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Current evidence on circRNAs 
as potential theranostic markers 
for detecting chemoresistance 
in breast cancer: a systematic 
review and meta‑analysis
Zixin Zhu 1,2, