to optimize �L1,�L1,φ , �SSIM , and �Feature for visual fidelity of predicted maps to ground truth. Visual fidelity was 
assessed in the search using NRMSE (calculated as shown in Eq. (7)) and Pearson’s r in the tissue of interest60.

Final pipelines across all anatomies and R were trained using optimized parameter sets until validation loss 
did not decrease for 10 epochs. Key training details are summarized as part of Table 1.

Experiments
Loss function ablation study.  An ablation study is key to understand contributions of loss components. 
Given optimized loss function weights, every combination of loss components was ablated and corresponding 
models were retrained until validation loss no longer decreased. “No RNN” and “Reduced Parameters” networks 
were also trained while maintaining loss function components at optimized values to assess the utility of simpler 
architectures. NRMSE and Pearson’s correlation coefficient (r) were calculated in tissues of interest across the test 
set for original and ablated models to determine loss component contributions to performance. Pearson’s r was 
deemed an appropriate statistical test for this and subsequent experiments, as it is useful in assessing the linear 
relationship between related pairs of interval data. While no formal NRMSE test was done, it nonetheless allows 
for quantitative assessment of T2 quantification quality and easy comparison with results from other approaches. 
NRMSE is reported ± 1 standard deviation (s.d.); Pearson’s r was deemed significant in accordance with corre-
sponding P values, α = 0.001, 0.01, and 0.05. NRMSEs within tissues of interest of a given scan were also multi-
plied by mean T2 values within the tissue of interest of that patient, generating T2 value equivalents of error rates.

To more specifically evaluate the utility of the ROI-specific loss component, two loss func-
tion configurations from the ablation study were further analyzed at all R: no ROI-specific loss com-
ponent ( �L1,φ = 0; �L1 , �SSIM , �Feature �= 0 )  and no ROI-specific or feature-based components 
( �L1,φ , �Feature = 0; �L1 , �SSIM �= 0 ). These models were intended to represent baselines in which all loss func-
tions were preserved except the ROI-specific component, and a standard reconstruction loss function of pixel 
and SSIM-based loss components, respectively. Pearson’s r—evaluated in tissues of interest and globally—was 
calculated to determine the degree and significance of correlation between predicted maps and ground truth, 
both globally and within tissues of interest, α = 0.001, 0.01, and 0.05.

Evaluation of accelerated acquisition scheme performance.  Three versions of our pipeline (full 
pipeline, “No RNN,” and “Reduced Parameters”) were compared to state-of-the-art CS, DL, and DL/model-
based solutions. At each R, MANTIS (54,413,056 trainable parameters) and MANTIS-GAN (54,413,056 [Gen-
erator] and 2,763,648 [Discriminator] trainable parameters) pipelines were trained using published network 
architectures, loss functions and undersampling strategies42,43. Loss function weightings for both were optimized 
through grid hyperparameter searches yielding the following: (MANTIS) �data = 0.1, �cnn = 1; (MANTIS-GAN) 
�data = 0.1, �cnn = 1, �GAN = 0.01. To apply CS reconstruction, original MAPSS T2-prepared images were Fou-
rier transformed into coil-combined k-space, 1D-inverse Fourier transformed along the readout direction, and 
individual slices in ky − kz reconstructed using an L1 wavelet-based algorithm with regularization coefficient 
0.00161. CS reconstructed images were registered to the TE = 0 ms echo time image using a 3D rigid registration 
algorithm with a normalized mutual information criterion and fitted using Levenberg–Marquardt fitting to yield 
T2 maps. Performance of these approaches and our proposed methods was evaluated through the following:

Comparison of global and ROI‑specific performance.  To test for completeness of training, perfor-
mance of our proposed pipelines was compared against state-of-the-art models that did not use ROI-specific 
components in predicting T2 maps. Pearson’s r (α = 0.001, 0.01, and 0.05) was used to compare model perfor-
mances and assess strength of correlations to ground truth T2.

Standard reconstruction metrics.  Performance was reported in tissues of interest with standard recon-
struction metrics: NRMSE (mean ± 1 s.d.) and Pearson’s r (α = 0.001, 0.01, and 0.05). NRMSEs were also con-
verted into T2 value equivalents by tissue compartment as in the ablation study.

T2 value retention.  Fidelity of predicted maps to ground truth T2 was also assessed. First, predicted and 
ground truth T2 values were compared across tissues of interest within the test set (mean ± 1 s.d.), generating 
violin plots for all three anatomies with overlaid boxplots for T2 value distribution comparison. T2 agreement 
was also assessed through Bland–Altman analysis.

Texture retention.  Gray Level Co-Occurrence Matrix (GLCM)62 metrics were used to assess texture reten-
tion within tissues of interest. GLCM contrast and dissimilarity are maximized by large local pixel value changes 
and thus by sharper textures. GLCM homogeneity is maximized by small local pixel value changes, while GLCM 
energy and angular second moment (ASM) are maximized by few total pixel values within an image; hence, all 
three are maximized by smoothness. For each anatomy and R, we calculated these texture metrics at 4 orienta-
tions (θ = 0°, 45°, 90° and 135°; d = 1 pixel) and averaged across all orientations. Finally, we calculated intraclass 
correlation coefficients (ICCs) for all metrics with respect to ground truth (two-way mixed effects, single rater63) 

(7)NRMSE = �T2 − T̂2�2,φ
(
�T2�2,φ

)−1
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and reported 95% ICC confidence intervals (α = 0.001, 0.01, and 0.05). These tests were chosen as appropriate, 
as they assess both reliability and agreement of associated metrics, and in this use case, individual GLCM metric 
values themselves are considered the only rater, justifying the ICC test type selected.

Repeatability study.  To assess the robustness of pipelines to different datasets, two additional splits of the 
knee, hip and spine datasets were made, ensuring no patient was part of multiple validation and/or test datasets 
and that all scans from a given patient were only in one of training, validation and test for each split (folds 2 and 
3 in Supplementary Table S2, where fold 1 is the original split). Additional hyperparameters searches optimized 
loss function weights on the two new splits. Optimized loss weights and corresponding T2 quantification and 
texture retention performance for each splits is presented at all tested R in the same manner as for the primary 
split.

Raw multicoil data assessment.  An in-house pipeline was developed that leveraged GE Orchestra 1.10 
and other postprocessing tools to reconstruct coil-combined images from raw k-space data. As a proof of concept, 
knee MAPSS scans were performed on 3 volunteers, hip scans for 2, and lumbar spine for 2, all using the acquisi-
tion parameters listed for the retrospective datasets used for algorithm training, with raw k-space data saved for 
all. Multicoil k-space data (after ARC for knee and hip) was undersampled with the same center-weighted Pois-
son disc pattern described earlier, with each coil seeing the same undersampling pattern and ky-kz lines being 
shared across different T2 weighted echo time k-spaces as previously described. Coil-combined images resulting 
from undersampled multi-coil data at all tested R were fed through corresponding post-processing pipelines 
to predict T2 map appearance. A radiologist with 2 years of experience segmented knee cartilage, hip cartilage, 
and intervertebral discs from these acquisitions, allowing for visualizations of predicted T2 maps and NRMSE 
calculations in ROIs.

Results
Ablation study results.  Voxel-wise performance metrics for ablation study models at R = 8 are shown in 
Supplementary Table S3, with T2 value NRMSE equivalents in Supplementary Table S4. Within the knee and hip, 
all loss components were necessary to obtain the optimal combination of high Pearson’s r and low NRMSE in 
cartilage. For the lumbar spine, while all loss components proved vital in maximizing Pearson’s r and minimizing 
NRMSE in IVDs, performance improved when the initial recurrent network was omitted. Though quantitative 
analysis is shown for all three pipeline versions in subsequent experiments, the full model is designated as best 
for knee and hip, and the no RNN for the spine.

ROI-specific and global assessments of best models and corresponding models trained without an ROI-
specific loss (λ1,ϕ = 0) and models trained with a generic loss (λ1,ϕ = 0, λFeat = 0) are shown in Supplementary 
Table S5. In the knee and hip, across nearly all R, ROI-specific loss addition leads to improved correlations 
between predicted and ground truth cartilage T2, with diminished performance globally. In the lumbar spine, 
which was trained with a substantially fewer batches than the knee and hip pipelines, these trends were inconsist-
ent across tested R. Example predictions and ground truth for one slice of a patient in each pipeline are shown 
in Supplementary Fig. S3, showing that patterns of local T2 value elevations in cartilage and IVDs are better 
preserved with an ROI-specific loss as opposed to pipelines trained without the loss component.

Visuals of network performance and comparison with state‑of‑the‑art models.  Predicted T2 
maps are displayed at select R for knee, hip and lumbar spine models in Fig. 2 for our three pipelines and three 
methods from the literature. In knee, hip, and lumbar spine, T2 quantification performance is strongest with 
our proposed methods, maintaining low error rates, showing promising results compared with state-of-the-
art methods through R = 10. Optimal architecture performances are further explored in Figs. 3–5. As shown 
in Fig. 3a, predicted T2 knee maps retained strong fidelity to ground truth within tibiofemoral joint cartilage. 
Patterns within predicted maps became slightly more diffuse as R increased to 10, as indicated by a slight rise 
in NRMSE for cartilage in the slice, but visually, T2 values and map patterns are preserved. As seen in Fig. 4a, 
hip predicted maps preserve T2 values well in femoral and acetabular cartilage through R = 10, although T2 pat-
terns become more diffuse by R = 10. Figure 5a shows T2 map predictions in the lumbar spine. The L4-L5 IVD is 
shown in more detail, where T2 quantification performance was acceptable at R = 3, moderate at R = 6, and worse 
at R = 10, as indicated by rising IVD NRMSEs.

ROI and global performance comparisons of our selected pipelines against state-of-the-art approaches are in 
Supplementary Table S5. Across piplines trained with relatively large dataset (knee and hip), DL and model-based 
approaches (MANTIS and MANTIS-GAN) outperformed our proposed pipeline globally, but within cartilage 
ROIs, our pipeline exhibited stronger Pearson’s r at each tested R. These trends were not as strong in the lumbar 
spine pipelines, possibly owing to the randomness of training with a smaller dataset. Global and ROI-specific 
T2 predictions are further visualized in Supplementary Fig. S4, showing predicted T2 values exhibit substantially 
more visual fidelity to ground truth and lower NRMSE in state-of-the-art models compared to our pipeline, but 
a reversal of that trend in cartilage. In the lumbar spine, at some but not all R, those trends held, yielding similar 
conclusions to the Pearson’s r analysis.

