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Examining rheological behavior 
of  CeO2‑GO‑SA/10W40 ternary 
hybrid nanofluid based 
on experiments and COMBI/ANN/
RSM modeling
Mojtaba Sepehrnia 1,2*, Hamid Maleki 3, Mahsa Karimi 4 & Erfan Nabati 1

In this study, the rheological behavior and dynamic viscosity of 10W40 engine oil in the presence 
of ternary‑hybrid nanomaterials of cerium oxide  (CeO2), graphene oxide (GO), and silica aerogel 
(SA) were investigated experimentally. Nanofluid viscosity was measured over a volume fraction range 
of VF = 0.25–1.5%, a temperature range of T = 5–55 °C, and a shear rate range of SR = 40–1000 rpm. 
The preparation of ternary‑hybrid nanofluids involved a two‑step process, and the nanomaterials 
were dispersed in SAE 10W40 using a magnetic stirrer and ultrasonic device. In addition,  CeO2, GO, 
and SA nanoadditives underwent X‑ray diffraction‑based structural analysis. The non‑Newtonian 
(pseudoplastic) behavior of ternary‑hybrid nanofluid at all temperatures and volume fractions is 
revealed by analyzing shear stress, dynamic viscosity, and power‑law model coefficients. However, the 
nanofluids tend to Newtonian behavior at low temperatures. For instance, dynamic viscosity declines 
with increasing shear rate between 4.51% (at 5 °C) and 41.59% (at 55 °C) for the 1.5 vol% nanofluid. 
The experimental results demonstrated that the viscosity of ternary‑hybrid nanofluid declines with 
increasing temperature and decreasing volume fraction. For instance, assuming a constant SR of 
100 rpm and a temperature increase from 5 to 55 °C, the dynamic viscosity increases by at least 
95.05% (base fluid) and no more than 95.82% (1.5 vol% nanofluid). Furthermore, by increasing the 
volume fraction from 0 to 1.5%, the dynamic viscosity increases by a minimum of 14.74% (at 5 °C) and 
a maximum of 35.94% (at 55 °C). Moreover, different methods (COMBI algorithm, GMDH‑type ANN, 
and RSM) were used to develop models for the nanofluid’s dynamic viscosity, and their accuracy and 
complexity were compared. The COMBI algorithm with  R2 = 0.9995 had the highest accuracy among 
the developed models. Additionally, RSM and COMBI were able to generate predictive models with 
the least complexity.

List of symbols
M  Mass (kg)
m  Consistency index (–)
n  Power law index (–)
T  Temperature (°C)

Subscripts
bf  Base fluid
Exp  Experimental
nf  Nanofluid
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Pred  Predicted
r  Relative

Greek symbols
γ̇  Shear rate (rpm)
µ  Dynamic viscosity (cP)
ρ  Density (kg  m−3)
ϕ  Nano-additives volume fraction (%)
τ  Shear stress (Pa)

Abbreviations
ANN  Artificial neural network
GMDH  Group method of data handling
MAPE  Mean absolute percentage error
NP  Nanoparticles
RMSE  Root mean squared error
RSM  Response Surface methodology
SAE  Society of automotive engineers
SR  Shear rate
VF  Volume fraction
XRD  X-Ray diffraction

In the twenty-first century, there have been many efforts to promote Sustainable Development Goals (SDGs) in 
the automotive  industry1. The development of various components of vehicles has been followed in line with this 
goal. One of the most critical components of any vehicle is engine oil, which flows like blood through the engine’s 
veins and lubricates moving parts, cools the engine, improves sealing, cleans the engine, and prevents corrosion. 
Dispersing nanomaterials with high thermal conductivity in engine oil is one of the most effective methods for 
removing excess heat from moving parts and increasing engine efficiency.  Choi2 proposed the idea of dispersing 
various nano-sized particles, including  metal3, metal  oxide4,5, and carbon-based  nanomaterials6, for the first time 
in 1995 to improve the properties of the base fluid. Following the successful implementation of this concept, 
researchers conducted  numerical7,  analytical8, and  experimental9,10 studies in various fields using nanofluids.

Although using nanomaterials can significantly improve the thermal properties of the base fluid, the hydro-
dynamic properties can be adversely  affected11. Among these properties, the viscosity of the nanofluid, as an 
influential parameter in calculating the pumping power, can be a turning point in the application of nanopar-
ticle (NP)12 concentration and type. In addition, the amount of viscosity influences the Rayleigh and Reynolds 
numbers, which play a crucial role in determining convective heat transfer. On the other hand, it must be noted 
that increasing the dynamic viscosity, particularly at higher engine oil temperatures, is advantageous in terms 
of  lubrication13.

In recent years, hybrid nanofluids have attracted the interest of numerous researchers as a new class of 
 nanofluids14–18. These nanofluids are made by combining two or more distinct nanomaterials with a base fluid. 
Although research on hybrid nanofluids is not as extensive as on mono nanofluids, preliminary research indi-
cates that binary and ternary-hybrid nanofluids can improve thermal and chemical properties while preventing 
excessive effective  viscosity19. In terms of research on the dynamic viscosity of hybrid nanofluids, binary-hybrid 
nanofluids have received far more attention than ternary-hybrid nanofluids.

To this end, Soltani and  Akbari20 experimented to determine the effects of nano-sized concentration and tem-
perature on MgO-MWCNT/ethylene glycol binary hybrid nanofluid. In their study, the system temperature and 
nanoparticle loadings were between 30 and 60 °C and 0 and 1%, respectively. Their findings demonstrated that 
MgO-MWCNT/ethylene glycol behaves as a Newtonian fluid under the investigated conditions. In addition, they 
observed that increasing the nanoparticle concentration from 0.1 to 1% increased the dynamic viscosity by 168%.

Zareie and  Akbari21 examined the rheological behavior of MgO-MWCNTs/water-EG nanofluids in a separate 
experimental study on binary nanofluids. They determined the viscosity at various shear rates (20–60 rpm), 
temperatures (25–60 °C), and NPs volume fractions (0.025–0.8%). According to their findings, increasing the 
nanoparticles concentration increases viscosity, whereas increasing the nanofluid temperature decreases viscosity. 
They also claimed that the nanofluids exhibited Newtonian behavior in every case.

Aghaei et al.13 measured the dynamic viscosity of CuO–MWCNTs/SAE 5w50 nanofluid using a Brookfield 
viscometer at temperatures ranging from 5 to 55 °C and NPs concentrations between 0.05 and 1%. At a tempera-
ture of 55 °C, the dispersion of 1% CuO–MWCNTs Nps increased the dynamic viscosity by 35.52%. However, 
adding a similar concentration of Nps at 15 °C increased dynamic viscosity by 12.92%.

