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In silico identification of multiple 
conserved motifs within the control 
region of Culicidae mitogenomes
Thomas M. R. Harrison 1,7, Josip Rudar 1,7, Nicholas Ogden 2, Royce Steeves 3, David R. Lapen 4, 
Donald Baird 5, Nellie Gagné 3 & Oliver Lung 1,6*

Mosquitoes are important vectors for human and animal diseases. Genetic markers, like the 
mitochondrial COI gene, can facilitate the taxonomic classification of disease vectors, vector-borne 
disease surveillance, and prevention. Within the control region (CR) of the mitochondrial genome, 
there exists a highly variable and poorly studied non-coding AT-rich area that contains the origin of 
replication. Although the CR hypervariable region has been used for species differentiation of some 
animals, few studies have investigated the mosquito CR. In this study, we analyze the mosquito 
mitogenome CR sequences from 125 species and 17 genera. We discovered four conserved motifs 
located 80 to 230 bp upstream of the 12S rRNA gene. Two of these motifs were found within all 392 
Anopheles (An.) CR sequences while the other two motifs were identified in all 37 Culex (Cx.) CR 
sequences. However, only 3 of the 304 non-Culicidae Dipteran mitogenome CR sequences contained 
these motifs. Interestingly, the short motif found in all 37 Culex sequences had poly-A and poly-T 
stretch of similar length that is predicted to form a stable hairpin. We show that supervised learning 
using the frequency chaos game representation of the CR can be used to differentiate mosquito 
genera from their dipteran relatives.

Mosquitos are a diverse group of over 3500 species belonging to the family Culicidae and roughly 100 species are 
known to be important vectors of human and animal disease1. The spread of mosquito-borne diseases (MBDs) 
exerts an enormous human and economic cost each year. In 2019 alone, the spread of malaria by the Anopheles 
(An.) gambiae species complex resulted in an estimated 228 million cases and 405 thousand deaths while Dengue 
fever virus, which is spread by Aedes (Ae.) (Stegomyia) aegypti, may have caused 390 million infections, with 96 
million manifesting either at clinical or sub-clinical levels1–3. Other MBDs, such as Lymphatic filariasis, spread 
when members of Culex spp. carrying larval filarial worms bite a suitable host. This disease affects an estimated 
120 million people worldwide and puts a further 1.1 billion at risk4. In addition, other less common but important 
pathogens such as yellow fever virus, Zika virus, West Nile virus, Rift Valley fever virus (RVFV), Western equine 
encephalitis virus, and Eastern equine encephalitis virus are spread by mosquitoes3, 5–8.

Due to their important role as human and animal disease vectors, clear identification of different species 
within the Culicidae could have broad implications in public health and our understanding of the spread of 
mosquito-borne diseases. This line of work is particularly important since increased globalization, urbani-
zation, and climate change are predicted to boost the incidence of mosquito-borne diseases by influencing 
how pathogens are transmitted or changing the distribution and abundance of mosquito species and potential 
pathogen reservoirs9. Mitochondrial genomes (mitogenomes) are often used for phylogenetics, forensics, and 
species identification10, 11. The mitogenome is useful for these purposes since it is small, abundant, passed down 
maternally, and rarely recombines12, 13. The application of molecular and computational techniques to the analy-
sis of this data can be particularly advantageous since these methods can be used to quickly, objectively, and 
efficiently analyze mitogenomes. Furthermore, bulk samples can contain information about a wider variety of 
species, and the analysis of this data does not require the services of an entomologist. If the costs are amortized 
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over a large number of samples, molecular approaches can also be quicker, cheaper, and more consistent than 
morphological identification14.

The mosquito mitogenome is usually 14–20 kbp in length and contains 22 tRNA genes, 2 rRNA genes, and 
13 protein-coding genes involved in the electron transport chain of oxidative phosphorylation12, 13. The control 
region (CR) of the mitogenome, which is investigated in this work, is an A + T-rich region which contains the 
hypervariable region and the origin of replication15. Depending on the taxonomic group, the boundary of the 
CR can differ. For example, in Hymenoptera, the CR is bounded by the tRNAGlu and 12S rRNA genes while in 
Lepidoptera it is bounded by the tRNAMet and 12S rRNA genes. In Dipterans, such as mosquitos, it is bounded 
by tRNAIle and 12S rRNA genes16. In insects, the major strand’s origin of replication is associated with a poly-T 
stretch17. In contrast, replication of the minor strand is thought to begin in or near a hypothesized hairpin stem-
loop structure18. Investigations of the CR in mitogenomes from An. gambiae and An. albitarsis identified three 
conserved regions containing poly-T and poly-A stretches of 5–20 bp16, 19–21. However, beyond these investiga-
tions there has been no detailed comparative analysis of Culicidae CR sequences.

Of the 13 protein-coding genes, cytochrome oxidase I (COI) is particularly useful for taxonomic identification 
since it has been developed as a universal DNA barcode22, 23. Typically, a classifier (such as the RDP Classifier) 
is trained on the k-mer frequencies of the barcode region. When a new sample is presented to the classifier a 
taxonomic label is created by comparing the frequency of k-mers in the sample to that of the training dataset24. 
Recent work has demonstrated that transforming nucleic acid sequences into signatures can result in the devel-
opment of successful machine learning classifiers25, 26. In this work, we continue to build upon this knowledge 
by using a type of genomic signature known as a frequency chaos game representation (FCGR) to train a semi-
supervised deep learning model27, 28. An FCGR maps each nucleic acid sequences onto a unit square with the 
intensity of specific regions in the square corresponding to the frequency of k sized k-mers. This transformation 
preserves the information within each sequence while allowing for more interesting patterns in the distribution 
of frequencies to be analyzed by more complex machine learning models, such as neural networks25, 26, 29. While 
not as thoroughly investigated as COI, the CR has also shown potential as a marker for species identification13, 30, 

31. In this work, we conduct an in silico investigation into 472 publicly available mosquito mitogenome sequences. 
Our goals are to identify conserved features within Culicidae CRs and investigate, using a deep-learning model, 
if this region can be used to accurately classify different mosquito genera.