Evaluation of T2 quantification performance and comparison with state‑of‑the‑art mod‑
els.  Voxel‑wise T2 evaluation fidelity.  Pearson’s r and NRMSE across all anatomies and R for our approaches 
and state-of-the-art methods are in Table 2. T2 value NRMSE equivalents are in Supplementary Table S6. For all 
anatomies and across nearly all R, T2 quantification performance is strongest in our methods, particularly in the 
No RNN and full model pipelines, compared to state-of-the-art models.
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Figure 2.   Comparison of predicted T2 maps with ROI-specific methodologies to past approaches. (a) Predicted 
T2 maps in knee cartilage for a representative patient within test set. T2 quantification performance was best in 
pipelines trained with ROI-specific losses (Full Model, Reduced Parameters, and No RNN), where strong fidelity 
to T2 values and patterns of local elevations within cartilage were maintained through R = 10, while other tested 
approaches did a poorer job in predicting T2 values in these maps. (b) Predicted hip cartilage T2 maps showed 
similar trends, where performance of the full model was especially strong, showing low T2 quantification error 
and better retaining local T2 elevations through R = 10 than other approaches. (c) Predicted T2 maps in lumbar 
spine IVDs show higher T2 quantification errors than in hip and knee cartilage, but ROI-specific loss pipelines 
best preserved map textures and values.
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An exhaustive examination of knee T2 quantification performance, stratified by cartilage compartments, is 
in Supplementary Tables S7 and S8. For the full model, across all cartilage compartments, T2 estimation errors 
remained under 10% through R = 10 across all cartilage compartments while Pearson’s r ranged from 0.748 
at R = 2 to 0.491 at R = 12, indicating strong correlations64 between predictions and ground truth at R = 2 and 
moderate correlations through R = 12. For some cartilage compartments and R, performance was stronger in 
the No RNN pipeline. Interestingly, quantification performance was strongest in patellofemoral joint cartilage, 
generally exhibiting lower NRMSE and stronger correlations. Our ROI-specific loss pipelines outperformed 
state-of-the-art models in each cartilage compartment.

Supplementary Tables S9 and S10 show hip T2 quantification performance across cartilage compartments. As 
in the knee, quantification performance was strong, with error rates across all cartilage under 9% through R = 12 
for the no RNN and full model pipelines. While the no RNN pipeline had stronger quantification errors, the full 
model had higher Pearson’s r, which ranged from 0.794 at R = 2 to 0.517 at R = 12, showing strong correlations 
between predictions and ground truth through R = 3 and moderate correlations through R = 12. T2 quantifica-
tion performance was slightly stronger in femoral than acetabular cartilage. Our pipelines again outperformed 
state-of-the-art models in each cartilage compartment.

Supplementary Tables S11 and S12 show lumbar spine T2 quantification performance, which was mixed. 
Pearson’s r across all discs was very high, ranging from 0.884 at R = 2 to 0.643 at R = 12 for the no RNN model, 
indicating strong correlations through R = 8 and moderate correlations through R = 12 to ground truth. That said, 
IVD error rates were markedly higher across all R than in hip and knee cartilage, ranging from 4.86% to 18.8%. 
Though there was some volatility, error rates and Pearson’s r generally showed poorest T2 quantification in L1/

Figure 3.   T2 quantification performance of optimal ROI-specific pipeline in knee cartilage. (a) Visual pipeline 
performance within the knee for a representative patient, with corresponding NRMSEs for cartilage in the 
predicted T2 map slice. Performance remains strong through R = 10, maintaining T2 patterns in the medial 
tibiofemoral cartilage, indicating pipeline utility. Predicted maps generated by the network are masked using 
a cartilage segmentation mask and superimposed on the ground truth, fully sampled TE = 0 ms MAPSS echo 
time image. (b) Bland–Altman plots for all scans within test set for which multiclass cartilage compartment 
segmentations were available (n = 16, 6 cartilage compartments for each). Predicted T2 values demonstrate 
minimal bias and tight limits of agreement across most tested R, with best performance coming from 
patellofemoral cartilage.
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L2 and L2/L3 discs. Through R = 8, ROI-specific loss pipelines outperformed state-of-the-art models at nearly 
all disc levels, with stronger Pearson’s r in most IVD levels through R = 12.

T2 Value retention on region of interest averages.  Bland–Altman plots are provided for the knee, hip and lumbar 
spine in Figs. 3b, 4b, and 5b. In knee and hip, T2 values are predicted with minimal bias with respect to ground 
truth. The ± 1.96 s.d. limits of agreement were less than approximately ± 6 ms with mean biases under ± 3 ms 
through R = 8 for knee cartilage (Fig. 3b). Among cartilage compartments, predictions in trochlear and patel-
lar cartilage showed the least bias, while tibiofemoral cartilage T2 was generally slightly overestimated. In the 
hip (Fig. 4b), ± 1.96 s.d. limits of agreement were less than approximately ± 5 ms with mean biases under ± 3 ms 
through R = 12, although T2 quantification performance was similar across femoral and acetabular cartilage. In 
the lumbar spine (Fig. 5b), limits of agreement were considerably wider than the hip and knee pipelines, par-
ticularly above R = 4. While the line of equality was contained in these limits at all R, spine pipelines generally 
overestimated T2 values. While at some particular R, a disc level saw poorer T2 quantification than others (i.e. 
L2/L3 at R = 6), on balance, predicted maps yielded similar bias and error across all discs.

Supplementary Fig. S5 shows T2 value distributions in violin and boxplots. Plots reveal minimal bias in hip 
cartilage predicted T2 maps and slight but limited bias towards overestimating T2 in knee cartilage. In the lumbar 
spine, more volatility was observed in predicted T2 distributions, likely due to small test set size (n = 5), but at 
least through R = 6, these deviations had limited magnitude.