Esfe et al.22 investigated the rheological behavior of MWCNT–TiO2/SAE50 nanofluid at temperatures between 
25 and 50 °C and NPs concentrations between 0 and 1%. In all cases, the observation of shear stress and its rela-
tionship with shear rate revealed the nanofluid’s non-Newtonian behavior and pseudoplasticity.

Asadi et al.23 determined that the shear rate, temperature, and NPs concentration influence the rheological 
behavior of the CuO–TiO2/water hybrid nanofluid. The shear stress analysis revealed that all nanofluid samples 
are of Newtonian type. The highest dynamic viscosity was recorded at 25 °C (the lowest temperature) and a 
concentration of 1 vol% NPs. Based on a cost–benefit analysis, they also concluded that the introduced nanofluid 
could be a superior alternative to pure water.
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Said et al.24 conducted numerous tests on the thermophysical properties of a novel binary nanofluid 
(rGO–Co3O4/water) in the temperature range of 20–60 °C with NPs loadings ranging from 0.05 to 0.2 vol%. 
They reported a 70.83% increase in dynamic viscosity at 60 °C and a 0.2% increase in the volume fraction of 
NPs relative to the base fluid.

Zhu et al.25 investigated the effects of system temperature (25–50 °C) and NPs concentrations (0.1–0.6 vol%) 
on the dynamic viscosity of a water-Ethylene glycol (80:20) mixture fluid containing MWCNT–WO3 binary 
nanoparticles. Giwa et al.26 evaluated the dynamic viscosity of a binary nanofluid composed of MWCNT-Fe2O3 
(20:80). Their results demonstrated that at 15 °C with NPs loadings of 1.5 vol%, the maximum increase in 
dynamic viscosity of nanofluid relative to base fluid is 35.7%. They also observed that binary nanofluids of 
MWCNT–Fe2O3/DIW had a lower viscosity than mono nanofluids of  Fe2O3/DIW, which could significantly 
impact pumping power reduction.

In line with previous studies, Sepehrnia et al.27 recently conducted tests on 5W30 engine oil as the base fluid 
and ZnO–MWCNT (30:70) nanoparticles with a volume fraction in the range of 0.05 to 1 vol%. In all cases, the 
non-Newtonian (pseudoplastic) behavior of the hybrid nanofluid was observed at temperatures ranging from 5 
to 55 °C and shear rates ranging from 50 to 1000 rpm. At elevated temperatures, the viscosity improvement of 
the hybrid nanofluid was considerably less than that of the base fluid.

Sajeeb and  Rajendrakumar28 analyzed the rheological behavior of hybrid  CeO2/CuO–coconut oil nanolu-
bricants with 75/25, 50/50, and 25/75 CuO and  CeO2 proportions. They observed that the nanofluid exhibited 
non-Newtonian behavior at all CuO:CeO2 ratios where the shear rates were low, and the NPs concentration was 
high. In addition, they claimed that by increasing the shear rate, the nanofluid behaved as a Newtonian fluid, 
regardless of the NP’s concentration and temperature.

Yadav et al.29 examined the rheological characteristics of  CeO2–Al2O3(50:50)/EG,  Al2O3/EG, and  CeO2/EG 
nanofluids. They observed that mono nanofluids exhibit non-Newtonian (dilatant) behavior at elevated tem-
peratures. Their findings also demonstrated that the hybrid nanofluid’s hydrodynamic behavior is very similar 
to that of the base fluid, making it an excellent choice for anti-freezing applications.

As previously stated, the use of ternary nanomaterials has the potential to alter the properties of the base fluid 
significantly. Clearly, the ratio, type, and size of NPs significantly impact the thermal and rheological properties 
of the ternary-hybrid nanofluids. However, measuring the dynamic viscosity and describing the rheological 
behavior of ternary-hybrid nanofluids has received limited attention.

In one of these studies, Sahoo and  Kumar30 examined the dynamic viscosity of a water-based  Al2O3-CuO-TiO2 
ternary-hybrid nanofluid at temperatures between 35 and 50 °C. The particle loadings of various samples ranged 
between 0.01 and 0.1%. The results of comparing mono, binary, and ternary nanofluids were intriguing. At the 
same volume fraction and temperature, mono nanofluid (CuO/water) exhibited the greatest dynamic viscosity, 
whereas binary nanofluid  (Al2O3–TiO2/water) exhibited the least. The ternary hybrid nanofluid demonstrated 
a lower dynamic viscosity than CuO/water, but its performance was inferior to that of the binary nanofluids 
 (Al2O3–TiO2/water and  Al2O3–CuO/water). Afterward,  Sahoo31 repeated the experiments with a different type 
of ternary-hybrid water-based nanofluid  (Al2O3–SiC–TiO2/water). The percentage of each nanomaterial in the 
volume fraction of NPs was deemed to be equivalent. The findings demonstrated that increasing the concentra-
tion of NPs emphasizes the importance of internal resistance in ternary-hybrid nanofluids. In addition, it was 
observed that nanofluids with a low concentration of NPs exhibit a weak dynamic viscosity.

Dezfulizadeh et al.32 examined shear stress and dynamic viscosity for Cu–SiO2–MWCNT/water nanofluid 
and analyzed the effects of temperature (15–65 °C) and NPs concentration (1–3 vol%) on the target variables in 
a separate study on ternary-hybrid nanofluids. According to their results, the ternary-hybrid nanofluid displayed 
Newtonian behavior.

The thermophysical and rheological properties of water-based CuO/MgO/TiO2 ternary-hybrid nanofluids 
were investigated by Mousavi et al.33. They considered five different ratios for mixing nanomaterials at a vol-
ume concentration range of 0.1–0.5%. They examined the system at temperatures ranging from 15 to 60 °C.

In a separate study, Said et al.34 synthesized a novel ternary nanopowder (rGO–Fe3O4–TiO2), dispersed it in 
ethylene glycol as the base fluid, and then evaluated the nanofluid’s stability, density, and viscosity. The various 
cases of their experiments included changes in temperature (25–50 °C) and NPs weight percent (0.01–0.25).

Recently, Zayan et al.35 analyzed the rheological properties of two ternary-hybrid nanofluids, GO–TiO2–Ag/
water, and rGO–TiO2–Ag/water. The findings indicated that the viscosity of GO–TiO2–Ag and rGO–TiO2–Ag 
nanofluids increased by 40 and 33%, respectively, when the temperature and shear rate was increased. In all 
instances where the NPs concentrations were low, and the shear rates were high, the nanofluid exhibited non-
Newtonian behavior, highlighting the importance of precise viscosity analysis for ternary-hybrid nanofluids.