Methods
Sequence data collection.  A total of 813 sequences were retrieved from NCBI GenBank after search-
ing for Culicidae with a mitochondrial source and a length of 12 to 21 kb, on May 15th, 2022. Sequences were 
removed from downstream analysis using the following quality control criteria: lack of a CR, or CR under 200 bp 
(n = 202); ambiguous nucleotides within the CR (n = 82); unverified origin species (including nr. and aff. des-
ignations) (n = 46). Three unannotated genomes (OU632726, MH316118, MH316119) were annotated using 
MITOS2 (Revision 999) (http://​mitos2.​bioinf.​uni-​leipz​ig.​de/​index.​py). Geneious (version R11.1) (https://​www.​
genei​ous.​com/) was used to extract the CRs from each sequence using tRNAIle and 12S rRNA annotations as the 
boundaries. A total of 472 sequences representing 125 species from 17 genera were included in the final analysis 
(Table S1).

Motif discovery and annotation.  The MEME Suite (version 5.0.5) (http://​meme-​suite.​org/)32 was used 
for motif discovery and search on the 472 sequences retrieved, and it assigns each discovered motif an E-value. 
MEME was used on the 472 sequences with the following flags and options. With Aedes CR sequences MEME 
was run with the ‘-dna’ and ‘-mod anr’ options. These options allow the software to search DNA sequences for 
any number of repeats. To prevent unnecessary use of computational resources, searches were stopped when the 
E-value of a motif was greater than 1000 (the ‘-evt’ parameter) or when MEME identified at least 100 motifs. 
The maximum width of each motif was set to be 20 base pairs. The p-value of each motif was estimated using 
the Hertz and Stormo’s Numerically Correct algorithm. Two Anopheles CR sequences were not used, as they 
were missing a region beginning with at least 3 cytosines and at least 49 bp long: MK575478 (An. darlingi), and 
MK575477 (An. cruzii). Additional CR sequences of these species are represented elsewhere in the dataset. One 
Culex sequence (MK575480 (Cx. quinquefasciatus)) was not used since the CR for this sequence did not contain 
a run of 4–6 cytosines. This species is represented elsewhere in the dataset.

The maximum width of motifs in Anopheles and Culex sequences was set to 25 and the ‘-mod oops’ option, 
which forces MEME to find one occurrence per sequence for each motif, was used. Use of ‘-mod oops’ with 
Aedes sequences did not give results with good sequence conservation due to the low number and high diver-
sity of Aedes sequences. To confirm the presence of the motifs, a MAST analysis was performed using all the 
short motifs discovered by MEME (32). All 473 mosquito mitogenomes were used in this analysis using the 
‘-bfile –motif–’ option to correct for the nucleotide frequency of the CR. This is necessary because MAST uses 
nucleotide frequencies that are derived from a non-redundant DNA database that does not have a similar profile 
of nucleotide frequencies as the CR. If left uncorrected, this causes MAST to assume that long stretches of A and 
T are more significant than they are in the CR, where the AT content is approximately 90%.

To locate the long motifs, the region between the end of the 12S rRNA gene and the short motif was extracted 
and split into groups by genus. MEME was run using the following options: ‘-dna -evt 1000 -mod anr -nmotifs 
100 -maxw 50’. This produced a set of longer motifs: Anopheles Long Motif (AnLM), and Culex Long Motif 
(CLM). The Aedes sequences did not produce any motifs that were present on >  = 90% of sequences tested, so 
there was no “long” motif for Aedes. These long motifs and the short motifs were searched for in the original 472 
sequences with MAST, using the “-bfile –motif–” option. An overview of the CR motif discovery and annotation 
workflow is presented in Fig. 1.

http://mitos2.bioinf.uni-leipzig.de/index.py
https://www.geneious.com/
https://www.geneious.com/
http://meme-suite.org/
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Culex DNA hairpin simulation.  DNA folding simulation and visualization were performed with 27 
sequences from the Culex mitogenomes including and flanking the CSM identified by MEME (15 bp of the 
upstream poly-A region and 15 bp downstream of the guanine after the poly-T region) using the DNA profile of 
RNAfold (version 2.4.12) from the ViennaRNA software package (https://​almob.​biome​dcent​ral.​com/​artic​les/​10.​
1186/​1748-​7188-6-​26). The DNA profile disabled conversion of T to U (“-P "DNA" –noconv”). Each of the 27 
sequences was analyzed at increments of 5 °C from 10 to 50 °C.

Validation against non‑Culicidae dipteran mitogenomes.  A total of 824 non-Culicidae Dipteran 
mitogenomes were retrieved from NCBI for comparison with CR sequences from Culicidae. Sequences were 
excluded from the downstream analysis based on the following criteria: incomplete mitogenome annotation or 
missing CR boundaries (n = 109); unverified species (n = 28); CR less than 150 bp or missing (n = 352); contain 
ambiguous nucleotides in CR sequence (n = 30). Of the 824 mitogenome sequences, 304 passed the selection 
criteria (Table S2). Short and Long motifs in these 304 sequences were located with MAST with the “-bfile –
motif–” option.

In addition to the above analysis, we investigated if semi-supervised machine learning could learn to differ-
entiate between the CRs of Culicidae and non-Culicidae mitogenomes. CRs from the dataset used for the motif 
investigation were first filtered to remove sequences containing ambiguous nucleotides. This was done since 

Figure 1.   Overview flowchart showing the data processing. Anopheles, Culex, and Aedes sequences were treated 
separately, but used the same procedure.

https://almob.biomedcentral.com/articles/10.1186/1748-7188-6-26
https://almob.biomedcentral.com/articles/10.1186/1748-7188-6-26
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FCGRs are usually unable to handle ambiguous nucleotides. To train a more stable model, species which occur 
5 or fewer times in the dataset were also removed and the resulting set of sequences was de-duplicated to ensure 
that it only contained unique CRs. Sequences were then reverse complemented. The original sequence and its 
reverse complement were then concatenated33. This resulted in a final set of 673 Culicidae and non-Culicidae 
sequences. Following this, each CR sequence was transformed into a FCGR with a depth of 629. Previous work 
has shown that this representation has the ability to efficiently summarize the unique characteristics of each 
genome and can be used for clustering and supervised learning26, 34–36. The FCGRs for each CR, along with the 
class labels, were then used as inputs into a semi-supervised deep learning model27. A brief overview of this 
model is presented in Fig. 4.

