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Surrogate “Level‑Based” 
Lagrangian Relaxation 
for mixed‑integer linear 
programming
Mikhail A. Bragin 1* & Emily L. Tucker 2

Mixed‑Integer Linear Programming (MILP) plays an important role across a range of scientific 
disciplines and within areas of strategic importance to society. The MILP problems, however, suffer 
from combinatorial complexity. Because of integer decision variables, as the problem size increases, 
the number of possible solutions increases super-linearly thereby leading to a drastic increase in 
the computational effort. To efficiently solve MILP problems, a “price‑based” decomposition and 
coordination approach is developed to exploit 1. the super‑linear reduction of complexity upon the 
decomposition and 2. the geometric convergence potential inherent to Polyak’s stepsizing formula 
for the fastest coordination possible to obtain near‑optimal solutions in a computationally efficient 
manner. Unlike all previous methods to set stepsizes heuristically by adjusting hyperparameters, the 
key novel way to obtain stepsizes is purely decision‑based: a novel “auxiliary” constraint satisfaction 
problem is solved, from which the appropriate stepsizes are inferred. Testing results for large‑scale 
Generalized Assignment Problems demonstrate that for the majority of instances, certifiably optimal 
solutions are obtained. For stochastic job‑shop scheduling as well as for pharmaceutical scheduling, 
computational results demonstrate the two orders of magnitude speedup as compared to Branch‑
and‑Cut. The new method has a major impact on the efficient resolution of complex Mixed‑Integer 
Programming problems arising within a variety of scientific fields.

Mixed-Integer Linear Programming (MILP) plays an important role across a range of scientific disciplines such 
as mathematics, operations research, engineering, and computer science as well as within a range of areas of 
strategic importance to society such as  biology1,2,  healthcare3,4, humanitarian  applications5–8,  manufacturing9–12, 
 pharmacy13–16, power and energy  systems17–19, transportation and  logistics20,21 and many others.

The associated systems are created by interconnecting I smaller subsystems, each having its own objective 
and a set of constraints. The subsystem interconnection is modeled through the use of system-wide coupling 
constraints. Accordingly, the MILP problems are frequently formulated in terms of cost components associated 
with each subsystem with the corresponding objective functions being additive as such:

Furthermore, coupling constraints are additive in terms of I subsystems:

The primal problem (1), (2) is assumed to be feasible and the feasible region F =
∏I

i=1 Fi with Fi ⊂ Z
nxi × R

n
y
i  

is assumed to be bounded and finite. The MILP problems modeling the above systems are referred to as separable. 
Because of the discrete decisions, however, MILP problems are known to be NP-hard and are prone to the curse of 
combinatorial complexity. As the size of a problem increases, the associated number of combinations of possible 
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solutions (hence the term “combinatorial”) increases super-linearly (e.g., exponentially) thereby making problems 
of practical sizes difficult to solve to optimality; even near-optimal solutions are frequently difficult to obtain.

A beacon of hope to resolve combinatorial difficulties lies through the exploitation of separability through 
the dual “price-based” decomposition and coordination Lagrangian Relaxation technique. After the relaxation 
of coupling constraints (2), the coordination of subproblems amounts to the maximization of a concave non-
smooth dual function:

where
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 is the Lagrangian function. 
The Lagrangian multipliers � (“dual” variables) are the decision variables with respect to the dual problem (3), 
and it is assumed that the set of optimal solutions is not empty. The minimization within (4) with respect to {x, y} 
is referred to as the “relaxed problem.”

While the sizes of the primal and the relaxed problems are the same in terms of the number of discrete vari-
ables, the main advantage of Lagrangian Relaxation is the exploitation of the reduction of the combinatorial 
complexity upon decomposition into subproblems. Accordingly, the number of discrete decision variables within 
the primal problem is n =

∑I
i=1 n

x
i  , so the worst-case complexity of solving the primal problems is O(e

∑I
i=1 n

x
i ) . 

By the same token, the worst-case complexity required to solve the following subproblem

is O(enxi ) . The decomposition “reverses” the combinatorial complexity thereby exponentially reducing the effort. 
The decomposition, therefore, offers a viable potential to improve the operations of existing systems as well as 
to scale up the size of the systems to support their efficient operations.

While decomposition efficiently reduces the combinatorial complexity, the coordination aspect of the method 
to efficiently obtain the optimal “prices” (Lagrangian multipliers) has been the subject of an intense research 
debate for decades because of the fundamental difficulties of non-smooth optimization. Namely, because of the 
presence of integer variables x, the dual function (3) is non-smooth comprised of flat convex polygonal facets 
(each corresponding to a particular solution to the relaxed problem within (4)) intersecting at linear ridges along 
which the dual function q(�) is non-differentiable; in particular, q(�) is not differentiable at �∗ thereby ruling out 
the possibility of using necessary and sufficient conditions for the extremum. As a result of the non-differentia-
bility of q(�) , subgradient multiplier-updating directions, however, are non-ascending directions thereby leading 
to a decrease of dual values; subgradient directions may also change drastically thereby resulting in zigzagging 
of Lagrangian multipliers (see Fig. 1 for illustrations) and slow convergence as a result.
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Figure 1.  An example of a dual function demonstrating difficulties faced by subgradient methods. Solid lines 
denote the level curves, dash-dotted lines denote the ridges of the dual function whereby the usual gradients 
are not defined (possible subgradient directions at points (A) and (B) are denoted by solid arrows), and the 
direction from point  (B) toward optimal multipliers is denoted by a dashed line.
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Traditional methods to maximize q(�) rely upon iterative updates of Lagrangian multipliers by taking a series 
of steps sk along subgradient g(xk , yk) directions as:

where {xk , yk} ≡ {xki , yki }Ii=1 is a an optimal solution to the relaxed problem (4) with multipliers equal to �k . 
Within the Lagrangian Relaxation framework, subgradients are defined as levels of constraint violations 
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be handled by converting into equality constraints by introducing non-negative real-valued slack variables z 
such that 
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delineated by restrictions � ≥ 0.

Because of the lack of differentiability of q(�) , notably, at the optimum �∗, the stepsize selection plays an 
important role to guarantee convergence to the optimum as well as for the success of the overall Lagrangian 
Relaxation methodology for solving MILP problems.

One of the earlier papers on the optimization of non-smooth convex functions, with q(�) being its member, 
though irrespective of Lagrangian Relaxation, is Polyak’s seminal  work22. Intending to achieve the geometric 
(also referred to as “linear”) rate of convergence so that ��k − �

∗� is monotonically decreasing, Polyak proposed 
the stepsizing formula, which in terms of the problem under consideration takes the following form:

Within (7) and thereafter in the paper the standard Euclidean norm is used.
Subgradient directions, however, 1. are generally difficult to obtain computationally when the number of 

subproblems (5) to be solved is large, and 2. change drastically thereby resulting in zigzagging of Lagrangian 
multipliers and slow convergence. Moreover, 3. stepsizes (7) cannot be set due to the lack of the knowledge about 
the optimal dual value q(�∗).

To overcome the first two of the difficulties above, the Surrogate Subgradient method was developed  by23 
whereby the exact optimality of the relaxed problem (or even subproblems) is not required. As long as the fol-
lowing “surrogate optimality condition” is satisfied:

the multipliers can be updated by using the following version of the Polyak’s formula

and convergence to �∗ is guaranteed. Here “tilde” is used to distinguish optimal solutions {xk , yk} to the relaxed 
problem from the solutions {x̃k , ỹk} that satisfy the “surrogate optimality condition” (8). Unlike that in Polyak’s 
formula, parameter γ is less than 1 to guarantee that q(�∗) > L(x̃k , ỹk , �k) so that the stepsizing formula (9) is 
well-defined, as proved by Zhao et al.23. Once {x̃k , ỹk} are obtained, multipliers are updated by using the same 
formula as in (6) with stepsizes from (9) and “surrogate subgradient” multiplier-updating directions g(x̃k , ỹk) 
used in place of subgradient directions g(xk , yk) . Besides reducing the computational effort owing to (8), the con-
comitant reduction of multiplier zigzagging has also been observed. The main difficulty is the lack of knowledge 
about q(�∗) . As a result, the geometric/linear convergence of the method (or any convergence at all) is highly 
questionable in practice. Nevertheless, the underlying geometric convergence principle behind the formula (8) 
is promising and will be exploited in  “Results” section.

One of the first attempts to overcome the difficulty associated with the unavailability of the optimal [dual] 
value is the Subgradient-Level method developed by Goffin and Kiwiel 24 by adaptively adjusting a “level” estimate 
based on the detection of “sufficient descent” of the [dual] function and “oscillation” of [dual] solutions. In a 
nutshell, a “level” estimate is set as qklev = q

kj
rec + δj with qkrec being the best dual value (“record objective value”) 

obtained up to an iteration k,  and δj is an adjustable parameter with j denoting the jth update of qklev . Every time 
oscillations of multipliers are detected, δj is reduced by half. In doing so, stepsizes appropriately decrease, qklev 
increases (for maximization of non-smooth functions such as (3)) and the process continues until δj → 0 and 
qklev → q(�∗).

To improve convergence, rather than updating all the multipliers “at once,” within the Incremental Subgradi-
ent  methods25, multipliers are updated “incrementally.” Convergence results of the Subgradient-Level  method24 
have been extended for the Incremental Subgradient methods.