In recent years, the application of machine learning (ML) approaches in modeling various phenomena 
has opened new horizons in practical  fields36,37. Using experimental methods to predict nanofluids’ rheologi-
cal behavior and hydrodynamic properties is extremely time- and cost-intensive. One of the most popular 
methods for estimating the viscosity of hybrid nanofluids has been modeling through strategies based on soft 
 computing38,39. Table 1 summarizes the application of soft computing based methods in modeling the dynamic 
viscosity of engine oil-based hybrid nanofluids for studies conducted between 2016 and the present. According 
to Table 1, numerous classical and ML methods, including artificial neural network (ANN), self-organizing map 
neural network (SOM-NN), group method of data handling neural network (GMDH-NN), multivariate linear 
regression (MLR), gene expression programming (GEP), multigene genetic programming (MGGP), response 
surface methodology (RSM), and least-squares support vector machines (LSSVM) have been used to predict 
the dynamic viscosity of engine oil-based hybrid nanofluids. Among these methods, ANN is the most prevalent 
used for viscosity modeling.

The findings presented in Table 1 reveal that methods such as ANN, SOM-NN, and LSSVM can improve the 
accuracy of dynamic viscosity prediction. Using optimized ANN architecture, Hemmat Esfe et al.47 and Aghaei 
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et al.13 reported an  R2 value of 0.9998 as a crucial statistical criterion. In addition, utilizing LSSVM and SOM-
NN methods, Asadi et al.52 and Maddah et al.44 reported a correlation coefficient (R = 0.9999) that provides a 
highly desirable model. However, empirical correlation cannot be established using the methods above, which is 
deemed a limitation. It is possible to present a mathematical relationship between independent and dependent 
variables using methods such as GMDH, RSM, MLR, GEP, and MGGP. Indeed it must be acknowledged that 
these techniques typically produce less accurate results.

Esfe et al.50,51 reported an  R2 = 0.9948 and 0.9996 via the RSM method. Furthermore, Chu et al.54 com-
pared ANN and RSM techniques. The ANN method was more accurate than the RSM method  (R2 = 0.999 vs. 
 R2 = 0.991). The maximum error for the ANN method was 5%, whereas, for 38.2% of the datasets, the RSM 
method produced models with errors in the 5–10% range.

Sepehrnia et al.56 presented an accurate model with an  R2 > 0.999 through the ANN model (GMDH-type). 
Moreover, a comparison of the models proposed by Jamei and  Ahmadianfar57 indicated that approaches based 
on genetic programming were more capable of modeling the dynamic viscosity in terms of the various nano-
particle parameters.

A literature review reveals that ternary hybrid nanofluids have the potential to improve the properties of 
nanofluids significantly. In contrast, a few researchers have briefly considered studying this type of nanofluid. 
In this study, the rheological behavior and dynamic viscosity of 10W40 engine oil in the presence of ternary 
nanomaterials of cerium oxide  (CeO2), graphene oxide (GO), and silica aerogel (SA) are investigated for the first 
time. The dynamic viscosity of engine oil-based ternary-hybrid nanofluids is measured over a broad range of 
nanoparticle volume fractions (0.25–1.5%), shear rates (40–1000 rpm), and temperatures (5–55 °C). Eventually, 
utilizing the experimental measurement datasets, three models for accurately predicting nanofluid viscosity are 
developed based on soft computing methods (COMBI algorithm, GMDH-type ANN, and RSM).

Experiments
This section describes the properties of 10W40 engine oil as the base fluid and  CeO2, GO, and SA as additive 
nanomaterials. In addition, the techniques and instruments required for characterization, preparation, and 
measurement of ternary-hybrid nanofluid rheological behavior and viscosity are discussed.

Base fluid and nanomaterials. In our experiments, 10W40 engine oil (manufactured by Behran oil) 
served as the base fluid. The same proportion of ternary nanomaterials, cerium oxide  (CeO2), graphene oxide 
(GO), and silica aerogel (SA), was dispersed in the base fluid. The characteristics of the nanomaterials are 
depicted in Fig. 1. The effect of using graphene  oxide58,59 and cerium  oxide60,61 nanoparticles in a fluid has been 
investigated in previous studies and it has been proven that it improves the thermal conductivity coefficient and 
increases the dynamic viscosity of the nanofluid. High specific surface area, high porosity, low density and low 
thermal conductivity are among the unique features of silica  aerogel62. The low thermal conductivity of silica 
aerogel is one of its weak points, but the high porosity of silica aerogel makes the nanofluid stable, so that the 
general properties of the nanofluid are strengthened by adding graphene oxide and cerium oxide nanoparticles.

Table 1.  Overview of the papers on machine learning approaches in dynamic viscosity modeling of engine 
oil-based hybrid nanofluids.