This model is a self-supervised generative adversarial network (SGAN) in which two networks, the discrimi-
nator and generator, compete against each other so that a good representation of real data (in this case, FCGR 
representations of CRs) can be learned27. The discriminator network is itself an ensemble of two branches, each 
of which attempts to learn a different set of reduced features that can be used to classify FCGRs from each class 
(Aedes, Anopheles, Culex, and Non-Culicidae Dipterans) and (during training) if a sample is real or synthetic. 
The first and second branch of the discriminator network is based on vision transformer and FNet encoder, 
respectively37, 38. The generator network learns to create FCGRs that are become increasingly difficult to distin-
guish from real FCGRs. Before training the model, random oversampling of each minority class was performed 
on the input data to ensure that the remaining under-represented classes contained at least 50 samples. This was 
done using the ‘imbalanced-learn’ (version 0.8.1) Python package39.

For each path in the discriminator, a separate set of non-overlapping 4 × 4 patches of each FCGR were 
created37, 40, 41. Learned positional embeddings are not added to the patches. This results in 256 16-dimensional 
patches (the patches are flattened). A non-linear projection of these patches is then created using the embedding 
block (Suppl Fig. 1)37, 40. Depending on the path, each embedding is passed to an attention block or a FNet block 
(Suppl Fig. 2)37, 38. Finally, a “summary” (a tensor of size batch size × 256) is created from the attention or FNet 
blocks by passing their output through a mixing block which make use of global average pooling layers (Suppl 
Fig. 3). The output of each branch’s mixing block is concatenated before being passed to a small feed forward 
network (FFN) with two outputs. One output classifies samples according to taxon and the second determines 
if the sample is real or synthetic (Suppl Fig. 4). All dense layers, except for the final layer, in the network use the 
‘mish’ activation function42. The final layer uses a linear activation, and the output of this layer is used in con-
junction with a SoftMax and custom activation (described in Salimans et al.) to classify samples and determine 
if the sample is real or synthetic, respectively27, 43. Dropout layers and Gaussian Noise are used in key areas of 
the discriminator network to prevent overfitting (Suppl Figs. 1–4)44.

The generator network begins by sampling from a random normal distribution to create a set of 160-dimen-
sional vectors. These vectors are then projected into a higher dimensional space and reshaped into a tensor of 
size 8 × 8 × 256 (Suppl Fig. 5). Three sets of convolutions, up-sample each 8 × 8 × 256 tensor into a 64 × 64 × 32 
tensor. A final one-dimensional convolution across the channel dimension followed by a ReLU activation layer 
(since FCGRs have no negative components) creates the final set of synthetic FCGRs. Dropout layers are used 
in the key areas of the generator network to prevent overfitting44.

The final model is a meta-estimator created from ensemble of twenty different networks, each trained on 
different instances of the original training data and using different weight initializations45. The GAN itself uses 
the generator output (a synthetic FCGR) as its input and the unsupervised discriminator model as its output43. 
When the generator is being updated during training, the weights of the discriminator model are not trainable. 
Algorithm One outlines the basic steps for training the SGAN. Finally, after each model in the ensemble is trained 
only the classification portion of the discriminator is used for inference with the predictions from each classifica-
tion model being averaged to determine the final prediction. Lookahead optimization using the AdamW opti-
mizer and gradient centralization was used. The ‘weight_decay’ parameter was set to 1 × 10–6 while the ‘beta_1’ 
parameter was set to 0.546–48. The discriminator model contains 879,172 parameters while the generator model 
contains 3,376,129 parameters. The full code of the model is available at https://​github.​com/​jrudar/​In-​Silico-​Ident​
ifica​tion-​of-​Multi​ple-​Conse​rved-​Motifs-​Within-​the-​CR-​of-​Culic​idae-​Mitog​enomes.

https://github.com/jrudar/In-Silico-Identification-of-Multiple-Conserved-Motifs-Within-the-CR-of-Culicidae-Mitogenomes
https://github.com/jrudar/In-Silico-Identification-of-Multiple-Conserved-Motifs-Within-the-CR-of-Culicidae-Mitogenomes
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Algorithm One – A simple overview of the steps involved in training the SGAN

Input: 

A set of FCGRs (X) and their corresponding taxa labels (y)

The latent dimension (d)

The number of epochs (e)

The number of batches per epoch (b)

1) Determine the total number of steps, s: s = eb

2) For epoch in range(s):

a. Select, using stratified random sampling, 64 samples from X and their corresponding 
labels from y to create Sx and Sy

b. Select, using stratified random sampling, 16 samples from Sx and their corresponding 
labels from Sy .Using these samples update the supervised classifier.

c. Select, using stratified random sampling, 8 samples from X and their corresponding 
labels from y. Using these real samples, update the unsupervised discriminator.

d. Generate 8 d-dimensional vectors by sampling from a random normal distribution. 
Generate synthetic FCGR images from these vectors and update the unsupervised 
discriminator.

e. Generate 16 d-dimensional vectors by sampling from a random normal distribution. 
Set the label of these vectors as “real” and update the GAN

Output: 

A trained classification model.

Next, we tested the generalization performance of our model. Data was divided into two groups, sequences 
sampled and assembled in 2019 and those assembled afterward, and these groups were used to assess how well 
the model performed. Five-fold cross-validation was used to test the first condition while Five-fold repeated 
cross-validation using 5 repeats was used to test the second49. The Smooth-Grad implementation found in the 
tf-keras-vis package (available at https://​github.​com/​tf-​keras-​vis) was used to compute saliency maps for each 
sample in each class. To create the saliency maps, the noise parameter was set at 0.2 while the smoothing param-
eter was set at 30. The set of maps for each class were then averaged to create an average saliency map for each 
class. Finally, our model was compared to the Scikit-Learn implementation of the Extra Trees Classifier (using 
512 trees), Logistic Regression (‘max_iter’ was set to 1000), and the Linear Support Vector Machine Classifier49, 

50. Since our approach is semi-supervised, we also tested the performance of these models after wrapping them 
using Scikit-Learn’s implementation of the self-training classifier (the ‘k_best’ and ‘max_iter’ parameters were 
set to 5 and 100, respectively)49, 51. The labels for a random 40% of points in the training data were removed.