Texture retention.  ICCs ± 1 s.d. for GLCM metrics are in Table 3 for our best performing pipelines: no RNN 
and full model. In knee cartilage, ICCs showed significant correlations between predicted and ground truth 

Figure 4.   T2 quantification performance of optimal ROI-specific pipeline in hip cartilage. (a) Visual pipeline 
performance within the hip for a representative patient, with corresponding NRMSEs for cartilage in the 
predicted T2 map slice. Predicted maps are masked using a cartilage segmentation mask and superimposed 
on the ground truth, fully sampled TE = 0 ms MAPSS echo time image. For this patient, T2 patterns maintain 
through R = 10, although local T2 elevations are more diffusely predicted at higher R. (b) Bland–Altman plots for 
all scans within test set (n = 15, 2 cartilage compartments for each). Plots demonstrate very limited bias and even 
tighter limits of agreement from R = 2 through R = 12 than knee pipeline, showing hip pipeline effectiveness in 
reproducing T2 values from accelerated MAPSS acquisitions.
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GLCM metrics at all R for smooth textures and many R for sharp textures, indicating good to excellent reliability 
in preserving smooth textures (ASM and energy) at all R and moderate reliability in preserving sharper textures 
at low R (dissimilarity). In hip cartilage, ICCs showed significant correlations across all R in preserving smooth 
textures, and at low to moderate R for sharper textures. Reliability in smooth texture preservation ranged from 
good to excellent for all R and moderate for sharper textures at low to medium R. In both knee and hip cartilage, 
the full pipeline saw substantially higher GLCM ICCs for smooth and sharper texture across nearly all R. Within 
the lumbar spine, ICCs were significant across nearly all R for smoother textures. While ICCs were reasonable 
high for some R in contrast metrics, confidence intervals were wide, limiting findings of significant correlations. 
ICCs showed moderate to excellent reliability in preserving smoother textures, and poor to moderate reliability 
for sharper textures. For the spine, the No RNN model yielded optimal texture retention.

Repeatability study.  Optimal loss weightings from hyperparameter searches on the two additional splits 
are in Supplementary Table S13. Results of trainings on additional splits in T2 quantification error, Pearson’s r, 
and texture metrics are in Supplementary Tables S14, S15, S16. In the knee and hip pipelines, experiments show 
comparable results across all folds for these metrics. In the lumbar spine, Pearson’s r exhibited similar values 
across all folds, but in some cases, mean texture metric ICCs and NRMSEs exhibited substantial differences. 
However, confidence intervals were very wide for ICCs and NRMSEs in the lumbar spine, likely due to limited 
test set size (n = 5).

Figure 5.   T2 quantification performance of optimal ROI-specific pipeline in lumbar spine intervertebral discs. 
(a) Visual pipeline performance within the lumbar spine IVDs for a representative patient, with corresponding 
NRMSEs for IVDs in the predicted T2 map slice. Predicted maps are masked using an IVD segmentation 
mask and superimposed on the ground truth, fully sampled TE = 0 ms MAPSS echo time image. Network 
performance is best through R = 6, after which local T2 elevations are diffuse and underestimated. (b) Bland–
Altman plots for all scans within test set (n = 5, 5 IVDs plotted for each if segmentation of disc available). T2 
value predictions reflect some bias and fairly wide limits of agreement, particularly above R = 4. These results 
indicate progress but the need for improvement. Smaller lumbar spine dataset and test set size are likely 
responsible for poorer model when compared to hip and knee performance, as well as the relatively smaller 
number of slices in kz, which exacerbates undersampling effects.
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Table 2.   ROI-specific model performance in standard metrics from R = 2 through R = 12. Top performing 
pipeline for each metric, at each R, is shown in bold. Performances of pipelines trained with ROI-specific losses 
and other state-of-the-art methods in T2 quantification error rates in knee cartilage, hip cartilage, and lumbar 
spine IVDs. NRMSEs are reported ± 1 s.d., and Pearson’s r is reported with significances as follows: *P < 0.05, 
**P < 0.01, ***P < 0.001 (knee: n = 90; hip: n = 15; lumbar spine: n = 5). Across all anatomies, performances 
were strongest in ROI-specific loss pipelines (Full Model, Reduced Parameters, and No RNN): in the knee, the 
No RNN and Full Model pipelines particularly excelled across all tested R; in the hip, the No RNN pipeline 
was strong in maintaining minimal T2 quantification errors, while the Full Model and Reduced Parameters 
models had strongest correlations between predicted maps and ground truth; in the lumbar spine, the No RNN 
pipeline especially had strong T2 quantification performance. Performance in the knee and hip pipelines is 
strong and below clinically significant T2 changes across nearly all tested R, while Pearson’s r indicates strong 
T2 value preservation in the lumbar spine through R = 6. T2 quantification performance is thus promising in all 
three pipelines, but particularly for the knee and hip.