Within the Surrogate Lagrangian Relaxation (SLR)  method26, the computational effort is reduced along 
the lines of the Surrogate Subgradient  method23 discussed above, that is, by solving one of a few subproblems 
at a time. To guarantee convergence, within SLR, distances between multipliers at consecutive iterations are 
required to decrease through a specially-constructed contraction mapping until convergence. As demonstrated 
by Bragin et al.26, the SLR method converges faster as compared to the above-mentioned Subgradient-Level 
 method24 and the Incremental Subgradient  methods25,27 for non-smooth optimization. Unlike the Subgradient-
Level and Incremental Subgradient  methods25,27, the SLR method does not require obtaining dual values to set 
stepsizes, which further reduces the effort. Aiming to simultaneously guarantee convergence while ensuring fast 
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reduction of constraint violations and preserving the linearity, the Surrogate Absolute-Value Lagrangian Relaxa-
tion (SAVLR)  method28 was developed to penalize constraint violations by using l1 “absolute-value” penalty terms. 
The above methods are reviewed in more detail in Supplementry Information Section.

Because of the presence of the integer variables, there is the so-called the duality gap, which means that even 
at convergence, q(�∗) is generally less than the optimal cost of the original problem (1), (2). To obtain a feasible 
solution to (1), (2), the subproblem solutions when put together may not satisfy all the relaxed constraints. 
Therefore, to solve corresponding MILP problems, heuristics are inevitable and are used to perturb subproblem 
solutions. The important remark here is that the closer the multipliers are to the optimum, generally, the closer 
the subproblem solutions are to the global optimum of the original problem, and the easier it is to obtain feasible 
solutions through heuristics. Therefore, having fast convergence in the dual space to maximize the dual function 
(3) is of paramount importance for the overall success of the method. Specific heuristics will be discussed at the 
end of the “Results” section.

Results
Surrogate “Level‑Based” Lagrangian Relaxation. In this subsection, a novel Surrogate “Level-Based” 
Lagrangian Relaxation (SLBLR) method is developed to determine “level” estimates of q(�∗) within the Pol-
yak’s stepsizing formula (9) for fast convergence of multipliers when optimizing the dual function (3). Since the 
knowledge of q(�∗) is generally unavailable, over-estimates of the optimal dual value, if used in place of q(�∗) 
within the formula (9), may lead to the oscillation of multipliers and to the divergence. Rather than using heu-
ristic “oscillation detection” of multipliers used to adjust “level”  values24, the key of SLBLR is the decision-based 
“divergence detection” of multipliers based on a novel auxiliary “multiplier-divergence-detection” constraint 
satisfaction problem.

“Multiplier-Divergence-Detection” problem to obtain the estimate of q(�∗). The premise behind the multiplier-
divergence detection is the rendition of the result due Zhao et al.23:

Theorem 1 Under the stepsizing formula

such that {x̃k , ỹk} satisfy

the multipliers move closer to optimal multipliers �∗ iteration by iteration:

The following Corollary and Theorem 2 are the main key results of this paper.

Corollary 1 If

then

Theorem 2 If the following auxiliary “multiplier-divergence-detection” feasibility problem (with � being a continu-
ous decision variable: � ∈ R

m)

admits no feasible solution with respect to � for some kj and nj , then ∃ κ ∈ [kj , kj + nj] such that

Proof Assume the contrary: ∀κ ∈ [kj , kj + nj] the following holds:

By Theorem 1, multipliers approach �∗, therefore, the “multiplier-divergence-detection” problem admits at least 
one feasible solution - �∗. Contradiction.   �
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.

(15)















��− �
kj+1� ≤ ��− �

kj�,
��− �

kj+2� ≤ ��− �
kj+1�,

...

��− �
kj+nj� ≤ ��− �

kj+nj−1�,

(16)sκ ≥ γ ·
q(�∗)− L(x̃κ , ỹκ , �κ )
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From (16) it follows that ∃ qκ ,j such that qκ ,j > q(�∗) and the following holds:

The equation (18) can equivalently be rewritten as:

Therefore,

A brief yet important discussion is in order here. The overestimate qj of the dual value q(�∗) is the sought-for 
“level” value after the jth update (the jth time the problem (15) is infeasible). Unlike previous methods, which 
require heuristic hyperparameter adjustments to set level values, within SLBLR, level values are obtained by using 
the decision-based principle per (15) precisely when divergence is detected without any guesswork. In a sense, 
SLBLR is hyperparameter-adjustment-free. Specifically, neither “multiplier-divergence-detection” problem (15), 
nor the computations within (18)–(20) requires hyperparameter adjustment. Following Nedić and  Bertsekas27, 
the parameter γ will be chosen as a fixed value γ = 1

I  , which is the inverse of the number of subproblems and 
will not require further adjustments.

Note that (15) simplifies to an LP constraint satisfaction problem. For example, after squaring both sides 
of the first inequality ��− �

kj+1� ≤ ��− �
kj� within (15), after using the binomial expansion, and canceling 

��− �
kj�2 from both sides, the inequality simplifies to 2 · (�− �

kj ) · g(x̃kj , ỹkj ) ≥ skj · �g(x̃kj , ỹkj )�2, which is 
linear in terms of �.

