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Global habitat suitability modeling 
reveals insufficient habitat 
protection for mangrove crabs
Masoud Yousefi * & Reza Naderloo *

Mangrove crabs are important components of mangrove forests however their large scale habitat 
suitability and conservation received little attention. The Metopograpsus thukuhar/cannicci species 
complex is a mangrove dwelling species occurs in the Indo-Pacific mangrove forests. Since identifying 
the complex suitable habitat is critical for its conservation, we modeled global habitat suitability 
of the complex within marine biogeographic realms and estimated representation of the complex 
suitable habitats within marine protected areas. We found that the complex’ largest and smallest 
suitable ranges are located in Central Indo-Pacific and Temperate Southern Africa realms, respectively. 
Only 12.5% of the complex suitable habitat is protected. The highest proportion of the complex’ 
protected suitable habitat (22.9%) is located in Western Indo-Pacific realm while the lowest proportion 
of the complex’ protected suitable habitat (1.38%) is located in Central Indo-Pacific realm. Suitable 
unprotected habitats of the complex identified in this study have high priority for conservation and 
should be included in marine protected areas to ensure species conservation. Our results show that 
species distribution models are practical tools to study marine species distribution across large spatial 
scales and help marine conservation planning.

Mangrove forests occur in the tropics and subtropics and are among the most threatened ecosystems in the 
 world1–3. These highly productive ecosystems cover 167,000   km2 and span more than 120 countries and 
 territories1,2. Mangroves provide important ecological and economical ecosystem services such as preventing 
erosion, acting as natural barriers for floods, storms and cyclones, contributing to global climate change miti-
gation, providing habitat and food for migratory birds, fish, molluscs and  crustaceans2,4–9. In many countries 
indigenous people used mangrove biota like crabs and fishes as  food10.

Despite their ecological importance and ecosystem services they provide, mangroves have been lost at a rate 
of 0.39% per year since  20006 and are threatened by aquaculture activities, coastal development, climate change 
and sea level  rise2,11–19. More importantly mangroves have received much less attention compared to other tropi-
cal ecosystems like rain forests and coral reefs and small proportion of them are legally under  protection1,20.

Mangrove crabs are important components of mangrove  forests21,22. Mangrove crabs’ richness reaches a peak 
in Indian Ocean and West Pacific Ocean. Sea surface temperature, nitrate, calcite and dissolved oxygen are impor-
tant drivers of mangrove crabs’ latitudinal  diversity23. For effective management of mangrove crabs and conse-
quently mangrove ecosystems, it is important to identify individual mangrove-dwelling species suitable habitat 
and ecological determinants of their distribution. Besides, it is not well assessed whether marine protected areas 
are effective in conservation of mangrove crabs. In this regard, Species Distribution Models (SDMs) are practi-
cal tools as they are frequently being applied in studying species biogeography, ecology and  conservation24–26.

Species Distribution Models need species occurrence records and environmental variables to estimate target 
species probability of presence in a user defined geographic  region24,27. These models are used in predicting spe-
cies  distribution28–33, identifying environmental derivers of species  distribution28,32–34 assessing protected area 
effectiveness in conservation of  species35–37 and quantifying the impacts of future climatic changes on species 
 distribution38–45. For instance, Luan et al.28 applied SDMs and modeled the spatial distribution of three portunid 
crabs (Charybdis bimaculata, Charybdis japonica and Portunus trituberculatus) in China. They showed that sea 
bottom temperature, sea bottom salinity and sediment type were the most important factors affecting the crabs’ 
distribution. In another study, Compton et al.35, used SDMs and modeled potential distribution of the European 
green crab (Carcinus maenas) to identify potential areas of invasion by this highly adaptable estuarine crab.