Results
Culicidae mitogenome attributes.  A total of 472 mosquito mitogenomes from 125 species and 17 gen-
era were analyzed in this study. The mean length of the mitogenomes for all sequences (n = 472), Anopheles 
(n = 392), Culex (n = 37), and Aedes (n = 16) were 15 461.5, 15 400.7, 15 574.0, and 16 378.0 bp, respectively. 
The mean %GC of the mitogenomes for all sequences, Anopheles, Culex, and Aedes was 22.0, 22.2, 21.4, and 
20.8%, respectively (Table 1). All mitogenomes had the same gene order and orientation, except in Sabethes, 
Runchomyia, Trichoprosopon, Tripteroides, and Wyeomyia spp., where the tRNACys and tRNA Tyr genes were 
located upstream of the tRNAIle gene on the majority strand (Fig. 2a). Both Ae. alboannulatus sequences in the 
dataset had the tRNAMet and tRNAGln genes in reverse order. The mean length of the CR across all 472 mosquito 
mitogenome sequences was 611.1 bp. The mean CR length for Anopheles, Culex, and Aedes were 560.9, 711.7, 
and 1417.4 bp, respectively. The mean %GC of all CR was 7.4%. The mean %GC of Anopheles, Culex, and Aedes 
CR were 6.9, 10.5, and 7.5%, respectively (Table 2).

Unique conserved motifs can be found in the Culicidae control region.  A preliminary motif 
region, containing a poly-T stretch at the end of the motif, was found in the CR. Two conserved areas within 
this motif region were present, which we denote as “short” and “long” motifs. The short motifs were located near 
the poly-T stretch while the long motifs were found further upstream. Extraction and sorting of the preliminary 
motif region from each sequence by genus revealed that Anopheles motifs tended to begin with 4 cytosines 
which were then followed by 10–20 thymines. These motifs were located 130–160 bp from the end of the 12S 
rRNA. In Culex, the region started 12 bp upstream of the first cytosine in the run of 4–6 cytosines and was found 
130–155 bp from the end of the 12S rRNA, after a stretch of 7–10 adenine residues. In Aedes, the region was 

https://github.com/tf-keras-vis
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started from the first occurrence of CCC​TTA​A from the end of the 12S rRNA. All extracted regions were 49 bp 
long. Each of these sets of regions were analyzed with MEME and are referred to as the Anopheles Short Motif 
(AnSM), Culex Short Motif (CSM), and Aedes Short Motif (AeSM).

Short motifs were found 129–172 bp upstream of the 12S rRNA gene in the MEME motif search (Table 3) 
while long motifs were detected roughly 76–105 bp upstream of the 12S rRNA gene (Table 3). Short motifs which 
appeared predominantly in Anopheles and Culex included a long poly-T region with approximately 18 and 9 

Figure 2.   (a) Mitochondrial genome of Anopheles gambiae L20934. Yellow regions are the coding sequences 
of protein coding genes. Red regions are rRNA genes. Blue regions are tRNA genes. Grey region is the control 
region. Organization of genes is the same in all genera except Sabethes, where the tRNACys and tRNATyr genes 
are found in the control region, rather than between the ND2 and COX1 CDS. Gene organization for Sabethes 
belisarioi MF957171 tRNA bordering the control region is shown in an inset. (b) Close up of Anopheles gambiae 
L20934 control region with motif regions labelled. Generated with Geneious R11.1 (https://​www.​genei​ous.​com).

https://www.geneious.com
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consecutive Ts, respectively (an example from An. gambiae is shown Fig. 2b). The CSM had a poly-A region 
immediately before the 5 cytosines, the same or similar length as the poly-T region. In KT852976 (Culex tritae-
niorhynchus) complementary A → T transversions were at the same distance from the boundary of the central 
poly-C region (Fig. 3). The AnSM had an E-value of 8.3 × 10–2327 while the CSM had an E-value of 8.6 × 10–248. The 
Anopheles and Culex long motifs (AnLM and CLM) had an E-value of 6.5 × 10–3302 and 1.3 × 10–445 respectively. 
This suggests that these motifs are highly unlikely to be coincidental. A Short motif (AeSM) was also detected 
in Aedes. In contrast to the short motifs identified in Anopheles and Culex, the poly-T region in AeSM is less 
conserved and contains more adenosine residues. Due to the small number of Aedes sequences, however, we 
cannot rule out if this departure from the other short motifs is real.

A small number of atypical sequences in the dataset were observed. Four of 392 Anopheles mitogenome 
sequences, which belong to An. parvus (MF381635, MF381645, MF381670) and An. kompi (MF381721). In 
the An. parvus sequences, the AnSM and AnLM were located 80 bp farther upstream of the 12S rRNA gene 
than in other Anopheles mitogenome sequences. In MF381721 (An. kompi), the AnSM was shifted 80 bp farther 
upstream, with an additional CLM between the AnLM and AnSM. The final arrangement of motifs was AnLM, 
CLM, AnSM. Long and short motifs in these Anopheles mitogenomes were located 162 bp and 205–206 bp 
upstream of the 12S rRNA, respectively, and upon closer inspection, the locations of these motifs (relative to the 
12S rRNA gene) seem to be correct and there are no homopolymers or short repeat segments observed which 
could cause sequencing errors.

The Culex short motif is predicted to form a double‑stranded hairpin.  The symmetry of the CSM 
is suggestive of a double-stranded hairpin. To investigate whether the formation of a double-stranded hairpin is 
possible, the secondary structures of the poly-T and poly-A regions and 15 of the nucleotides on each side were 
predicted at 5 °C increments from 10 to 50 °C, inclusive. In all 27 Culex sequences tested and at all temperatures, 
the CSM forms a predicted hairpin loop in the stem involving the poly-A and poly-T regions (Fig. 5). Tempera-
ture changes only affected the folding of the sequence’s free ends, and the hairpin loop was present in folding 
simulations up to 50 °C. The hairpin loop and step formed even when the entire CR was used. Similar hairpin 
structures were not observed with Anopheles or Aedes sequences.

CR motifs in Culicidae mitogenomes tend to be conserved within specific genera.  The pres-
ence of various long and short motifs identified in this study are strongly associated with specific mosquito 
genera and with the Culicidae in general. This is especially true when the location in the CR and the motif 
pairs are considered. However, the correlation is not perfect. Our investigation into the genus specificity of the 
long and short Anopheles and Culex motifs detected the presence of at least one short or long motif in 25 of 304 

Table 1.   Size and GC content of Culicidae mitogenomes by genus.