Tissue R Metric Full model
Reduced 
parameters No RNN MANTIS MANTIS-GAN CS

Knee cartilage

2
NRMSE 5.52 ± 1.25 6.07 ± 3.21 4.76 ± 1.78 14.4 ± 2.85 13.5 ± 3.3 8.92 ± 3.2

Pearson’s r 0.748*** 0.736*** 0.807*** 0.587*** 0.611*** 0.620***

3
NRMSE 6.52 ± 2.17 7.18 ± 3.08 6.39 ± 2.59 16.5 ± 3.43 15.1 ± 2.89 9.92 ± 3.23

Pearson’s r 0.695*** 0.668*** 0.722*** 0.467*** 0.502*** 0.559***

4
NRMSE 7.54 ± 2.96 9.56 ± 5.47 7.56 ± 3.19 16.6 ± 3.73 15.7 ± 4.5 11.8 ± 3.73

Pearson’s r 0.651*** 0.637*** 0.677*** 0.451*** 0.467*** 0.486***

6
NRMSE 8.09 ± 2.65 10.7 ± 6.67 8.44 ± 3.49 15.2 ± 2.33 16.3 ± 3.91 12.4 ± 4.1

Pearson’s r 0.612*** 0.610*** 0.629*** 0.397*** 0.378* 0.445***

8
NRMSE 8.94 ± 2.66 9.59 ± 3.83 10.1 ± 4.42 16.7 ± 2.73 17.3 ± 2.39 12.9 ± 3.93

Pearson’s r 0.585*** 0.574*** 0.609*** 0.352*** 0.364** 0.410***

10
NRMSE 9.77 ± 3.44 10.2 ± 3.61 9.35 ± 3.5 17.6 ± 2.48 16.7 ± 3.44 13.4 ± 3.76

Pearson’s r 0.555*** 0.514*** 0.565*** 0.327*** 0.333*** 0.386***

12
NRMSE 10.7 ± 2.32 9.93 ± 3.76 10.5 ± 3.37 18.2 ± 4.5 20.5 ± 5.58 13.4 ± 3.96

Pearson’s r 0.491*** 0.545*** 0.511*** 0.290*** 0.287*** 0.381***

Hip cartilage

2
NRMSE 3.97 ± 1.03 4.1 ± 1.1 3.79 ± 0.807 4.58 ± 0.993 8.21 ± 1.42 14.8 ± 2.78

Pearson’s r 0.794*** 0.782*** 0.770*** 0.716*** 0.514*** 0.310***

3
NRMSE 6.53 ± 1.63 5.63 ± 1.68 5.25 ± 1.13 6.41 ± 1.31 10.0 ± 1.57 12.9 ± 3.15

Pearson’s r 0.705*** 0.726*** 0.703*** 0.596*** 0.372*** 0.332***

4
NRMSE 6.15 ± 1.01 6.17 ± 1.47 5.84 ± 0.891 7.33 ± 1.67 9.97 ± 1.74 11.8 ± 2.03

Pearson’s r 0.646*** 0.665*** 0.648*** 0.510*** 0.333*** 0.339***

6
NRMSE 8.1 ± 1.85 8.22 ± 2.06 7.48 ± 1.52 8.63 ± 2.32 9.68 ± 1.92 11.8 ± 2.14

Pearson’s r 0.587*** 0.597*** 0.570*** 0.382*** 0.321*** 0.334***

8
NRMSE 6.97 ± 1.93 6.33 ± 1.33 6.98 ± 1.45 10.2 ± 2.72 12.0 ± 2.64 10.5 ± 2.3

Pearson’s r 0.598*** 0.588*** 0.558*** 0.334*** 0.237*** 0.347***

10
NRMSE 8.99 ± 2.65 8.12 ± 1.28 8.7 ± 3.46 9.74 ± 2.24 10.5 ± 1.91 10.2 ± 2.4

Pearson’s r 0.558*** 0.534*** 0.522*** 0.279*** 0.268*** 0.335***

12
NRMSE 7.75 ± 1.5 8.27 ± 2.19 7.34 ± 1.38 9.74 ± 2.23 11.5 ± 2.36 10.3 ± 2.52

Pearson’s r 0.517*** 0.566*** 0.512*** 0.280*** 0.228*** 0.349***

Lumbar spine IVD

2
NRMSE 6.71 ± 1.7 6.86 ± 1.57 4.86 ± 1.16 8.78 ± 2.08 8.95 ± 1.91 10.1 ± 3.06

Pearson’s r 0.865*** 0.866*** 0.884*** 0.784*** 0.785*** 0.802***

3
NRMSE 9.92 ± 2.39 8.76 ± 2.16 7.13 ± 1.69 11.0 ± 1.17 11.3 ± 1.74 9.48 ± 1.4

Pearson’s r 0.836*** 0.823*** 0.832*** 0.717*** 0.712*** 0.777***

4
NRMSE 10.3 ± 3.02 9.73 ± 3.07 7.42 ± 1.1 12.1 ± 1.24 12.6 ± 1.35 11.3 ± 2.31

Pearson’s r 0.799*** 0.813*** 0.819*** 0.680*** 0.671*** 0.723***

6
NRMSE 12.1 ± 3.58 12.2 ± 4.11 10.3 ± 3.31 15.6 ± 2.65 12.1 ± 1.9 12.0 ± 2.76

Pearson’s r 0.776*** 0.764*** 0.771*** 0.660*** 0.658*** 0.728***

8
NRMSE 13.4 ± 3.89 13.0 ± 2.63 12.0 ± 3.07 13.2 ± 1.42 12.7 ± 1.7 12.8 ± 2.53

Pearson’s r 0.742*** 0.723*** 0.742*** 0.631*** 0.645*** 0.695***

10
NRMSE 15.3 ± 3.22 14.8 ± 2.78 14.8 ± 2.26 13.8 ± 1.57 13.2 ± 1.81 15.0 ± 3.77

Pearson’s r 0.695*** 0.700*** 0.672*** 0.647*** 0.636*** 0.648***

12
NRMSE 18.1 ± 1.95 23.1 ± 2.71 18.8 ± 2.76 14.8 ± 3.03 14.1 ± 1.88 24.8 ± 11.2

Pearson’s r 0.664*** 0.320*** 0.643*** 0.651*** 0.614*** 0.586***
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Table 3.   Texture retention analysis in No RNN and Full Model pipelines. Intraclass correlation coefficients 
(ICCs) of Gray Level Co-Occurrence Matrix (GLCM)-based metrics. Contrast and dissimilarity are most 
sensitive to sharper image textures, while homogeneity, ASM, and energy are most sensitive to smoother 
image textures. Significance in correlations is noted as follows: *P < 0.05, **P < 0.01, ***P < 0.001 (knee: n = 16; 
hip: n = 15; lumbar spine: n = 5). In the knee and hip, Full Model pipelines outperformed No RNN versions 
in retention of smooth and sharp textures. In the lumbar spine, the No RNN pipeline outperformed the Full 
Model version, possibly because the smaller lumbar spine dataset size made training a larger network with 
a multi-component loss more difficult. In conjunction with standard reconstruction metrics, the Full Model 
pipeline was selected as the best knee and hip model, whereas the No RNN pipeline was selected as the best 
lumbar spine model. Top models in all anatomies preserved smoother textures at nearly all tested R, while 
dissimilarity texture metrics showed sharper textures were significantly correlated with ground truth and 
preserved in the knee and hip at low to medium R. In the lumbar spine, mean ICCs for sharper textures at 
many tested R also were high, but small dataset size likely led to wide standard deviations that prevented 
significant conclusions from being reached. All told, many textures are preserved in T2 maps by all pipelines, 
particularly in the knee and hip.