References Base fluid Nanomaterials Independent variables Method

Afrand et al.40 SAE50 MWCNT–SiO2 T ,ϕ ANN

Alirezaie et al.41 SAE40 MWCNT–MgO T ,ϕ, γ̇ ANN

Hemmat Esfe et al.42 10W40 MWCNT–TiO2 T ,ϕ, γ̇ ANN

Hemmat Esfe et al.43 5W50 MWCNT–Al2O3 T ,ϕ ANN

Maddah et al.44 SAE 10W40, SAE 85W90 MWCNT–carbon T ,ϕ, γ̇ SOM-NN

Nadooshan et al.45 10W40 MWCNT–SiO2 T ,ϕ, γ̇ ANN

Hemmat Esfe et al.46 10W40 MWCNT–Al2O3 T ,ϕ, γ̇ ANN

Hemmat Esfe et al.47 5W50 MWCNT–Al2O3 T ,ϕ, γ̇ ANN

Hemmat Esfe et al.48 5W50 MWCNT–SiO2 T ,ϕ, γ̇ ANN

Aghaei et al.13 SAE 5W50 MWCNT–CuO T ,ϕ ANN

Hemmat Esfe et al.49 SAE50 MWCNT–Al2O3 T ,ϕ, γ̇ RSM

Sepehrnia et al.27 5W30 MWCNTs–ZnO T ,ϕ, γ̇ ANN

Hemmat Esfe et al.50 5W50 MWCNT–Al2O3 T ,ϕ, γ̇ RSM

Hemmat Esfe et al.51 SAE50, SAE40, 5W50 MWCNT–ZnO T ,ϕ RSM

Asadi et al.52 Engine oil MWCNT–MgO T ,ϕ, γ̇ LSSVM

Toghraie et al.53 Engine oil MWCNT–WO3 T ,ϕ, γ̇ ANN

Chu et al.54 5W40 MWCNT–TiO2 T ,ϕ, γ̇ RSM, ANN

Hemmat Esfe et al.55 SAE 40 MWCNT–Al2O3 T ,ϕ ANN

Sepehrnia et al.56 5W30 MWCNT–SiO2 T ,ϕ, γ̇ GMDH-NN

Jamei and  Ahmadianfar57 Various Engine oils Various binary NPs T ,ϕ, ρ,Dp MGGP, GEP, MLR
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X-ray diffraction (XRD) is an old but widely used analytical technique for determining atomic distance, 
crystal structure, and material purity. In fact, this non-destructive technique is one of the most important tools 
for providing various information on the scale of cell  dimensions63. Figure 2 depicts the structural analysis 
performed by the XRD method on  CeO2, GO, and SA nanoadditives. The intensity of the XRD peaks reveals 
that the nanomaterials under investigation have formed a suitable crystalline phase structure. Furthermore, the 
peaks that indicate impurity are not observed in the XRD report, implying that the GO,  CeO2, and SA powders 
have the appropriate ability to produce a single phase.

Ternary‑hybrid nanofluid preparation. The 10W40 engine oil-based GO/CeO2/SA ternary-hybrid nano-
fluid was analyzed utilizing six different nanoparticle volume fractions ( ϕ = 0.25%, 0.5%, 0.75%, 1%, 1.25%, 1.5% ). 
If in this type of special composition, the volume fraction of nanoparticles is more than 1.5%, the instability of 
nanoparticles in the base fluid and adhesion of nanoparticles are observed in less than a few hours. Therefore, 
nanofluids were not prepared for a volume fraction greater than 1.5%. The relationship below was employed to 
prepare ternary-hybrid nanofluids in various VFs:

 where M and ρ denote mass and density, respectively. An electronic balance (model: AND 600 GF) with a 1 mg 
accuracy was used to calculate the mass percentage of each nanomaterial for different ϕ.

Standard techniques for preparing nanofluids include one-step and two-step methods. In the one-step 
method, preparation and dispersion of nanoparticles in the base fluid co-occur, whereas, in the two-step method, 
preparation is the first step, followed by dispersion by ultrasonic irradiation or mechanical stirring in the sec-
ond step. The two-step method has the benefits of being simple, inexpensive, and more compatible with oxide 
nanomaterials. The present study prepared ternary-hybrid nanofluids in two steps due to the stated advantages. 
Initially, a magnetic stirrer was utilized for 1 h to mix the solution during preparation. As depicted in Fig. 3, 
the ultrasonic process was performed for 2 h to prevent the accumulation and adhesion of nanomaterials. The 
amount of time to use the magnetic stirrer and ultrasonic device is determined according to the number and 
type of nanoparticles and user’s experience. Figure 4 depicts samples of prepared nanofluids with different 
volume fractions.
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Figure 1.  The characteristics of the used nanomaterials.
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Viscosity measurement. In the present experiments, the dynamic viscosity of nanofluids was measured 
using a Brookfield CAP2000+ viscometer. Figure 5 depicts the image and technical specifications of the device. 
The calibration process was performed at room temperature using a base fluid to increase precision. Addition-
ally, each experiment was repeated twice to reduce measurement error, and its mean was recorded on the data-
sheet. Table 2 presents the studied temperature, volume fraction, and shear rate ranges. The selection of tempera-
ture and shear rate ranges based on the measuring limit of the viscometer device and similar to the  papers64–66. 
The selection of volume fraction depends on adhesion and accumulation of nanoparticles; in the present study, 
if volume fraction is selected more than 1.5%, accumulation of nanoparticles occurs.

Results and discussion
Rheological behavior. The rheological behavior of fluids is crucial in a variety of industrial applications 
such as nano-lubricant67,68 and nano-antifreeze69. This significant feature is determined by analyzing the relation 
between shear rate and shear stress. Fluids are classified as either Newtonian or non-Newtonian based on their 
rheological behavior. The dynamic viscosity remains constant as the shear rate varies in Newtonian fluids. In 
contrast, the dynamic viscosity of non-Newtonian fluids varies significantly with a change in shear rate.

Figure 6 shows variations in shear stress as a function of shear rate at different temperatures and volume frac-
tions. It is evident that shear stress increases with increasing shear rate in all volume fractions. Also, regardless 
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Figure 2.  XRD graph: (a) cerium oxide, (b) graphene oxide and (c) silica aerogel.
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Inlet Voltage: 230 V

Inlet Frequency: 50 – 60 Hz

Current: AC, single phase, 4A

Ultrasonic processor UP400S

Power: 400 W

Ultrasonic Frequency: 24 kHz

Figure 3.  The ultrasonic bath device and ultrasonic processor specifications.

 

Pure φ = 0 25% φ = 0 5% φ = 0 75% φ = 1% φ = 1 25% φ = 1 5%

Figure 4.  Ternary-hybrid nanofluids samples in different VFs.

 

Inlet Voltage: 115-230 V

Inlet Frequency: 50-60 Hz

Power consumption < 345 V

Torque range: 18,100 rpm

Speed: 5-1000 rpm

Temperature: 5-55 °C

Figure 5.  Brookfield viscometer model CAP2000+ and its technical specifications.
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of the shear rate, as the temperature rises, the cohesive force between molecules decreases, resulting in a reduc-
tion in shear stress. In addition, the slope of the shear stress diagram, which represents the nanofluid’s viscosity, 
decreases as the shear rate increases, demonstrating the non-Newtonian behavior of the ternary-hybrid nanofluid. 
This change in the slope of the curve becomes more pronounced as the temperature rises. This indicates that the 
non-Newtonian behavior of nanofluids becomes more apparent as the temperature increases.

In addition to shear stress, the analysis of viscosity curves in terms of shear rate can aid in determining the 
rheological behavior of nanofluids. In this regard, according to Fig. 7, viscosity decreases with increasing shear 
rate for all studied volume fractions, confirming the non-Newtonian behavior of the nanofluid. For instance, 
dynamic viscosity declines with increasing shear rate between 2.29% (at T = 5 °C) and 29.2% (at T = 55 °C) for 
the base fluid and between 4.51% (at T = 5 °C) and 41.59% (at T = 55 °C) for the nanofluid with volume fraction 
of 1.5%.