Genus

Mitogenome size (bp) GC content

Mean Minimum Maximum Mean (%) Minimum Maximum

All sequences (n = 472) 15,461.5
15,068
(MG816557 Anopheles 
sinensis)

17,150
(KX383916 Aedes albopictus) 22.0

19.3%
(MF957171 Sabethes belisa-
rioi)

24.6%
(MF381635 Anopheles parvus)

Anopheles (n = 392) 1,000.7
15,068
(MG816557 Anopheles 
sinensis)

15,734
(MF381706 Anopheles eiseni) 22.2 20.7%

(MF381706 Anopheles eiseni)
24.6%
(MF381635 Anopheles parvus)

Culex (n = 37) 1,574.0
15,123
(KT852976 Culex tritaenio-
rhynchus)

16,052
(MF381720 Culex chidesteri) 21.4 20.4%

(MF381720 Culex chidesteri)
22.3%
(KT852976 Culex tritaenio-
rhynchus)

Aedes (n = 16) 1,378.0
15,808
(MN389466 Aedes rubritho-
rax)

17,150
(KX383916 Aedes albopictus) 20.8 19.7%

(KX383916 Aedes albopictus)
22.4%
(MT093832 Aedes koreicus)

Table 2.   Size and GC content of Culicidae mitogenome control region by genus.

Genus

Mitogenome size (bp) GC Content

Mean Minimum Maximum Mean (%) Minimum Maximum

All sequences 611.1 210
(MK575477 Anopheles cruzii)

2254
(KX383916 Aedes albopictus) 7.4

0.4%
(MK575480 Culex quinquefas-
ciatus)

12.3%
(MF381722 Culex bilineatus)

Anopheles 560.9 210
(MK575477 Anopheles cruzii)

897
(MF381706 Anopheles eiseni) 6.9 2.1%

(MK575478 Anopheles darlingi)
10.7%
(MZ062478 Anopheles janconnae)

Culex 711.7
238
(MK575480 Culex quinquefas-
ciatus)

1195
(MF381720 Culex chidesteri) 10.5

0.4%
(MK575480 Culex quinquefas-
ciatus)

12.3%
(MF381722 Culex bilineatus)

Aedes 1417.4 748
(MN389466 Aedes rubrithorax)

2254
(KX383916 Aedes albopictus) 7.5 6.1%

(KM676218 Aedes notoscriptus)
10.7%
(MN389464 Aedes alboannulatus)
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Table 3.   Conserved motifs found in mosquito mitogenomes control regions.

Motif Presence in genus
Motif start site (bp) relative to the end of the 
12S rRNA gene Length Sequence E-value

Anopheles short motif (AnSM) 390/393 133–206 25
 

5’-CCCCT AWTTT TTTTT TTTTT TTTWT-
3’

8.3e−2327

Anopheles long motif (AnLM) 388/393 88–162 41
 

5’-ATWWW TAWTT AATAA ATWWT 
TWWAG TACAA TTCTC CTTWT A-3’

6.5e−3302

Culex short (CSM) 34/37 129–148 25
 

5’-AAAAA AMCCC CMATT TTTTT TTGTA-
3’

8.3e−248

Culex long (CLM) 34/37 76–95 50
 

5’-TATMA ATTAT TAAAT WAGAA TWAAW 
AATAG TATAT TCCTC CCCAA AAYTC-3’

1.3e−445

Aedes short (AeSM) 14/16 130–205 15

 
5’-CCCTT AAWTW WWTTT-3’

5.4e−38

Figure 3.   Comparison of 27 Culex Short motif and mirrored A and T stretches. Note mirrored mutations in 
26. NC_037819 (G in position 4 and C in position 31) and 27. NC_028616 (T in position 9 and A in position 
26). Generated with Geneious R11.1 (https://​www.​genei​ous.​com).

https://www.geneious.com
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(8.2%) non-Culicidae Dipteran (nCD) mitogenome CRs (Table 5). In these organisms, the motifs were found 
83–210 bp upstream of the 12S rRNA gene. The presence of these putative motifs in other parts of the nCD CRs 
was also examined and we determined that 1 nCD sequence (MH321208) had both a long and short Anopheles 
motif present in the correct order on the same strand starting within 128 bp of each other.

While the long and short motifs identified here do appear to be associated with specific mosquito genera 
(Table 3), rare exceptions were observed (Table 4). For example, 10 Anopheles and Culex CR sequences did not 
contain a long and/or short motif associated with its genus. Three of these sequences, MK575477 (An. cruzii), 
MK575478 (An. darlingi), and MK575480 (Cx. quinquefasciatus), were significantly shorter (< 250 bp) than 
other CRs, suggesting sequencing errors. Four of the sequences, MN389458 (Cx. fergusoni), JX219731 (An. 
dirus), MF381720 (Cx. chidesteri), and MF381630 (An. gilesi), had a Long and Short motif, but one or both not 
matching the sequence’s genus. Two of the sequences, MF381737 (An. pseudotibiamaculatus) and MN389457 
(Cx. cylindricus), had only one motif, which matched the genus of the sequence. Finally, in MF381721 (An. 
kompi), we observed the CLM and AnLM 160 and 210 bp upstream of the 12S rRNA and a second AnLM was 
located 97 bp upstream of the 12S rRNA. Three sequences belonging to An. parvus (MF381635, MF381670, and 
MF381645) did not contain motifs in the expected location. In An. parvus, the AnLM and AnSM were found 
162 bp and 205–206 bp upstream of the 12S rRNA gene, respectively (Table 5).

In other genera, such as Aedes, one or both expected motifs were missing or not observed in their expected 
place upstream of the 12S rRNA gene of a small number of sequences. For example, two of four Ae. (Stegomyia) 
aegypti sequences, MF194022 and OM214531, did not contain any motifs in the region 80–200 bp upstream 
of the 12S rRNA gene and were the only sequences in the Aedes dataset (n = 16) that did not contain any Aedes 
associated motifs.

The control region contains sufficient information to classify Culicidae and non‑Culicidae dip-
terans.  The supervised learning analysis demonstrated that FCGR representations of the CR could differenti-
ate various Culicidae and non-Culicidae dipterans with high accuracy (Figs. 6 and 7). Unfortunately, genera that 
are not well represented in this dataset—such as those belonging to the Aedes—were more difficult to classify. 
Saliency maps revealed that frequency in occurrence of specific regions within each FCGR is responsible for 
differentiating these groups. In Anopheles spp., for example, the model used regions of the corresponding to the 

Figure 4.   Overview of the deep neural network used to classify mosquito and non-mosquito sequences. 
(A) A simple overview of how information from normalized FCGRs passes through each branch of the 
network. Each branch begins with FCGRs being split into patches. The information from each patch then 
passes through attention layers and a small fully connected feed-forward network. The layers predicting target 
information (real/synthetic, genera) are the last layers of the network. During training, the loss between 
predictions and actual targets is minimized by gradually adjusting the weights and biases of each layer. When 
predicting unknown labels, the layer which classifies each FCGR as either real or synthetic is discarded and 
only the taxonomic classification layer is used. Colors have been added only to aid in visualization. (B) The 
meta-classifier creates random training sets using the training data. The weights of each model are initialized 
randomly. This helps train a diverse set of models which can be used to classify unseen data.
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frequency of k-mers ending in AAAA to discriminate between different taxa (Fig. 6B, top left corner of each 
saliency map). In addition, k-mers ending in CCCC, ACTA, CTCA, GTAC, AGAC, AGTC, GTCT were consid-
ered when classifying Anopheles from other taxa (Fig. 6A and B). Finally, the classifier appeared to be robust to 
differences in sampling year and made few classification errors (Fig. 7). Finally, although a comparison between 
alternate learning models was not the goal of this project, the comparisons we conducted demonstrated that 
both self-supervised deep learning and classical classifiers and their self-supervised versions perform competi-
tively (Fig. 7 and Suppl Fig. 6).

Discussion
The control region (CR) of mosquitoes are understudied, yet it maybe information rich as it is highly diverse. A 
total of 472 publicly available mosquito mitogenome CRs were compared in this study. Several genera were not 
included in the MEME analysis since very few sequences from these genera were present in our database. For 
example, seven genera have only one sequence from one species present. Given that our results for Aedes, using 
only 16 sequences, did not result in a highly specific motif, the exclusion of genera with single digit sequences 
was warranted as it may have led to erroneous or uninformative results. General features of the composition 
of the mitogenomes, DNA sequence motifs in the CR that have the potential to facilitate differentiation of the 
Aedes, Anopheles, and Culex genera and complement other established DNA barcodes are presented. Pairs of 
putative motifs, denoted short and long, were identified 80–210 bp upstream of the mosquito mitogenome’s 
12S rRNA gene. The conservation of these features in non-coding regions suggests a possible functional role in 
the mitogenome, though its exact purpose remains to be determined. The extremely low E-values of the motifs 
give a low likelihood that the motifs found are coincidental artifacts of random noise. With very few exceptions, 
the motifs we identified were correlated with three mosquito genera. Only five out of the 445 publicly available 
Aedes, Anopheles, and Culex mitogenome sequences analyzed do not contain any of the motifs identified in this 
study in the region 80–200 bp upstream of the 12S rRNA. Of these, two belong to Ae. aegypti, and one each of 

Figure 5.   Predicted secondary structure of NC_014574 (Culex quinquefasciatus) Culex Short motif and 
surrounding bases at 25 °C. Coloured scale represents the probability of bases being in the state represented. 
Bases are coloured according to the likelihood they are in their shown state. Blue/purple bases are unlikely, cyan/
green are somewhat likely, and yellow/red are the most likely. Predictions made with ViennaRNA v 2.4.14 using 
DNA stacking energies.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21920  | https://doi.org/10.1038/s41598-022-26236-5

www.nature.com/scientificreports/

An. cruzii, An. darlingi, and Cx. quinquefasciatus. These species all have other publicly available sequences that 
were analyzed in this study with the correct motifs for the genus.

The short motif appears to have analogs in other mosquito and insect mitogenomes and there is evidence 
that suggests that the poly-T stretch of the short motif has a possible functional role in the signaling of the origin 
of replication for the minor strand 15, 19, 21, 52. Similar poly-T stretches to that of the AnSM have been observed 
in the mitogenome CRs of other insects, such as Bombyx mori, Tribolium castaneum, Locusta migratoria, and 
Drosophila spp. 19. However, these occur at different locations than those reported here19. In Drosophila spp., for 
example, a poly-T stretch was found 437–511 bp upstream from the tRNAIle gene while stretches in Tribolium 
castaneum and Locusta migratoria migratoria are found 657–683 bp and 576–577 bp upstream from the tRNAIle 
gene, respectively. In Bombyx mori this region is located 470–471 bp upstream from the tRNAMet gene15. Our 
work has found structurally similar poly-T stretches in all 389 Anopheles CR sequences and in 36 of the 37 Culex 
CR sequences, with MK575480 (Cx. quinquefasciatus) being the only outlier. Since this was the only available 
mitogenome sequence for this species, additional targeted sequencing of the CR is needed to determine if this 
is an error in the public data and to resolve any ambiguities.

In addition to being well-conserved within their clades, motifs associated with Anopheles and Culex are rarely 
present in other non-Culicidae Diptera (nCD) species, especially when considering the expected pairing, order, 
and location of these motifs within the CR. This work further supports a growing body of evidence that motifs 
within the CR of mosquito mitogenomes are conserved within the Culicidae and potentially within the sub-
families of the Culicidae. Of the 304 nCD mitogenomes analyzed only JN861749 (Chironomus tepperi) contained 
a pair of short and long motifs in the expected region (80–200 bp upstream of the 12S rRNA gene). These motifs 
were associated with Culex and Anopheles, respectively. 23 of the 304 nCD CR sequences (7.6%) had one motif 
present from any mosquito genera in the expected region.

Although we found putative Aedes specific motifs, the quality of these motifs tended to be lower since they 
were the shortest and had lower statistical significance than their Anopheles and Culex counterparts. This is likely 
due to the small number of Aedes sequences in the data set. Only 16 Aedes mitogenome sequences from eight 
species were publicly available for this study. Additional sequences from a greater number of Aedes species will 
be required to identify high-confidence motifs.

Table 4.   Control Region sequences which were annotated with motifs from different genera, or incompletelya. 
a Expected motifs are the motifs expected to be found in the region 80–210 bp upstream of the 12S rRNA 
gene, and Annotated motifs are the motifs annotated by MAST in that region. b Other complete mitogenome 
sequences from the same species had the expected GSMs. This table includes 27 of the 472 (5.7%) sequences 
examined.