To speed up convergence, a hyperparameter ζ < 1 is introduced to reduce stepsizes as follows:

Subsequently after iteration kj+1 , the problem (15) is sequentially solved again by adding one inequality per 
multiplier-updating iteration until iteration kj+1 + nj+1 − 1 is reached for some nj+1 so that (15) is infeasible. 
Then, stepsize is updated by using qj+1 per (21) and is used to update multipliers until the next time it is updated 
to qj+2 when the “multiplier-divergence-detection” problem is infeasible again, and the process repeats. Per (21), 
SLBLR requires hyperparameter ζ , yet, it is set before the algorithm is run and subsequently is not adjusted (see 
“Numerical testing” section for empirical demonstration of the robustness of the method with respect to the 
choice of hyperparameter ζ).

To summarize the advantage of SLBLR, hyperparameter adjustment is not needed. The guesswork of when 
to adjust the level-value, and by how much is obviated — after (15) is infeasible, the level value is formulaically 
recalculated.

On improvement of convergence. To speed up the acceleration of the multiplier-divergence detection through 
the “multiplier-divergence-detection” problem, (15) is modified, albeit heuristically, in the following way:

Unlike the problem (15), the problem (22) no longer simplifies to an LP problem. Nevertheless, the system 
of inequalities delineate the convex region and can still be handled by commercial software.

Discussion of (22). Equation (22) is developed based on the following principles: 1. Rather than detecting 
divergence per (15), convergence with a rate slower than 

√
1− 2 · ν · s is detected. This will lead to a faster 

adjustment of the level values. While the level value may no longer be guaranteed to be the upper bound to q(�∗) , 
the merit of the above scheme will be empirically justified in the “Numerical testing” section. 2. While the rate of 
convergence is unknown, in the “worst-case” scenario 

√
1− 2 · ν · s is upper bounded by 1 with ν = 0 , thereby 

reducing (22) to (15). The estimation of 
√
1− 2 · ν · s is thus much easier than the previously used estimations 

of q(�∗) (as in Subgradient-Level and Incremental Subgradient approaches). 3. As the stepsize approaches zero,  √
1− 2 · ν · s approaches the value of 1 regardless of the value of ν , once again reducing (22) to (15).
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�g(x̃k , ỹk)�2
, ζ < 1.

(22)



















��− �
kj+1� ≤

�

1− 2 · ν · skj · ��− �
kj�,

��− �
kj+2� ≤

�

1− 2 · ν · skj+1 · ��− �
kj+1�,

...

��− �
kj+nj� ≤

�

1− 2 · ν · skj+nj−1 · ��− �
kj+nj−1�.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:22417  | https://doi.org/10.1038/s41598-022-26264-1

www.nature.com/scientificreports/

Algorithm: Pseudocode.
Input λ0, γ, ν, ζ, q0(> q(λ∗)), qmax = −∞

1: while f(xfeas,yfeas)−q(λk)
f(xfeas,yfeas) > εgap do

2: solve subproblem (5) s.t. (8),
3: calculate g(x̃k, ỹk)
4: calculate L(x̃k, ỹk, λk)

5: calculate stepsizes per (21) as sk = ζ · γ · qj−L(x̃k,ỹk,λk)
‖g(x̃k,ỹk)‖2

6: update multipliers per (6) by using g(x̃k, ỹk) as λk+1 = λk + sk · g(x̃k, ỹk)
7: if qmax<sk·‖g(x̃

k,ỹk)‖2

γ +L(x̃k, ỹk, λk) then qmax=sk·‖g(x̃
k,ỹk)‖2

γ +L(x̃k, ỹk, λk)
8: end if
9: i ← i+ 1

10: k ← k + 1
11: if i = I then i ← 1
12: end if
13: if (15) is infeasible then qj = qmax, qmax = −∞, j ← j + 1
14: end if
15: if

qj−q(λk)
qj

< ε then search for feasible solutions xfeas, yfeas that satisfy
(2) to obtain a feasible cost
f(xfeas, yfeas) ≡

∑I
i=1

(
(cxi )

Txfeasi + (cyi )
T yfeasi

)

16: end if
17: end while

There are three things to note here. 1. Steps in lines 15-16 are optional since other criteria can be used such 
as the number of iterations or the CPU time; 2. The value of q(�k) is still needed (line 1) to obtain a valid lower 
bound. To obtain q(�k) , all subproblems are solved optimally for a given value of multipliers �k . The frequency 
of the search for the value q(�k) is determined based on criteria as stated in point 1 above; 3. The search for 
feasible solutions is explained below.