In addition to Figs. 6 and 7, the power-law model (Eq. 2) can be used to confirm the non-Newtonian behavior 
of the present nanofluid to identify its rheological behavior.

where m and n are the consistency index and power law index, respectively, obtained by curve fitting the labo-
ratory data. The value of the power law index can be used to determine whether a nanofluid is Newtonian or 
non-Newtonian:

Table 3 displays the maximum percentage of viscosity change due to a change in shear rate, along with the 
power-law model coefficients for each volume fraction and temperature. The results of the table indicate that 
the ternary-hybrid nanofluid is pseudoplastic; however, in certain volume fractions, the nanofluid tends to be 
Newtonian, particularly as the temperature decreases. According to the analysis, the  CeO2–GO–SA/SAE 10W40 
nanofluid’s behavior is non-Newtonian in general.

Temperature effects on the viscosity. It is evident that the fluid’s temperature significantly impacts 
its viscosity to the point where it can play a significant role in the presence of nanomaterials and vice versa. 
Consequently, it is essential to investigate the effect of adding nanomaterials on the viscosity of fluids at various 
temperatures. Figure 8 depicts viscosity values in terms of temperature at a 100 rpm shear rate. As can be seen, 
the temperature is the most influential variable in changing viscosity, as an increase in temperature increases 
molecular motion and decreases van der Waals force and dynamic viscosity.

In addition, the viscosity of the nanofluid increases as the volume fraction rises. This is due to the increase 
in the intermolecular forces of nanomaterials and the increase in the interaction force between the molecules 
of SAE 10W40 and nanomaterials, which creates resistance to the movement of nanofluid and thus increases 
viscosity. It should be noted that as temperature rises, the effect of a rising volume fraction on viscosity increases, 
highlighting the importance of operating temperature when deciding whether or not to use nano-additives in 
various applications.

Quantitative analysis reveals that at a shear rate of 100 rpm and a temperature increase from 5 to 55 °C, 
the dynamic viscosity of the base fluid increases by at least 95.05% and no more than 95.82% (for the 1.5 vol% 
nanofluid). In addition, the dynamic viscosity increases by a minimum of 14.74% (at 5 °C) and a maximum of 
35.94% (at 55 °C) when the volume fraction is increased from 0 to 1.5%.

Effect of NPs’ volume fraction on viscosity. Figure 9 depicts changes in relative viscosity ( µr = µnf /µbf  ) 
versus volume fractions for various temperatures to investigate the effect of NPs concentrations on nanofluid vis-
cosity. In the presence of nanomaterials, it is evident that nanofluid viscosity is greater than that of the base fluid 
at all volume fractions. This is due to the increased interaction between nanofluid molecules compared to base 
fluid molecules. According to quantitative analysis depicted in Fig. 9, the most significant increase in relative 
viscosity occurs at a temperature of 55 °C and a volume fraction of 1.5%, which is equal to 94.35%; Conversely, 
the lowest relative viscosity increase of 3.45% is observed for nanofluid with a volume fraction of 0.25% and a 
temperature of 35 °C.

Comparison of relative viscosity to established models. Various theoretical models have been pro-
posed thus far to estimate the relative viscosity of nanofluids; the following models are among the most well-
known:

(2)τ = mγ̇ n

(3)
n = 1 → Newtonian

n < 1 → Pseudoplastic (non−Newtonian)

n > 1 → Dilatant (non−Newtonian)

Table 2.  The studied range for input variables.

Input variables From To Selected values

Temperature (°C) 5 55 5, 15, 25, 35, 45, 55

NPs volume fraction (%) 0 1.5 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5

Shear rate (rpm) 40 1000 40, 60, 80, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000
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Einstein70:

Brinkman71:

(4)µr = 1+ 2.5ϕ

(a)
 

Shaer Rate(RPM)

S
h
ae

r
S

tr
es

s(
P

a)

0 200 400 600 800 10000

500

1000

1500

2000

2500

3000
T=55°C

T=45°C

T=35°C

T=25°C

T=15°C

T=5°C

Volume Fraction=0.25%

(b)

Shaer Rate(RPM)

S
h
ae

r
S

tr
es

s(
P

a)

0 200 400 600 800 10000

500

1000

1500

2000

2500

3000
T=55°C

T=45°C

T=35°C

T=25°C

T=15°C

T=5°C

Volume Fraction=0.5%

(c)
Shaer Rate(RPM)

S
h
ae
r
S
tr
es
s(
P
a)

0 200 400 600 800 10000

500

1000

1500

2000

2500

3000
T=55°C

T=45°C

T=35°C

T=25°C

T=15°C

T=5°C

Volume Fraction=0.75%

(d)
Shaer Rate(RPM)

S
h
ae
r
S
tr
es
s(
P
a)

0 200 400 600 800 10000

500

1000

1500

2000

2500

3000
T=55°C

T=45°C

T=35°C

T=25°C

T=15°C

T=5°C

Volume Fraction=1%

(e)

Shaer Rate(RPM)

S
h
ae
r
S
tr
es
s(
P
a)

0 200 400 600 800 10000

500

1000

1500

2000

2500

3000
T=55°C

T=45°C

T=35°C

T=25°C

T=15°C

T=5°C

Volume Fraction=1.25%

(f)

Shaer Rate(RPM)

S
h
ae
r
S
tr
es
s(
P
a)

0 200 400 600 800 10000

500

1000

1500

2000

2500

3000
T=55°C

T=45°C

T=35°C

T=25°C

T=15°C

T=5°C

Volume Fraction=1.5%

Figure 6.  Shear stress versus shear rate for different temperature and VFs of (a) 0.25%, (b) 0.5%, (c) 0.75%, (d) 
1%, (e) 1.25%, (f) 1.5%.
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Batchelor72:

Wang et al.73:

Figure 10 compares the relative viscosity results of this study and the theoretical models. At two different 
temperatures, the theoretical models exhibit a linear behavior, whereas the results of the present study exhibit 
nonlinear behavior. Therefore, the viscosity of the present ternary-hybrid nanofluid cannot be estimated by the 
models previously cited. The following section develops different models based on RSM, GMDH-type ANN, 
and COMBI methods to accurately predict the present nanofluid’s viscosity.

(5)µr = (1− ϕ)−2.5

(6)µr = 1+ 2.5ϕ + 6.5ϕ2

(7)µr = 1+ 7.3ϕ + 123ϕ2
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Figure 7.  Dynamic viscosity versus shear rate for different temperature and VFs of (a) 0%, (b) 0.25%, (c) 0.5%, 
(d) 0.75%, (e) 1%, (f) 1.25%, (g) 1.5%.
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Model development
Response surface methodology (RSM). The well-known RSM method attempts to establish a math-
ematical relationship between input and output variables by employing numerous mathematical models (linear, 
2FI, quadratic, among others) and statistical criteria. Additionally, the RSM method can be used to determine 
optimal conditions. The RSM technique estimates model coefficients using the least-squares method.