R

GLCM texture metric

Contrast Dissimilarity Homogeneity ASM Energy

Knee

Full model

2 0.307 ± 0.18** 0.638 ± 0.12*** 0.734 ± 0.09*** 0.966 ± 0.015*** 0.954 ± 0.02***

3 0.153 ± 0.2 0.521 ± 0.15*** 0.735 ± 0.09*** 0.962 ± 0.015*** 0.95 ± 0.02***

4 0.11 ± 0.2 0.387 ± 0.17*** 0.61 ± 0.12*** 0.973 ± 0.01*** 0.95 ± 0.02***

6 0.0667 ± 0.2 0.22 ± 0.19* 0.382 ± 0.17*** 0.97 ± 0.015*** 0.94 ± 0.025***

8 0.061 ± 0.2 0.111 ± 0.2 0.0615 ± 0.2 0.952 ± 0.02*** 0.9 ± 0.04***

10 0.0594 ± 0.2 0.218 ± 0.19* 0.307 ± 0.18** 0.961 ± 0.015*** 0.928 ± 0.03***

12 0.0032 ± 0.2 − 0.066 ± 0.2 − 0.178 ± 0.19 0.927 ± 0.03*** 0.861 ± 0.055***

No RNN

2 0.455 ± 0.16*** 0.599 ± 0.13*** 0.32 ± 0.18*** 0.898 ± 0.04*** 0.904 ± 0.04***

3 0.394 ± 0.17*** 0.523 ± 0.15*** 0.383 ± 0.17*** 0.709 ± 0.11*** 0.802 ± 0.07***

4 0.262 ± 0.18** 0.305 ± 0.18** 0.244 ± 0.18** 0.646 ± 0.12*** 0.754 ± 0.09***

6 0.103 ± 0.2 0.0574 ± 0.2 0.061 ± 0.2 0.874 ± 0.045*** 0.869 ± 0.05***

8 0.0645 ± 0.2 0.0411 ± 0.2 0.0435 ± 0.2 0.922 ± 0.03*** 0.911 ± 0.035***

10 0.0474 ± 0.2 0.0382 ± 0.2 0.093 ± 0.2 0.92 ± 0.035*** 0.913 ± 0.035***

12 0.0568 ± 0.2 0.0315 ± 0.2 0.0885 ± 0.2 0.818 ± 0.065*** 0.862 ± 0.055***

Hip

Full model

2 0.312 ± 0.34* 0.633 ± 0.23*** 0.837 ± 0.12*** 0.945 ± 0.04*** 0.957 ± 0.035***

3 0.369 ± 0.32* 0.671 ± 0.21*** 0.816 ± 0.14*** 0.976 ± 0.02*** 0.98 ± 0.015***

4 0.328 ± 0.33* 0.597 ± 0.25*** 0.801 ± 0.15*** 0.957 ± 0.035*** 0.954 ± 0.04***

6 0.235 ± 0.35 0.475 ± 0.3** 0.645 ± 0.23*** 0.939 ± 0.05*** 0.941 ± 0.045***

8 0.199 ± 0.36 0.487 ± 0.28** 0.823 ± 0.13*** 0.923 ± 0.06*** 0.933 ± 0.055***

10 0.127 ± 0.36 0.308 ± 0.34 0.48 ± 0.29** 0.862 ± 0.11*** 0.855 ± 0.11***

12 0.198 ± 0.36 0.38 ± 0.32* 0.523 ± 0.28** 0.927 ± 0.06*** 0.914 ± 0.07***

No RNN

2 0.285 ± 0.34 0.399 ± 0.32* 0.406 ± 0.31* 0.855 ± 0.11*** 0.841 ± 0.12***

3 0.15 ± 0.36 0.241 ± 0.35 0.292 ± 0.34 0.867 ± 0.1*** 0.85 ± 0.12***

4 0.113 ± 0.36 0.202 ± 0.36 0.282 ± 0.34 0.836 ± 0.12*** 0.813 ± 0.14***

6 0.0394 ± 0.36 0.0504 ± 0.36 0.0785 ± 0.36 0.793 ± 0.15*** 0.767 ± 0.16***

8 0.0229 ± 0.37 0.000593 ± 0.37 − 0.0583 ± 0.37 0.682 ± 0.21*** 0.653 ± 0.22***

10 − 0.00292 ± 0.36 − 0.0328 ± 0.37 − 0.196 ± 0.36 0.644 ± 0.23*** 0.621 ± 0.24***

12 − 0.00208 ± 0.37 − 0.0312 ± 0.36 − 0.0646 ± 0.36 0.712 ± 0.2*** 0.687 ± 0.2***