Search for feasible solutions. Due to non-convexities caused by discrete variables, the relaxed constraints are 
generally not satisfied through coordination, even at convergence. Heuristics are thus inevitable, yet, they are the 
last step of the feasible-solution search procedure. Throughout all examples considered,  following28 (as discussed 
in Supplementary Information), l1-absolute-value penalties penalizing constraint violations are considered. 
After the total constraint violation reaches a small threshold value, a few subproblem solutions obtained by the 
Lagrangian Relaxation method are perturbed, e.g., see heuristics within accompanying CPLEX codes  within28 to 
automatically select which subproblem solutions are to be adjusted to eliminate the constraint violation to obtain 
a solution feasible with respect to the overall problem.

Numerical Testing. In this subsection, a series of examples are considered to illustrate different aspects 
of the SLBLR method. In “Demonstration of convergence of multipliers based on a small example with known 
optimal multipliers” section, a small example with known corresponding optimal Lagrangian multipliers is con-
sidered to test the new method as well as to compare how fast Lagrangian multipliers approach their optimal 
values as compared to Surrogate Lagrangian  Relaxation26 and to Incremental  Subgradient25 methods. In “Gener-
alized Assignment Problems” section, large-scale instances of generalized assignment problems (GAPs) of types 
D and E with 20, 40, and 80 machines and 1600 jobs from the OR-library (https:// www- or. amp.i. kyoto-u. ac. jp/ 
membe rs/ yagiu ra/ gap/) are considered to demonstrate efficiency, scalability, robustness, and competitiveness of 
the method with respect to the best results available thus far in the literature. In “Stochastic job-shop schedul-
ing with the considerationof scrap and rework” section, a stochastic version of a job-shop scheduling problem 
instance with 127 jobs and 19 machines based on Hoitomt et  al.29 is tested. In “Multi-stage pharmaceutical 
scheduling” section, two instances of pharmaceutical scheduling with 30 and 60 product orders, 17 processing 
units, and 6 stages based on Kopanos et al.13 are tested.

For  “Demonstration of convergence of multipliers based on a small example with known optimal multipli-
ers” section and “Generalized Assignment Problems” section, SLBLR is implemented within CPLEX 12.10 by 
using a Dell Precision laptop Intel(R) Xeon(R) E-2286M CPU @ 2.40GHz with 16 cores and installed memory 
(RAM) of 32.0 GB. For  “Stochastic job-shop scheduling with the considerationof scrap and rework” section 
and “Multi-stage pharmaceutical scheduling” section, SLBLR is implemented within CPLEX 12.10 by using a 
server Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz with 48 cores and installed memory (RAM) of 192.0 GB.

Demonstration of convergence of multipliers based on a small example with known optimal multipliers. To dem-
onstrate convergence of multipliers, consider the following example (due Bragin et al.30):

https://www-or.amp.i.kyoto-u.ac.jp/members/yagiura/gap/
https://www-or.amp.i.kyoto-u.ac.jp/members/yagiura/gap/
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As proved by Bragin et al.30, the optimal dual solutions are �∗1 = 0.6 and �∗2 = 0. Inequality constraints are 
converted to equality constraints after introducing slack variables. In Fig. 2, the decrease of the corresponding 
distances from current multipliers to the optimal multipliers ( ��k − �

∗� ) is shown, and the SLBLR method 
is compared with the Incremental Subgradient  method25 and the Surrogate Lagrangian Relaxation  method26.

Within the SLBLR method, the equation (15) is used to detect divergence, and ζ = 1
2
 is used to set stepsizes 

within (21). In essence, only one hyperparameter was required, which has a quite simple explanation - “when the 
stepsize is ‘too large,’ cut the stepsize in half.” As demonstrated in Fig. 2, the SLBLR method converges fast with 
��k − �

∗� decreasing roughly along a straight line on a log-scale graph suggesting that the rate of convergence 
is likely linear as expected.

As for the Incremental Subgradient method, two hyperparameters are required: R and δ (corresponding values 
used are shown in parentheses in the legend of Fig. 2 (left)). A trial-and-error analysis indicated that “accept-
able” values are R = 0.25 and δ = 24. Increasing or decreasing R to 0.5 and 0.125, respectively, do not lead to 
improvements. Likewise, increasing or decreasing δ to 48 and 12, respectively, do not lead to improvements as 
well. “Plateau” regions in the figure are caused by the fact that as stepsizes get smaller, a larger number of itera-
tions is required for multipliers to travel the predetermined distance R; during these iterations, stepsizes are not 
updated and multipliers may oscillate around a neighborhood of the optimum without getting closer. While the 
above difficulty can be alleviated and convergence can be improved by hyperparameters τ , β , and Rl as reviewed 
in Supplementary Information, however, an even larger number of hyperparameters would be required.

As for the Surrogate Lagrangian Relaxation method, several pairs of hyperparameters (M and r) have been 
used as well (corresponding values used are shown in parentheses in the legend of Fig. 2 (right)), yet, the perfor-
mance of Surrogate Lagrangian Relaxaton does not exceed the performance of the SLBLR method.