Accession Species Expected Annotated

MF194022, OM214531 Aedes aegypti Aedes short Noneb

MK575477 Anopheles cruzii Anopheles (Short, Long) Noneb

MK575478 Anopheles darlingi Anopheles (Short, Long) Noneb

JX219731 Anopheles dirus Anopheles (Short, Long) Anopheles long, Aedes shortb

MF381630 Anopheles gilesi Anopheles (Short, Long) Culex long, Anopheles short

MF381721 Anopheles kompi Anopheles (Short, Long) Anopheles long

MF381737 Anopheles pseudotibiamaculatus Anopheles (Short, Long) Anopheles short

MF381720 Culex chidesteri Culex (Short, Long) Anopheles long, Culex short

MN389457 Culex cylindricus Culex (Short, Long) Culex long

MN389458 Culex fergusoni Culex (Short, Long) Anopheles long

MK575480 Culex quinquefasciatus Culex (Short, Long) Noneb

MF381612 Bironella hollandi None Anopheles (Long, Short)

MK575479 Coquillettidia chrysonotum None Aedes short

MH316118 Lutzia fuscana None Culex long, Aedes short

MH316119 Lutzia halifaxii None Culex long, Aedes short

MN342085 Mansonia uniformis None Culex (Long, Short)

MK575476 Ochlerotatus fulvus None Aedes short

MN389467 Ochlerotatus nigrithorax None Anopheles long, Aedes short

MN626442 Ochlerotatus taeniorhynchus None Culex long, Aedes short

KP721463 Ochlerotatus vigilax None Culex long, Aedes short

MK575484 Ochlerotatus vigilax None Aedes short

MN389473 Ochlerotatus vittiger None Aedes short

OK662581 Psorophora albipes None Aedes short

MF957171 Sabethes belisarioi None Culex long, Anopheles short

MN389468 Tripteroides tasmaniensis None Anopheles (Long, Short)

MK575492 Wyeomyia confusa None Aedes short
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The CSM, which contains an adenine stretch followed by a run of 4–5 cytosine residues and a thymine stretch, 
may form a hairpin structure. The near-perfect complement of adenine to thymine in and near CSMs suggests 
biological importance. Similar stem-loop structures have been identified in the CR of other insects, including 
one in peltoperlid stoneflies (Plecoptera: Peltoperlidae), which was centered around a GGG​GGC​ sequence18. 
MF381722 (Cx. bilineatus) and MF381718 (Cx. lygrus) do not have perfect length complementarity between 
the poly-A and poly-T regions, however, hairpin structures are predicted to form at all temperatures up to 
50 °C tested. Interestingly, the poly-A stretch was only present in Culex CSM sequences and not present in any 
other motif. MF381722 (Cx. bilineatus) and MF381718 (Cx. lygrus) have slightly different lengths of poly-A and 
poly-T regions with 9 A–7 T, and 10 A–9 T residues, respectively. However, this may be due to errors resulting 
from sequencing homopolymeric regions. In MF381718 (Cx. lygrus) a guanine residue is present in the poly-A 
stretch. The presence of this residue is predicted to form a bulge in the hairpin. While the poly-A stretch in CSM 
appeared significant, additional work is needed to better understand the biological significance of this motif.

Mosquito CR sequences in genera not belonging to Anopheles, Culex, or Aedes were mostly unlabelled or 
labelled with mismatched motifs (such as CLM and AnSM), and only rarely labelled with the motifs of the genus 
most closely related. Depending on the gene analyzed, Bironella is generally placed as a sister genus to Anopheles53, 
though in some cases it has been placed within Anopheles54. Thus, the annotation of Bironella sequences in the 
study with the Anopheles GSMs is consistent with the current mosquito phylogeny55. However, four sequences 
were unexpectedly annotated with GSMs from more distant genera. Mansonia is most closely related to Aedes, 
yet MN342085 (Mansonia uniformis) was annotated with CLM and CSM. Tripteroides, Wyeomyia, and Sabethes 
spp. (part of the Sabethini tribe) are more closely related to Culex and Aedes than Anopheles56, but the CLM 
and AnSM appeared in MF957171 (Sa. belisarioi), AnLM and AnSM in MN389468 (Tripteroides tasmaniensis), 
and MK575492 (Wyeomyia confusa) was annotated with the AeSM. These sequences being annotated with the 
CLM and CSM would be more in line with the current understanding of the mosquito phylogeny. The other 
three Sabethes spp. sequences in the dataset were not annotated with any motifs described for the three genera.

While the motifs identified in this work appear to be unique to each mosquito genera, the relatively short 
length and low complexity of these motifs could prevent this region from being a universal barcode unique to Cul-
icidae. However, if one considers that these motifs are embedded in a broader context, the entire CR, a machine 
learning approach may be useful in delineating closely related taxonomic groups or species complexes12, 18, 57, 58. 
FCGRs could also be useful in understanding broad patterns in nucleotide usage and k-mer usage in the CR and 
in detecting palindromes and tandem repeats26, 33. FCGRs are also useful since the genus or species signature 
should still be present even in the presence of ambiguous nucleotides25, 59. Given this, we believe our choice 

Table 5.   Non-Culicidae Dipteran sequences with the conserved mosquito mitogenome control region motifs 
in the mitogenome control region between 80 and 210 bp upstream of the 12S rRNA gene. *Motifs were 
counted if MAST found the motif on the majority strand, and the starting point was between 83 and 165 bp 
(for Long motifs) or 130–210 bp (for Short motifs) upstream of the end of the 12S rRNA gene.

Motif(s)* Accession(s) Species

Anopheles long

MH321208 Eristalinus aeneus

MG735216 Graphomya rufitibia

MG252777 Liriomyza chinensis

GU327644 Liriomyza trifolii

JN570506 Liriomyza trifolii

JX913758 Lucilia porphyrina

KM200723 Musca domestica

MG941012 Musca sorbens

MH521132 Musca sorbens

KM676394 Muscina stabulans

KR349298 Phlebotomus papatasi

KT444442 Phlebotomus papatasi

MH540745 Sarcophaga dux

Anopheles short

JN861747 Cramptonomyia spenceri

MH321205 Eristalinus barclayi

MH321204 Eristalinus fuscicornis

MH159199 Eristalis tenax

KY679159 Hermetia illucens

MH705623 Hydrotaea spinigera

MF434829 Neoceratitis asiatica

Culex long
AJ242872 Ceratitis capitata

KF824877 Drosophila yakuba

Aedes short JN861744 Ptychoptera sp. ATB-2011

Anopheles long, Culex short JN861749 Chironomus tepperi
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in using FCGRs for classification is warranted because, at a minimum, they have been shown to be useful in 
coarse-grained classification and motif identification tasks26, 33, 35, 59. Our experiments support this hypothesis 
and demonstrate that the FCGR of the CR is informative, and supervised and semi-supervised approaches can 
result in highly predictive models (Figs. 6 and 7, Suppl Fig. 6). The deep learning model presented in our work is 
a proof-of-concept demonstrating the potential and flexibility that machine learning using genomic signatures 