Lumbar spine

Full model

2 0.557 ± 0.7 0.695 ± 0.62 0.744 ± 0.57* 0.892 ± 0.35** 0.923 ± 0.27**

3 0.499 ± 0.73 0.615 ± 0.67 0.644 ± 0.66 0.819 ± 0.48* 0.872 ± 0.39*

4 0.236 ± 0.8 0.421 ± 0.76 0.497 ± 0.73 0.67 ± 0.64 0.775 ± 0.54*

6 0.341 ± 0.78 0.428 ± 0.76 0.262 ± 0.8 0.566 ± 0.7 0.67 ± 0.64*

8 0.0633 ± 0.81 0.152 ± 0.8 0.276 ± 0.79 0.685 ± 0.62 0.728 ± 0.58*

10 − 0.0393 ± 0.81 − 0.0631 ± 0.81 − 0.0699 ± 0.81 0.403 ± 0.76 0.479 ± 0.74*

12 − 0.0697 ± 0.81 − 0.156 ± 0.8 − 0.424 ± 0.76 0.16 ± 0.8 0.198 ± 0.8*

No RNN

2 0.496 ± 0.73 0.731 ± 0.58* 0.883 ± 0.37** 0.967 ± 0.14*** 0.975 ± 0.11***

3 0.357 ± 0.78 0.615 ± 0.67 0.807 ± 0.5* 0.909 ± 0.31** 0.934 ± 0.24**

4 0.336 ± 0.78 0.607 ± 0.68 0.771 ± 0.54* 0.874 ± 0.38* 0.91 ± 0.31**

6 0.307 ± 0.78 0.53 ± 0.72 0.604 ± 0.68 0.903 ± 0.32** 0.916 ± 0.29**

8 0.2 ± 0.8 0.4 ± 0.76 0.59 ± 0.68 0.847 ± 0.44* 0.871 ± 0.39*

10 0.0696 ± 0.81 0.184 ± 0.8 0.386 ± 0.76 0.692 ± 0.62 0.726 ± 0.59*

12 0.0157 ± 0.82 0.0858 ± 0.81 0.325 ± 0.78 0.561 ± 0.7 0.591 ± 0.68*
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Raw multicoil data assessment.  Supplementary Fig. S6 shows T2 maps predicted from our proposed 
pipelines on retrospectively undersampled raw k-space data. In the knee, T2 quantification errors were low 
through R = 12, with local T2 elevations preserved and little dip in performance compared to corresponding 
retrospectively undersampled coil-combined knee data. In the hip, T2 quantification errors were low, with local 
T2 elevations reproduced at most R; while performance at higher R matched expected performance from coil-
combined experiments, lower R quantification errors were slightly higher. Performance was more volatile in the 
lumbar spine, where through R = 4, T2 quantification errors matched expected results and local T2 patterns were 
generally preserved, but performance degraded substantially above R = 4.

Discussion and conclusions.  In this work, we present data-driven pipelines that leverage recurrent UNet 
architectures and multi-component losses to accelerate MAPSS T2 mapping for anatomies where a subset of tis-
sues is of particular clinical interest. By image processing and standard reconstruction metrics, through R = 10, 
our knee pipelines retained fidelity to T2 values with tight limits of agreement, preserving smooth textures with 
good to excellent reliability and sharper ones with moderate reliability for most tested R. While the no RNN 
pipeline delivered lower NRMSEs and higher Pearson’s r across many cartilage compartments and R than full 
model, its texture retention was poorer, making the full model better suited to preserve small, key diagnostic 
features. In hip cartilage, predicted maps retained T2 fidelity through R = 12 with tight limits of agreement, pre-
served smooth textures with good to excellent agreement across tested R, and maintained sharper textures at 
low to moderate R. As with the knee, texture retention was strongest in the full pipeline despite lower no RNN 
NRMSEs. In IVDs, the no RNN pipeline delivered best standard reconstruction metric and texture retention 
performance. Despite maintaining smoother textures with moderate to excellent agreement across tested R and 
preserving sharper textures at lower R, the IVD pipeline revealed biases and fairly wide limits of agreement in 
T2 preservation, particularly at R = 6 and higher. When assessed on retrospectively undersampled multicoil raw 
k-space data, the knee and hip pipelines saw minimal degradation in performance as compared to results from 
images undersampled via synthetic k-space, whereas the lumbar spine pipeline exhibited similar performance 
through R = 4. Furthermore, repeatability studies indicated that, particularly for the hip and knee, performance 
was stable with respect to datasets. All told, these metrics indicate promise for the knee and hip pipelines in 
MAPSS T2 mapping acceleration, and progress but room for improvement in IVDs.

Assessments of ROI-specific loss component utility showed its potential for improving predictions in accel-
erated acquisition schemes. When trained with sufficiently large datasets, as our knee and hip pipelines were, 
its inclusion saw stronger fidelity to local T2 patterns in cartilage ROIs and reduced T2 quantification errors 
compared to analogous pipelines trained without the ROI-specific loss component. Compared to state-of-the-art 
DL pipelines, knee and hip pipelines saw improved Pearson’s r in cartilage ROIs but poorer global Pearson’s r, 
as expected from the focused training approach. Interestingly, CS approaches exhibit relatively strong NRMSEs 
while generating relatively smooth predicted T2 maps; this is possibly because in training, DL-based approaches 
simultaneously removed aliasing artifacts and performed T2 fitting, and could attempt to preserve finer details 
than a CS approach performing those steps sequentially. While our approaches outperformed state-of-the-art 
methods at many R and tissue compartments in the lumbar spine, global Pearson’s r indicated this may have 
been partially due to some models being more completely trained than others. These results may have been dif-
ferent with a larger lumbar spine training set. Nonetheless, the value of ROI-specific loss functions in accelerated 
acquisition pipelines is clear: with sufficiently large datasets, they can optimize for ROIs and outperform state-of-
the-art approaches at high R, as existing approaches are optimized for global and not ROI-specific performance.