Herein lies the advantage of the novel SLBLR method: the decision-based principle behind computing the 
“level” values. This is in contrast to the problem-dependent choice of hyperparameters R and δ within the Sub-
gradient-Level24 and Incremental  Subgradient25 methods, and the choice of M and r within Surrogate Lagrangian 
 Relaxation26,28 (see “Introduction” section and Supplementry Information for more detail).

Even after obtaining “appropriate” values of the aforementioned hyperparameters by using a trial-and-
error procedure that entails effort, results obtained by Surrogate Lagrangian  Relaxation26 and the Incremental 
Subgradient  method25 do not match or beat those obtained by the SLBLR method. The specific reasons are 
1. Heuristic adjustments of the “level” values are  required24,25 based on multiplier “oscillation detection” or 
“significant descent” (for minimization of non-smooth functions). However, these rules do not detect whether 
multipliers “start diverging.” Moreover, oscillation of multipliers is a natural phenomenon when optimizing non-
smooth functions as discussed in “Introduction” section since multipliers may zigzag/oscillate across ridges of 
the function, so the multiplier “oscillation detection” may not necessarily warrant the adjustment of level values. 
On the other hand, multiplier “oscillation” is detected by checking whether multipliers traveled a (heuristically) 
predetermined distance R, hence, the divergence of multipliers can go undetected for a significant number of 
iterations (hence, the “plateau” regions shown in Fig. 2 (left)), depending on the value of R. To the best of the 

(23)min
x1,x2,x3,x4,x5,x6

{x1 + 2x2 + 3x3 + x4 + 2x5 + 3x6},

(24)s.t. x1 + 3x2 + 5x3 + x4 + 3x5 + 5x6 ≥ 26,

(25)2x1 + 1.5x2 + 5x3 + 2x4 + 0.5x5 + x6 ≥ 16.

Figure 2.  Results for “Demonstration of convergence of multipliers based on a small example with known 
optimal multipliers” section: Comparison of SLBLR to 1. Incremental Subgradient method (left) and 2. 
Surrogate Lagrangian Relaxation method (right).
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authors’ knowledge, the subgradient- and surrogate-subgradient-based methods using Polyak’s stepsizes with 
the intention of achieving the geometric/linear convergence rate either require q(�∗) , which is unavailable, or 
require multipliers to travel infinite distance to guarantee convergence to the optimum �∗24. 2. While SLR avoids 
the need to estimate q(�∗) , the geometric/linear convergence is only possible outside of a neighborhood of �∗26. 
Precisely for this reason, the convergence of multipliers within SLR with the corresponding stepsizing parameters 
M = 30 and r = 0.01 (as shown in Fig. 2 (right)) appears to follow closely convergence within SLBLR up until 
iteration 50, after which the improvement tapers off.

Generalized assignment problems. To demonstrate the computational capability of the new method as well as 
to determine appropriate values for key hyperparameters ζ and ν while using standard benchmark instances, 
large-scale instances of GAPs are considered (formulation is available in subsection 4.2 of Supplementary Infor-
mation). We consider 20, 40, and 80 machines with 1600 jobs (https://www-or.amp.i.kyoto-u.ac.jp/members/
yagiura/gap/).

To determine values for ζ within (21) and ν within (22) to be used throughout the examples, several values are 
tested using GAP instance d201600. In Table 1, with fixed values of ν = 2 and s0 = 0.02 , the best result (both in 
terms of the cost and the CPU time) is obtained with ζ = 1/1.5 . With the value of ζ = 1/4, the stepsize decreases 
“too fast” thereby leading to a larger number of iterations and a much-increased CPU time as a result. Likewise, 
in Table 2 with fixed values of ζ = 1/1.5 and s0 = 0.02 , it is demonstrated that the best result (both in terms of 
the cost and the CPU time) is obtained with ν = 2 . Empirical evidence here suggests that the method is stable for 
other values of ν. The robustness with respect to initial stepsizes ( s0 ) is tested and the results are demonstrated in 
Table 3. Multipliers are initialized by using LP dual solutions. The method’s performance is appreciably stable for 
the given range of initial stepsizes used (Table 3). SLBLR is robust with respect to initial multipliers �0 (Table 4). 
For this purpose, the multipliers are initialized randomly by using the uniform distribution U[90, 110]. For the 
testing, the initial stepsize s0 = 0.02 was used. As evidenced from Table 4, the method’s performance is stable, 
exhibiting only a slight degradation of solution accuracy and an increase of the CPU time as compared to the 
case with multipliers initialized by using LP dual solutions.