The Indo-Pacific genus Metopograpsus of the family Grapsidae comprises six recognised species including 
Metopograpsus thukuhar which is a mangrove-dwelling  species46–48. According to the most recent taxonomic 
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account on the genus Metopograpsus, M. thukuhar is species complex and there are two pseudo-cryptic species 
in the Indian and the Pacific  oceans48. Metopograpsus thukuhar distributed in the eastern Indian and Pacific 
oceans, while M. cannicci, occurs in the Red Sea, East African coast (from Somalia to Mozambique), Seychelles; 
Dar es Salaam, Madagascar, Toliara and Toamasina, Mauritius and Persian Gulf and Gulf of  Oman47,48. Both 
species (hereafter Metopograpsus thukuhar/cannicci species complex) live in high density within the trunks 
and pneumatophores of mangroves, adults mostly seen in natural crevices and juveniles commonly found on 
 surface47. The medium-sized species is considered omnivorous, but principally feeding on the macroalgae and 
mangroves leaves, while rarely preying on smaller  crabs49. The species occupy mangrove ecosystem with similar 
ecological conditions but the complex large scale habitat suitability and conservation received little attention.

While, knowledge on the complex habitat suitability and representation of the species suitable habitats within 
protected areas is necessary for the complex conservation. Thus, the aims of the present study are to predict 
habitat suitability of the M. thukuhar/cannicci species complex using the Maximum Entropy (MaxEnt) algorithm, 
identify the most influential factors in shaping the complex distribution and estimate marine protected area 
coverage for the complex suitable habitats.

Results
Results of assessing MaxEnt model performances showed that the model performed well based on AUC and TSS 
metrics (AUC = 0.938 and TSS = 0.816). Results showed that the M. thukuhar/cannicci species complex suitable 
habitats are located in the following six marine biogeographic realms; Temperate Southern Africa, Western 
Indo-Pacific, Central Indo-Pacific, Eastern Indo-Pacific, Temperate Australasia and Temperate Northern Pacific 
(Fig. 2). Largest and smallest suitable habitats are located in Central Indo-Pacific and Temperate Southern Africa 
respectively (Fig. 1).

Variables importance. Based on MaxEnt results, sea surface temperature with 38.1% contribution fol-
lowed by nitrate (26.4%), and dissolved oxygen (14.6%) are the most important drivers of the complex distribu-
tion (Table 1). The probability of the complex presence is positively correlated with sea surface temperature and 
as temperature increased the area became more suitable for the complex and habitat suitability reached a peak 
at 30 °C.

Marine protected areas coverage. Results of estimating marine protected areas coverage  across the 
complex range showed that 12.5% of the species suitable habitats located within marine protected areas (Fig. 2). 
The highest proportion of protected suitable habitats (22.9%) are located in Western Indo-Pacific realm while the 

Figure 1.  Habitat suitability of the Metopograpsus thukuhar/cannicci species complex in marine biogeographic 
realms. Map was generated using QGIS 3.4.1 (https:// www. qgis. org).

https://www.qgis.org
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lowest proportion of protected suitable habitats (1.38%) were located in Central Indo-Pacific realm (Table 2). No 
protected suitable habitat was found for the complex in Temperate Southern Africa realm.

Discussion
Mangrove forests are threatened by several anthropogenic  activities1,12,20. But to conserve mangrove ecosystems 
it is necessary to save species that play important role in mangrove survival like the mangrove  crabs21. The pre-
sent study is the first to determine the habitat suitability of the M. thukuhar/cannicci species complex across its 
global distribution range and estimate protected area coverage for the complex suitable habitats within marine 
biogeographic realms. We found that the highest proportion of the complex’ suitable habitat is located in the 
Central Indo-Pacific realm hence this realm has high priority for the complex and consequently mangrove for-
est conservation.

Results showed that sea surface temperature was the most important determinant of the complex global 
distribution. Most crabs avoid temperatures above 29 °C, this is showed by the response of the complex to the 

Table 1.  Variable contribution in habitat suitability model of the Metopograpsus thukuhar/cannicci species 
complex. 

Variable Contribution (%) to MaxEnt model

Mean sea surface temperature 38.1

Nitrate 26.4

Dissolved oxygen 14.6

Calcite 5.7

Tide average 4.8

Primary productivity 3.1

Saturated  O2 2.6

Salinity 1.7

Range sea surface temperature 1.8

pH 1.2

Figure 2.  Protected areas coverage for suitable habitats of the Metopograpsus thukuhar/cannicci species complex 
based on marine biogeographic realms. Map was generated using QGIS 3.4.1 (https:// www. qgis. org).

https://www.qgis.org
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sea surface temperature. Habitat suitability increase for the complex by an increase in temperature until 30 °C. 
Our results are in line with previous studies that identified sea surface temperature as a major determinant of 
distribution of marine  organisms50,51 as well as different marine crustacean  species23,52. Nutrients like calcite and 
nitrate are important determinants of mangrove crabs’  richness23. Our results confirm the importance of nutri-
ents for a mangrove crab species complex. We found that saturated  O2, range sea surface temperature, salinity, 
primary productivity, and pH play little role in shaping this complex distribution supporting previous findings 
that these variables have little contribution in predicting richness of mangrove  crabs23.

Climate change is known as a major driver of biodiversity loss  worldwide18,53–55. Previous studies have shown 
that marine species will be negatively affected by climate  change53,56–58. Based on MaxEnt results, sea surface 
temperature turned out to be the most important determinants of the complex distribution but under climate 
change sea surface temperature will  change56,57. Thus, the complex distribution will likely vary under changing 
climate. In addition, the species are tree-climbers in  mangroves47 and strongly depends on mangroves but stud-
ies are showing that climate change is negatively influencing mangroves, making the species more vulnerable 
to climate  change12,14. To be able to set proper programs for the complex conservation under climate change, 
it is necessary to identify the complex’ future suitable habitats and propose those areas as target areas for new 
marine protected areas.

Marine biodiversity is being lost at an increasing rate due to climate change, urban and industrial develop-
ments, overfishing and  pollutions53,58. In this situation, marine protected areas are currently the most effective 
tools for conservation and management of marine  ecosystems59,60. At the moment not only a small proportion of 
marine ecosystems are highly protected (2.7%) but their effectiveness is in doubt due to increasing anthropogenic 
 effects61,62. SDMs are very informative tools to assess the effectiveness of marine protected areas in conservation 
of marine biodiversity and propose new protected areas as previously shown for marine  species63–65. To our 
knowledge the effectiveness of marine protected areas in the conservation of mangrove crabs has been rarely 
assessed. Here we quantified protected areas coverage for a mangrove crab’ suitable habitats and showed that low 
level (12.5%) of the complex suitable range is legally protected. The percentage of protected suitable habitats of 
the complex varies among the realms from zero in Temperate Southern Africa to 22.9 in Western Indo-Pacific. 
Despite a large proportion of the complex suitable habitats being located within the Central Indo-Pacific realm, 
only 1.38% of them are protected. Thus, this realm has high priority for future development of marine protected 
areas for conservation of mangrove crabs. This shows that it is important to quantify protected areas coverage 
for every species within each biogeographic realm.

One key application of SDMs is to identify potential areas for species distribution and determine patches that 
are suitable but un-sampled27,66. Our MaxEnt model identified suitable patches with no distribution record for the 
M. thukuhar/cannicci species complex in particularly in the Tropical Atlantic and Tropical Eastern Pacific realms. 
We recommend those patches as suitable target areas for further field  sampling36,67 to identifying all populations 
of the complex across its potential distribution range. It should be also noted that correlative SDMs are static so 
that they do not consider species dispersal barriers when predicting suitable range for a target  species27. In fact, 
they identify areas with high suitability for a target species only by considering those environmental variables 
which were used in the  model27. Thus, our model identified some suitable patches in which the species cannot 
be present due to ecological conditions or dispersal barriers particularly in Temperate Northern Pacific in west 
of North America.

Conclusions
We identified the most suitable habitat of M. thukuhar/cannicci species complex and determined the most 
influential driver of the complex distribution. In addition, suitable but not protected habitats of the complex 
identified and were proposed as important target for future marine protected areas development especially in the 
Central Indo-Pacific realm. Results of this research increased our ecological knowledge of mangrove crabs and 
can be used to safeguard these ecologically important mangrove-dwelling crabs. Marine ecosystems are home 
to millions of  species16 of which many of them are threatened with extinction due to several threats like climate 
change, pollution, overfishing, habitat destruction, land use changes and urban and agricultural development 
along  coastlines68. In this regard, SDMs can be used to map species distribution over vast and remote areas of 
marine  ecosystems69,70 and facilitate marine biodiversity  conservation69,71,72.

Table 2.  Estimates of suitable habitats, protected suitable habitats and percentage of suitable protected habitats 
of the Metopograpsus thukuhar/cannicci species complex within the five marine biogeographic realms.

Marine biogeographic realms Suitable area  (km2) Protected suitable habitat  (km2) Percentage of suitable protected habitat

Western Indo-Pacific 3,274,289 55,985 22.9

Central Indo-Pacific 7,783,576 49,456 1.38

Eastern Indo-Pacific 1,285,675 135,799 4

Temperate Northern Pacific 736,912 21,066 7.4

Temperate Southern Africa 24,769 0 0

Temperate Australasia 106,824 44,513 2.94
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Materials and methods
Occurrence data. Distribution records of the M. thukuhar/cannicci species complex were gathered from dif-
ferent sources as follows: fieldworks (Fig. 3), online databases like the Ocean Biogeographic Information System 
(OBIS) and the Global Biodiversity Information Facility (GBIF) and published papers, books and  atlases46,47,73. 
After gathering distribution records from different sources, duplicates and localities without coordinates were 
removed. In addition, distribution records were thinned to match with environmental layers’ resolution. In total, 
235 distribution records were collected but after filtering them, 167 points remained and were used in distribu-
tion modeling (Fig. 4).

Marine environmental predictors. To map global distribution of the M. thukuhar/cannicci species com-
plex we used 10 environmental variables quantifying climatic, biological and geophysical conditions across the 

Figure 3.  Photograph of Metopograpsus cannicci in its natural habitats in the Gulf of Oman. Photo by Reza 
Naderloo.

Figure 4.  Global distribution of the Metopograpsus thukuhar/cannicci species complex and marine 
biogeographic  realms74. The map was generated using QGIS 3.4.1 (https:// www. qgis. org).

https://www.qgis.org
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species distribution  range75. Following variables were included in habitat suitability modeling; mean sea surface 
temperature (°C), tide average (m), salinity (PSS), primary productivity (mg C  m−2  day−1  cell−1), dissolved oxy-
gen (ml  l−1), saturated oxygen (ml  l−1), nitrate (μmol  l−1), calcite (mol  m−3), pH, and range sea surface tempera-
ture (°C). The environmental variables were obtained from the Global Marine Environment Datasets  (GMED75) 
at 5 arc min spatial resolution. These variables are important in shaping marine crabs’  distribution23,28,35,76–78. To 
avoid using highly correlated variables (r ≥ 0.75) together in ecological niche modeling, a Pearson correlation test 
was performed (Supplementary Table S1).

Habitat suitability modeling. In this study we used Maximum Entropy Modeling approach (MaxEnt) 
which is one of the best methods among many algorithms for modeling species distribution  patterns24,79. This 
method only needs presence data from target species and is very effective even when distribution data is  scarce37. 
Habitat suitability modeling was performed in sdm  package80 in R  environment81. To assess model performance, 
we used a split-sample approach (75% training data and 25% evaluation data) with 10 repetitions. Performance 
was measured using ROC AUC  curves27,82,83 and True Skill Statistics (TSS)  values27. AUC values range from 0 to 
1, values close to 0.5 suggest that the model has no predictive ability while values close to 1 show perfect predic-
tive  ability27. TSS values range from − 1 to + 1, where + 1 indicates perfect performance and value of zero meaning 
random predictions.

Marine protected areas coverage and marine biogeographic realms. To determine the represen-
tation level of suitable habitats of the complex inside marine protected areas, the continuous habitat suitability 
map was converted into binary suitable-unsuitable map. The 10 percentile training presence threshold was used 
to convert continuous map into  binary24,84. Then, the binary habitat suitability model was overlaid on the marine 
protected areas layer. Finally, the area of suitable habitat inside the marine protected areas was calculated using 
the raster package in  R85. Marine protected areas data obtained from Protected Planet (www. prote ctedp lanet. 
net)86. We calculated areas of suitable habitats within each of the following six marine biogeographic realms; 
Temperate Southern Africa, Western Indo-Pacific, Central Indo-Pacific, Eastern Indo-Pacific, Temperate Aus-
tralasia and Temperate Northern  Pacific74 that M. thukuhar/cannicci is present.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials, or the references cited here within.
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