We can contextualize performance by comparing quantification errors to clinically significant T2 changes. 
In the knee, T2 increases 13.4% in lateral femoral condyle (LFC) cartilage, 12.3% in medical femoral condyle 
(MFC) cartilage, and 8.1% in medial tibial condyle (MTC) cartilage among patients with mild OA compared to 
controls65. Our top-performing knee pipeline saw errors below this benchmark through R = 12 in the LFC and 
at R = 2 in the MTC. In IVDs, T2 decreases 36.3% in the nucleus pulposus and 24.2% in the annulus fibrosus 
from healthy to degenerative discs66. Our top-performing pipeline saw quantification errors for each disc below 
the more stringent 24.2% through R = 12. In the hip, T2 values among healthy patients that progress to OA 
within 18 months are 7.3% higher in femoral and 5.2% higher in acetabular cartilage compared to controls67. 
Our top-performing hip pipeline had errors below these benchmarks at all R in femoral cartilage and at R = 2 
in acetabular cartilage. Clinical metrics thus depict promise for pipelines in all three anatomies in maintaining 
sub-clinical-significance quantification errors.

Clinical and standard metrics show knee and hip pipeline performances to be particularly promising—the T2 
values, map texture preservation, and error rates relative to clinical benchmarks all mark meaningful progress 
towards reducing cMRI acquisition time for eventual clinical use. That said, while lumbar spine performance 
was strong by clinical metrics, it lagged the knee and hip by standard reconstruction metrics. One explanation 
is dataset size: the lumbar spine dataset had substantially fewer scans and imaging slices than the knee and hip. 
This has twofold impact: (1) the strength of a model trained from a smaller dataset is inherently limited, and (2) 
having only 5 test set scans limits statistical power and induces wide standard deviations of metrics, preventing 
significant conclusions from being reached. The effects of this small dataset size particularly surface in repeat-
ability studies. Furthermore, lumbar spine acquisitions were more susceptible to breathing artifacts and had fewer 
slices than the hip and knee; undersampling therefore left fewer lumbar spine ky-kz lines sampled compared to the 
hip and knee, inducing worse initializations and possibly poorer performance. Nonetheless, to our knowledge, 
this is the first DL application to accelerate lumbar spine cMRI, marking progress that must be furthered with 
additional data procurement and algorithm development for clinical utility.

The GLCM-based textural retention evaluation demonstrated a framework through which reconstruction 
performance can be better evaluated than through standard metrics like SSIM, NRMSE, and PSNR. ICCs of 
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GLCM metrics between predicted and ground truth T2 maps allow for intuitive, scaled measurements that can 
reflect how well a particular texture was preserved: for example, visual inspection of predicted T2 maps in knee 
and hip cartilage in Figs. 3, 4 indicate that sharp textures are preserved better by the hip pipeline. This qualita-
tive observation is confirmed by the GLCM Dissimilarity ICCs observed for the full model in the hip and knee 
pipelines in Table 3 at several tested R. This work could be furthered by extending this analysis to additional 
GLCM metrics for an even more thorough assessment of textural feature retention. Additional future improve-
ments could also include pre-processing cartilage and IVD tissues prior to GLCM metric calculation to improve 
stability of these metrics, as other groups have started to do68.

Moreover, by showing results at 7 acceleration factors instead of the 2–3 typical in the literature, we found per-
formance did not always degrade steadily as R increased. Networks therefore may be sensitive not just to general 
undersampling patterns, but also the specific nature of the pattern. Thus, when future DL reconstruction pipelines 
are trained, a library of undersampling patterns may be advisable to encourage robustness to sampling patterns69.

This study has limitations. First, we used retrospectively undersampled coil-combined magnitude echo time 
images that, in the knee and hip, had undergone ARC processing in their reconstruction, with 4 edge slices 
discarded for all data. Due to coil combination and post-processing, the k-space being undersampled would not 
match the acquisition’s multi-coil k-space. Additionally, while we undersampled the MAPSS acquisition ellipse 
for each anatomy, the hip acquisitions had ‘no phase wrap’ applied, meaning that tested undersampling patterns 
would differ from those implemented on the scanner. While our raw k-space experiments show performance 
degradation was limited compared to coil-combined magnitude image experiments, models would be stronger 
if trained with a similarly sized multicoil k-space dataset. Second, this network is specific to our sampling pat-
terns and acquisition parameters, and new pipelines would need to be trained should parameters like MAPSS 
T2 echo times be substantially changed. Finally, the lumbar spine dataset size is rather small, limiting the power 
of conclusions.

To conclude, this study shows a novel means of training DL pipelines to accelerate cMRI in anatomies where 
specific tissues are of heightened clinical importance. In knee and hip, pipelines were effective at high R in main-
taining textures, keeping fidelity to T2 values, and minimizing T2 quantification errors, whereas in the lumbar 
spine, the pipeline performed reasonably by those same criteria, but poorer in T2 value fidelity and quantification 
errors. This reflects progress towards clinically useful pipelines that specialize in MSK T2 mapping. The GLCM-
based textural retention analysis elucidates an alternate to standard reconstruction metrics, allowing for intui-
tive measures of the types of features best preserved by a accelerated acquisition schemes, potentially allowing 
for better quantitative assessment of model performance. Future directions include multicoil k-space training, 
simultaneous MAPSS T1ρ and T2 acceleration, and temporal undersampling of T2 weighted echo time images.

Data availability
The datasets analyzed during the current study have been collected as part of multi-year studies or volunteers 
scans at the UCSF and their public release is not currently possible due to data privacy concerns. Codes to repro-
duce the results of this work are available upon reasonable request from the corresponding author (A. Tolpadi).
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