To test the robustness as well as scalability of the method across several large-scale GAP instances, six 
instances d201600, d401600, d801600, e201600, e401600, and e801600 are considered. SLBLR is compared with 
Depth-First Lagrangian Branch-and-Bound method (DFLBnB)31, Column  Generation32, and Very Large Scale 
Neighborhood Search (VLSNS)33, which to the best of the authors’ knowledge are the best methods for at least one 
of the above instances. For completeness, a comparison against Surrogate Absolute-Value Lagrangian Relaxation 
(SAVLR)28, which is an improved version of Surrogate Lagrangian Relaxation (SLR)26, is also performed. The lat-
ter SLR  method26 has been previously demonstrated to be advantageous against other non-smooth optimization 

Table 1.  Robustness results for instance d201600 with respect to ζ. The best feasible cost values obtained are in 
bold.

ζ Feasible cost Gap (%) “Auxiliary” time (sec) Total time (sec)

1/1.25 97827 0.0059 4.59 2904.02

1/1.5 97825 0.0037 17.10 1195.36

1/2 97825 0.0048 88.59 2612.48

1/4 97827 0.0059 89.01 10235.50

Table 2.  Robustness results for instance d201600 with respect to ν. The best feasible cost values obtained are in 
bold.

ν Feasible cost Gap (%) “Auxiliary” time (sec) Total time (sec)

0.03125 97826 0.0048 93.79 2716.68

0.125 97825 0.0037 33.62 1820.96

0.5 97826 0.0048 9.61 2444.46

2 97825 0.0037 17.10 1195.36

Table 3.  Robustness results for instance d201600 with respect to initial stepsizes s0. The best feasible cost 
values obtained are in bold.

Initial stepsize ( s0) Feasible cost Gap (%) “Auxiliary” time (sec) Total time (sec)

0.0025 97825 0.0037 123.71 2427.71

0.005 97825 0.0037 6.84 1226.17

0.01 97826 0.0048 6.96 2143.58

0.02 97825 0.0037 17.10 1195.36

0.04 97826 0.0048 19.21 1941.55
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methods as explained in "Introduction" section. Table 5 presents feasible costs and times (in seconds) for each 
method. The advantage of SLBLR is the ability to obtain optimal results across a wider range of GAP instances as 
compared to other methods. Even though the comparison in terms of the CPU time is not entirely fair, feasible-
cost-wise, SLBLR decisively beats previous methods. For the d201600 instance, the results obtained by SLBLR 
and the Column Generation  method32 are comparable. For instance d401600, SLBLR obtains a better feasible 
solution and for instance d801600, the advantage over the existing methods is even more pronounced.

To the best of the authors’ knowledge, no other reported method obtained optimal results for instances 
d401600 and d801600. SLBLR outperforms  SAVLR28 as well, thereby demonstrating that the fast convergence 
offered by the novel “level-based” stepsizing, with other things being equal, translates into better results as com-
pared to those obtained by SAVLR, which employs the “contraction mapping”  stepsizing28. Lastly, the methods 
developed  in31–33 specifically target GAPs, whereas the SLBLR method developed in this paper has broader 
applicability.

Stochastic job-shop scheduling with the consideration of scrap and rework. To demonstrate the computational 
capability of the method to solve large-scale stochastic MILP problems, a job-shop scheduling problem is con-
sidered. Within a job shop, each job requires a specific sequence of operations and the processing time for each 
operation. Operations are performed by a set of eligible machines. To avoid late shipments, expected tardiness 
is minimized. Limited machine capacity brings a layer of difficulty since multiple “individual-job” subproblems 
are considered together competing for limited resources (machines). Another difficulty arises because of uncer-
tainties, including processing  times34–39 and  scrap40–42. Re-manufacturing of one part may affect and disrupt the 
overall schedule within the entire job shop, thereby leading to unexpectedly high delays in production.

In this paper, we modified data from the paper by Hoitomt et al.29 by modifying several jobs by increasing 
the number of operations (e.g., from 1 to 6) and decreasing the capacities of a few machines; the data are in 
Tables S1 and S2. The stochastic version of the problem with the consideration of scrap and rework is available 
within the manuscript by Bragin et al.42. With these changes, the running time of CPLEX spans multiple days as 
demonstrated in Fig. 3. In contrast, within the new method, a solution of the same quality as that obtained by 
CPLEX, is obtained within roughly 1 hour of CPU time. The new method is operationalized by relaxing machine 
capacity  constraints42 and coordinating resulting job subproblems; at convergence, the beginning times of several 
jobs are adjusted by a few time periods to remove remaining machine capacity constraint violations.

Multi-stage pharmaceutical scheduling. To demonstrate the capability of the method to solve scheduling prob-
lems complicated by the presence of sequence-dependent setup times, a multi-stage pharmaceutical scheduling 
problem proposed by  Kopanos et  al.13 is considered. Setup times vary based on the sequencing of products 
on each unit (machine). Scheduling in this context is combinatorial in the number of product orders, units, 
and stages. The new method is operationalized by relaxing constraints that couple individual processing units, 

Table 4.  Robustness results for instance d201600 with respect to initial multipliers �0. The best feasible cost 
values obtained are in bold.