The RSM analysis of the present laboratory data determined that the linear model provided adequate precision 
with less complexity than models with higher degrees. The variance analysis (ANOVA) and statistical parameters 
of the RSM’s proposed model are presented in Tables 4 and 5. According to Table 4, the model and each of its 
terms have a p-value of less than 0.0001, demonstrating their significance. In addition, the F-value for the pro-
posed model is 18,080.23, which demonstrates the model’s validity. According to Table 5, Adeq Precision, which 

Table 3.  The maximum percentage of viscosity changes by altering the shear rate and related power-law model 
coefficients.

T (°C) φ (%) Maximum change in μ (%)

Best fitted model 
( τ = mγ̇

n)

m n

55

0 29.2 0.1271 0.9077

0.25 30.25 0.1567 0.8892

0.5 30.02 0.1788 0.8818

0.75 37.87 0.2372 0.8457

1 41.39 0.2322 0.8598

1.25 43.06 0.2813 0.8355

1.5 41.59 0.2787 0.8439

45

0 23.01 0.1929 0.9154

0.25 31.96 0.2683 0.8815

0.5 29.22 0.2748 0.8798

0.75 29.01 0.275 0.8822

1 25.25 0.2632 0.8954

1.25 32.89 0.3214 0.8717

1.5 34.02 0.3585 0.8679

35

0 19.27 0.2849 0.9321

0.25 13.94 0.2503 0.9544

0.5 17.52 0.2886 0.9425

0.75 19.31 0.2966 0.9452

1 19.06 0.3174 0.9383

1.25 21.88 0.3187 0.9426

1.5 27.17 0.4248 0.9107

25

0 13.16 0.4665 0.9479

0.25 19.09 0.6025 0.9262

0.5 16.14 0.566 0.9385

0.75 13.47 0.5171 0.9549

1 12.01 0.5734 0.9506

1.25 15.49 0.6042 0.9363

1.5 17.35 0.6417 0.9348

15

0 7.16 0.9259 0.9521

0.25 7.15 0.9742 0.9548

0.5 5.83 0.9495 0.964

0.75 5.19 0.9115 0.9734

1 4.68 1.0276 0.968

1.25 6.58 1.2708 0.9297

1.5 9.30 1.2218 0.9419

5

0 2.29 1.8327 0.9751

0.25 0.73 1.6914 0.9949

0.5 1.89 1.883 0.9828

0.75 3.89 2.2705 0.9578

1 3.19 2.1956 0.9641

1.25 3.41 2.2438 0.9645

1.5 4.51 2.5518 0.9487
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represents the signal-to-noise ratio, is significantly greater than the reasonable value (435.7319 >> 4), indicating 
that the proposed model is accurate. Equation (8) presents the dynamic viscosity correlation for the present 
ternary-hybrid nanofluid derived from the RSM method. The coefficient values of Eq. (8) are listed in Table 6.

The squared correlation coefficient  (R2), which indicates the degree of similarity between laboratory data and 
the values predicted by the model, is one of the essential statistical parameters for evaluating proposed models. 
The closeness of its value to 1 indicates the proposed model’s significant accuracy. If Yi,Pred is the predicted value 
and Yi,Exp is the experimental value of the ith dataset,  R2 is defined as  follows74:

According to Table 5, the values of  R2, adjusted  R2, and predicted  R2 are respectively 0.9930, 0.9929, and 
0.9928. The adjusted  R2 considers the effect of the model’s predicted constant coefficients, while the predicted 

(8)
(
µnf

)−0.17 = α0 + α1T + α2ϕ + α3γ̇

(9)R2 = 1−
n∑

i=1

(
Yi,Pred − Yi,Exp

)2

Y2
i,Exp
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Figure 8.  Effect of temperature on dynamic viscosity for various VFs in constant SR of 100 rpm.
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Figure 10.  Comparison of our results with the various theoretical models.

Table 4.  ANOVA-RSM linear model.

Source Sum of squares df Mean square F-Value p-value Prob > F

Model 1.45 3 0.4849 18,080.23  < 0.0001 Significant

A-T 0.0060 1 0.0060 224.26  < 0.0001

B-phi 1.15 1 1.15 42,950.14  < 0.0001

C-SR 0.0150 1 0.0150 560.81  < 0.0001

Residual 0.0103 384 0.0000

Cor Total 1.47 387

Table 5.  Statistical parameters for proposed correlation by RSM.

Parameter Value

Std. dev. 0.0052

C.V. % 1.26

Mean 0.4124

R-squared 0.9930

Adjusted R-Squared 0.9929

Predicted R-Squared 0.9928

Adeq precision 435.7319

Table 6.  The coefficients of proposed correlation by RSM.

Parameter Value

α0  + 0.27119

α1  + 3.90443E−003

α2 − 9.18527E−003

α3  + 2.33542E−005
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 R2 evaluates the model using datasets outside the range of laboratory data. Tables 4 and 5 demonstrate that the 
RSM’s proposed model predicts the dynamic viscosity of the present ternary-hybrid nanofluid with high accuracy.

GMDH‑type neural network. Artificial neural networks are a computational model that, by imitating 
the function of neurons in the human brain, has become a potent tool for predicting and modeling complex 
phenomena. Nevertheless, the accuracy of ANN-based methods can significantly impact the quality and quan-
tity of datasets.  Ivakhnenko75 developed the group method of data handling (GMDH) polynomial neural net-
works based on feed-forward neural networks to maximize consistency in system behavior modeling and reduce 
dependence on the data structure. The self-organizing feature of the GMDH method is regarded as a significant 
advantage because, during the modeling process, only submodels that improve the final model’s accuracy are 
retained. In recent years, the use of this method has increased significantly, particularly in research requiring the 
presentation of mathematical relationships between dependent and independent  variables76–78.

To describe a system with M datasets, a complex function such as f  is needed, which can connect inputs 
x = (x1, x2, . . . xn) and output y:

The objective of the GMDH method is to train a function such as f̂  so that the difference between predicted 
values of ŷ  and real values of y is minimized:

To establish a connection between neurons (variables), it is possible to utilize different degrees of the Kol-
mogorov-Gabor  polynomial79 with the following formula:

Previous  analyses79 demonstrate that using the quadratic form of the Kolmogorov-Gabor polynomial strikes 
a fine balance between the model’s complexity and accuracy:

It is also important to note that the least-squares method estimates model  coefficients80. The available experi-
mental data points are divided into two categories; the first category, comprising 80% of the data, is used to train 
the GMDH neural network, while the second category, comprising 20% of the data, is used to evaluate the result-
ing model. The structure of the obtained GMDH-type NN is shown in Fig. 11. This five-layer structure consists 
of three intermediate layers. The first layer contains the input variables (neurons), whereas the final layer holds 
the output variable. The connection between neurons is provided through the following relationships:

(10)yi = f (xi1, xi2, . . . xin) (i = 1, 2, . . . ,M)

(11)ŷi = f̂ (xi1, xi2, . . . xin) (i = 1, 2, . . . ,M)

(12)
M∑

i=1

[
ŷi − yi

]2 → min

(13)y = β0 +
n∑

i=1

βixi +
n∑

i=1

n∑

j=1

βijxixj +
n∑

i=1

n∑

j=1

n∑

k=1

βijkxixjxk + . . .