Figure 6.   Results of the semi-supervised learning investigation using a deep learning model. The model was 
trained using data collected up to 2019. (A) The organizational structure of the chaos game. An example of the 
composition of the NAAA super-pixel can be found in the top left corner. (B) Saliency map for each FCGR. 
Highlighted are 4 × 4 super-pixels of k-mer frequencies corresponding to the different regions of the FCGR 
presented in (A). For example, the patch found in the top left corner represents a collection of k-mers ending 
in AAAA. High saliency regions are warmer and are used by the model to differentiate between sequences. 
(C) This table displays the results of the fivefold stratified cross-validation experiment. Predictions which were 
correctly made are found where both the column and row labels are identical. False negative predictions for each 
genus are found along the rows (eg: five Anopheles sequences were predicted to be Non-Culicidae dipterans) 
while false positives are found along the columns.

Figure 7.   Precision-Recall curve quantifying the performance of the semi-supervised classifier when trained 
on the entire dataset. Precision-Recall curves illustrate the ability of our deep learning model to balance the 
identification of true positive sequences while minimizing the number of false identifications (precision) and 
false negatives (recall).
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can provide when performing taxonomic assignments. These models can be trained using a limited number of 
training samples to produce an accurate discriminatory model60. Semi-supervised approaches, such as SGANs, 
are particularly useful in this domain since obtaining additional training data can be a time-consuming and 
expensive task60. The performance of our deep model is particularly impressive since the supervised discriminator 
of each individual model in the deep learning ensemble was trained on approximately 9.5% of the training data 
(64 out of 673 total samples). In comparison, 60 and 100% of the training data was used to train each of the self-
supervised and fully-supervised models. Also, although our model performed well, a much larger comparative 
study investigating the advantages and suitability of deep-learning and signature-based approaches have over 
other taxonomic classifiers, such as the RDP Classifier, needs to be undertaken24. This is necessary since some 
algorithms may be better at identifying samples at higher taxonomic ranks while failing to differentiate between 
closely related species due to the lack of training examples. In areas where identification is important, such as 
identifying the presence of disease vectors, an elevated false-negative or positive rate is unacceptable. We believe 
that the approach presented here and others (such as one-shot and few-shot learning) have significant potential 
for being used as a basis for classifying reads from environmental samples since genomic signatures and deep-
neural networks can capture global patterns within genomes that other approaches may miss29, 34, 61. For exam-
ple, FCGRs can be seen as more than just k-mer counts since visual information about the overall structure of 
sequence, along with k-mer counts, is encoded into the representation29, 34, 62. When this information is processed 
by a deep neural network, such as the SGAN employed here, the hidden layers of the discriminator network likely 
learn a meaningful and distilled representation of the FCGR signature which enables accurate classification26–28.

Additional work needs to be conducted into ways which may improve the quality of genomic signatures and 
models trained using these signatures. Long-read sequencing technologies can be particularly beneficial since 
considerably more information about each sequence can be extracted from the longer reads. Furthermore, 
these technologies allow homopolymeric regions, such as the CR, to be sequenced in their entirety. Recently, we 
have developed PCR primers for the amplification of mosquito mitochondrial CR and these have been success-
fully used on 28 Canadian mosquito species (manuscript in preparation). PCR primers for the amplification of 
the control region will be a useful tool as it will allow accurate sequencing of he region from single, as well as, 
bulk metagenomic samples. Together, this can improve the quality of the FCGRs for each species which could 
allow supervised and semi-supervised machine learning models to learn a more robust representation of each 
species26, 28, 36. Furthermore, since the CR is an understudied, the development of these primers and computa-
tional methods will allow for a more thorough investigation of the CR and its motifs in future studies of this 
region. Long-read sequencing also has the added benefit in that it can potentially recover sequences of less 
well-represented organisms for which adequate primers are not available, resulting in larger and more complete 
databases which can be used to further refine taxonomic classification models. While not perfect, long read 
sequencing methods and new primers specifically targeting the CR can begin to help resolve ambiguities aris-
ing from homo-polymer tracts, high AT content, and repeating regions found in the CR. While we did perform 
data cleaning to remove a large number of low quality and incomplete mitochondrial sequences, we cannot be 
absolutely sure of the accuracy of every sequence in the dataset since information on the sequencing methods 
used, depth of coverage, and the methods used to assemble each sequence in our study is not available. Additional 
sequences from species and genera that are poorly represented in currently available sequence databases will be 
useful in expanding this study. Finally, machine learning models could potentially be used to identify specific 
sequences within the CR which are useful for delineating species. These sequences could serve as a starting point 
for new investigations which aim to determine the biological functions associated with the CR and if this region 
can be used to study mosquito population genetics.

In conclusion, we performed an in-silico analysis of 472 complete mitogenome sequences from 125 species 
of mosquito. This analysis discovered highly conserved motifs, two in the mitogenomes from Anopheles spp. and 
two from the mitogenomes of the different Culex spp. Also, although small in number, our analysis of the various 
Aedes mitogenomes also suggested the presence of two potentially conserved motifs and that the average length 
of the CR from Aedes were the longest. Encouragingly, the FCGR signature of the CR was able to distinguish 
between the mosquito lineages with a high degree of accuracy. We suspect that as additional sequences are added 
the generalization performance of machine learning models using genomic signatures will improve, especially 
when tasked to classify rare sequences. We have also demonstrated how these models can be used to investigate 
which aspects of the signature are important for classification, potentially leading to a better understanding of 
the functions associated with the CR. This work can have implications in the efficient identification of important 
mosquito genera known to carry human pathogens, particularly from bulk samples.

Data availability
The datasets generated analyzed during the current study are available at the following GitHub page: jrudar/
In-Silico-Identification-of-Multiple-Conserved-Motifs-Within-the-CR-of-Culicidae-Mitogenomes: Data for the 
manuscript titled “In-Silico Identification of Multiple Conserved Motifs Within the Control Region of Culicidae 
Mitogenomes” (https://​github.​com/​jrudar).
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