Case number Feasible cost
Total subproblem solving time
 (sec)

Feasible solution search 
time
 (sec)

“Auxiliary” time
 (sec)

Total time
 (sec)

1 97825 1098.74 375.96 22.13 1496.84

2 97826 1009.42 777.16 173.48 1960.07

3 97826 2223.99 221.70 4.54 2450.24

4 97826 2333.55 402.41 4.08 2740.04

5 97826 1002.77 119.91 160.73 1283.42

Table 5.  Comparison against the best results currently available. ∗ The optimality is certified by the LP 
optimal values, which are 97105 and 97034 for instances d401600 and d801600, respectively. ∗∗ The optimality 
is certified through the lower bound results of, i.e., Posta et al.31. −† Not solved to optimality within 24 hours 
and not reported within the original paper by Posta et al.31. − These instances were not considered within the 
papers by Sadykov et al.32 and Bragin et al.28. The best feasible cost values obtained are in bold.

Instance
New method
(SLBLR)

Posta31

(DFLBnB)
Sadykov32

(Column generation)
Haddadi33

(VLSNS)
Bragin28

(SAVLR)

d201600 97825 (1195) − † 97825 (1026) 97836 (5364) 97828 (1371)

d401600 97105∗ (836) − † 97106 (919) 97125 (5364) 97111 (1183)

d801600 97034∗ (3670) − † 97037 (10860) 97075 (5364) 97039 (1350)

e201600 180645∗∗ (85) 180645 (40) − 180645 (749) −

e401600 178293∗∗ (2478) 178293 (243) − 178293 (749) −

e801600 176820∗∗ (1762) 176820 (75) − 176821 (749) −
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namely assignment, and processing/setup time constraints (constraints (39)-(41) from Supplementary Informa-
tion). The results obtained by SLBLR and Branch-and-Cut are demonstrated in Fig. 4.

With a relatively small number of product orders, 30, an optimal solution with a feasible cost of 54.97 was 
found by CPLEX within 1057.78 seconds. The optimality is verified by running CPLEX until the gap is 0%; it 
took 171993.27 seconds to verify the optimality. SLBLR takes a slightly longer time to obtain the same solution 
- 1647.35 seconds (Fig. 4 (left)). In contrast, with 60 product orders, CPLEX no longer obtains good solutions in 
a computationally efficient manner; a solution with a feasible cost of 55.98 is obtained after 1,000,000 seconds. 
Within SLBLR, a solution with a feasible cost of 55.69 is obtained within 1978.04 seconds. This constitutes more 
than two orders of magnitude of improvement over CPLEX   as demonstrated in Fig. 4 (right; log scale). When 

Figure 3.  The results for “Stochastic job-shop scheduling with the considerationof scrap and rework” section 
are illustrated. SLBLR performs more than two orders of magnitude faster than branch-and-cut implemented in 
CPLEX.

Figure 4.  The results for  “Multi-stage pharmaceutical scheduling” section  with 30 products orders (left) and 
60 product orders (right) are illustrated.
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doubling the number of products, CPLEX’s performance is drastically deteriorated, while the performance of 
SLBLR is scalable.

Discussion
This paper develops a novel MILP solution methodology based on the Lagrangian Relaxation method. Salient 
features of the novel SLBLR method, inherited from the previous versions of Lagrangian Relaxation, are: 1. reduc-
tion of the computational effort required to obtain Lagrangian-multiplier-updating directions and 2. alleviation 
of zigzagging of multipliers. The key novel feature of the method, which the authors believe gives SLBLR the 
decisive advantage, is the innovative exploitation of the underlying geometric-convergence potential inherent to 
Polyak’s stepsizing formula without the heuristic adjustment of hyperparameters for the estimate of q(�∗) - the 
associated “level” values are determined purely through the simple auxiliary “multiplier-divergence-detection” 
constraint satisfaction problem. Through testing, it is discovered that SLBLR is robust with respect to the choice 
of initial stepsizes and multipliers, computationally efficient, competitive, and general. Several problems from 
diverse disciplines are tested and the superiority of SLBLR is demonstrated. While “separable” MILP problems 
are considered, no particular problem characteristics such as linearity or separability have been used to obtain 
“level” values, and thus SLBLR has the potential to solve a broad class of MIP problems.

Data availability
Data supporting the results of “Generalized Assignment Problems” section are located at https:// www- or. amp.i. 
kyoto-u. ac. jp/ membe rs/ yagiu ra/ gap/; for “Stochastic job-shop scheduling with the considerationof scrap and 
rework” section, data are located in Tables S1 and S2 as well as in Supplementry Information; for “Multi-stage 
pharmaceutical scheduling” section, data are taken from the paper by Kopanos et al.13.
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