(14)y = G
(
xi , xj

)
= a0 + β1xi + β2xj + β3xixj + β4x

2
i + β5x

2
j

T

γ 

φ

f11
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f21

f31

µ.

Figure 11.  Structure of the developed GMDH-type ANN model.
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The  R2 derived from the model provided by the GMDH method for the train and test datasets was 0.9993 
and 0.9994, respectively, owing to the method’s appropriate accuracy in predicting the dynamic viscosity of the 
studied nanofluid.

Combinatorial (COMBI) algorithm. The combinatorial algorithm has a similar approach to the GMDH-
type neural network, except that the COMBI algorithm employs a single-layer structure due to the complexity 
of the model-building procedure. The combinatorial algorithm used in the present study can be described in the 
following four  steps81:

1. The following expression generates the sum of combinations of input variables (or their functions):

  g(x) can include various operators that are applied to input variables ( xi ), for example, functions such as 
square root, cube root, exponent, sigmoid, and trigonometric, among others.

2. Model coefficients are computed using the least-squares method at each neuron for training datasets.
3. Through the validation criterion (RMSE), the neuron errors are compared using testing datasets.
4. The final model is developed by combining optimal neurons with the least possible error and the maximum 

acceptable complexity.

The COMBI algorithm is a time-consuming method with a high calculation cost because it performs a 
thorough search between terms that improve the model and sometimes suggests models with a very high level 
of complexity. It is evident that the model’s simplicity decreases its accuracy. Therefore, by limiting the model’s 
complexity to 16 terms, the optimal model is obtained as follows:

Like GMDH modeling, 80% of the data points were assigned to training and the rest to model testing. The 
coefficients of the model proposed by the COMBI algorithm are presented in Table 7. The value of  R2 for both 
test and train data is equal to 0.9995. The high accuracy of the COMBI algorithm in the development of predic-
tive models was reported in various  fields82–84.

Accuracy and complexity of models. Two essential criteria can be used to evaluate the mathemati-
cal correlations provided for predicting diverse systems. The first, the most crucial, is to evaluate the model’s 
accuracy using statistical parameters such as  R2, RMSE, MAPE, and others. The second item is the degree of 
complexity, which indicates the predictive model’s number of terms. The correlation between accuracy and com-
plexity is typically positive in all modeling techniques. This section compares the complexity and precision of 
the presented models.

For a comprehensive comparison of the accuracy of the proposed models, the following two additional 
statistical parameters are introduced:

(15)f11 = β(1,1) + β(1,2)T + β(1,3)ϕ + β(1,4)Tϕ + β(1,5)T
2 + β(1,6)ϕ

2

(16)f12 = β(2,1) + β(2,2)γ̇ + β(2,3)ϕ + β(2,4)γ̇ ϕ + β(2,5)γ̇
2 + β(2,6)ϕ

2

(17)f21 = β(3,1) + β(3,2)f11 + β(3,3)f12 + β(3,4)f11f12 + β(3,5)f
2
11 + β(3,6)f

2
12

(18)f31 = β(4,1) + β(4,2)f21 + β(4,3)T + β(4,4)f21T + β(4,5)f
2
21 + β(4,6)T

2

(19)µnf = β(5,1) + β(5,2)f31 + β(5,3)ϕ + β(5,4)f31ϕ + β(5,5)f
2
31 + β(5,6)ϕ

2

(20)βij =





1847.2700 −80.591300 98.352400 −1.4803600 0.89085200 −7.58450
599.69600 −1.532590 0.0000000 0.01250620 0.001091510 0.0000000
77.0489 0.394016 −0.111981 7.97949e− 05 0.000396126 0.000309009
−2.8747000 0.77021000 7.0523300 0.000000 0.000129245 −0.13827 00
−6.318800 1.0138400 0.0000000 −0.0190270 1.62062e− 06 7.2432500





(21)y = ξ0 +
n∑

i=1

ξig(xi)+
n∑

i=1

n∑

j=1

ξijg(xi) · g
(
xj
)
+

n∑

i=1

n∑

j=1

ξijg(xi)/g
(
xj
)

(22)
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1√
T 3
√
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+ ξ2tan

−1(T)tan−1(γ̇ )+ ξ3
tan

−1(T)
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Figure 12 compares the actual laboratory data values to those derived from the proposed models. As shown 
in the figure, the COMBI algorithm is more accurate at predicting the nanofluid’s dynamic viscosity based on 
statistical criteria.

The accuracy and complexity of the proposed RSM, GMDH, and COMBI models are compared in Table 8. As 
can be seen, various models can provide different degrees of accuracy depending on the level of complexity. By 
reducing the complexity of the RSM model to four terms, reasonable accuracy is achieved. Meanwhile, GMDH-
type ANN and COMBI algorithms offer more accurate models as their complexity increases.

It is possible to increase the complexity of all models to achieve greater accuracy. In the RSM method, for 
instance,  R2 reaches 0.9995 when a fifth-order model with 56 different terms is considered. In addition, when a 
ten-layer structure is applied to the GMDH neural network,  R2 equals 0.9995, indicating that the accuracy and 
complexity of the resulting model increase. Also, for the COMBI algorithm, a value of 0.9998 was observed for 
 R2 in a case with model complexity equal to 80.

If model complexity is more important than accuracy, the robust COMBI algorithm can produce the follow-
ing model with an  R2 = 0.9992:

Additionally, it should be noted that all proposed models are only valid within the range of parameters that 
have been examined ( 5◦C ≤ T ≤ 55◦C,%0.25 ≤ ϕ ≤ 1.5%, 40rpm ≤ γ̇ ≤ 1000rpm ). The proposed models can 
help to reduce the time and resources needed for experiments. Also, the models in the present study can be 
used in a variety of applications such as heat  sinks85–87, heat  pipes88,  microchannels89,90, heat  exchangers91–93, 
 enclosures94,95, solar  energy9,96,97 and automotive  industry98–101.

Uncertainty
In this section, the uncertainty analysis of the developed models is carried out to evaluate the dynamic viscosity 
prediction capability of the models. For this purpose, an approximately 95% confidence band around predicted 
values based on the Wilson score without continuity correction can be obtained using ±1.96Sde

102,103. The mean 
error and standard deviation of prediction error are calculated as follows:

(23)RMSE =

√√√√ 1

n

n∑

i=1

(
Yi,Pred − Yi,Exp

)2

(24)MAPE =
(
1

n

n∑

i=1

∣∣∣∣
Yi,Pred − Yi,Exp

Yi,Exp

∣∣∣∣

)
× 100

(25)µnf = 1576.36− 7587.26
tan−1(γ̇ )

3
√
T

+ 22326.3
lnT

T
− 1639.96

1

Teϕ

(26)e =
1

n

n∑

i=1

(
Yi,Pred − Yi,Exp

)

Table 7.  The coefficients of proposed correlation by COMBI algorithm.

Parameter Value

ξ0 1.96053e+06

ξ1 − 1395.76

ξ2 146,725

ξ3 − 733,260

ξ4 0.000638218

ξ5 445,799

ξ6 − 2.52395e+06

ξ7 7.52899

ξ8 1.27086e+06

ξ9 − 3884.6

ξ10 − 194.976

ξ11 15,097.7

ξ12 10,050.3

ξ13 1387.09

ξ14 388,568

ξ15 3153.95
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Figure 12.  Comparison between experimental data with correlation outputs of (a) RSM model, (b) GMDH-
type ANN model, and (c) COMBI algorithm.

Table 8.  Comparison of the accuracy and complexity of the proposed models.

Criteria

Proposed models

RSM GMDH-type ANN COMBI algorithm

R2 0.9930 0.9993 0.9995

RMSE 31.4945 10.7217 9.1167

MAPE (%) 5.34 3.07 3.11

Complexity 4 30 16
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where n denotes the number of data points.
This analysis is applied to all data for the RSM model and the test data points for the COMBI and GMDH 

models. The results of uncertainty analysis including mean error, standard deviation of prediction error, width 
of uncertainty band (WUB), and 95% interval of error prediction for different models are shown in Table 9. A 
positive value of e indicates an overestimation of the actual values and a negative value indicates an underes-
timation. According to Table 9, the model obtained from the COMBI algorithm shows the lowest uncertainty 
band (WUB = 35.2402), which indicates its significant reliability in providing accurate outputs compared to 
other models.

Sensitivity analysis
The influence of independent variables on the responses of a system is checked utilizing sensitivity analysis. 
The significant reaction of a response to a slight change in an input variable indicates the high importance of 
that input. In the present research, the procedure by Esfe et al.49,50,104,105 is used for sensitivity analysis. For this 
purpose, the following equation is applied to calculate viscosity sensitivity:

The viscosity sensitivity analysis of  CeO2-GO-SA/10W40 ternary hybrid nanofluid is performed by applying 
a 10% change in VF for various temperatures. To augment the precision of the calculations, the most accurate 
developed model (COMBI) is applied.

Figure 13 depicts the results of viscosity sensitivity analysis for the SR of 100 rpm. According to Fig. 13, with 
raising the temperature, viscosity sensitivity has an increasing trend for VFs < 0.75%. While for the VFs of 1% and 
1.25%, with increasing temperature, the viscosity sensitivity first declines and then experiences a slight growth. 
Viscosity shows a high sensitivity to temperature variation in the lowest volume fraction (0.25%). The highest 
viscosity sensitivity occurs for the VF = 0.25% at temperature of 55 °C, which is equal to 47.8%.

The results deduced from the present sensitivity analysis are confirmation that double precision should be 
used in the preparation process of  CeO2-GO-SA/10W40 ternary hybrid nanofluid, especially in low VFs and 

(27)Sde =

√∑(
ej − e

)2

n− 1

(28)Viscosity sensitivity(%) =
[ (

µnf

)
after change(

µnf

)
before change

− 1

]
× 100

Table 9.  Uncertainty analysis results for viscosity predictive models.

Model e Sde WUB 95% interval of error prediction

RSM − 4.5673 31.1599 122.1467 − 65.6407 to 56.5061

GMDH 1.20228 10.0239 39.2936 − 18.4445 to 20.8491

COMBI 0.7936 8.9898 35.2402 − 16.8265 to 18.4137
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Figure 13.  Viscosity sensitivity versus VF at different temperatures.
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high temperatures, because possible errors in the production process strongly affect the viscosity and rheological 
behavior of the resulting nanofluid. Low viscosity sensitivity in VFs of 0.5–1.25% allows industries to use the 
nanofluid in special applications at different temperatures.

Conclusion
In the present experimental study, the effects of temperature (5–55 °C), NP volume fraction (0.25–1.5%), and 
shear rate (40–1000 rpm) on the rheological behavior and dynamic viscosity of GO/CeO2/SA ternary-hybrid 
nanofluid based on 10W40 engine oil were analyzed. Moreover, different techniques (COMBI algorithm, GMDH-
type ANN, and RSM) were utilized to develop models for the nanofluid’s dynamic viscosity, and their accuracy 
and complexity were compared. The significant findings of this study can be stated as follows:

• Changes in shear stress, dynamic viscosity, and power-law model coefficients indicate that ternary-hybrid 
nanofluids exhibit non-Newtonian behavior at all temperatures and volume fractions. However, the nano-
fluids tend to Newtonian behavior at low temperatures.

• The values of the power law index ( n < 1 ) in all samples demonstrate that the nanofluid under study is 
pseudoplastic.

• The viscosity of ternary-hybrid nanofluid decreases with increasing temperature and shear rate or with 
decreasing nanomaterial volume fraction.

• Among the models developed to predict the dynamic viscosity of GO/CeO2/SA nanofluid based on 10W40 
engine oil, the COMBI algorithm with  R2 = 0.9995 provided the highest accuracy.

• The models obtained from the RSM and GMDH methods provides an accuracy equal to  R2 = 0.9930 and 
 R2 = 0.9993, respectively.

• Among the methods presented, the RSM method and the COMBI algorithm can produce predictive models 
with the least complexity.

• Ignoring the model’s complexity, the COMBI algorithm can produce a model with  R2 = 0.9998.
• Modeling with the COMBI algorithm is recommended because it has a high potential in developing models 

with high precision and low complexity.
• The sensitivity analysis for the present ternary hybrid nanofluid demonstrates that the viscosity sensitivity 

is maximized for VF of 0.25% at high temperatures.

Data availability
All data analyzed during this study are included in this published article.
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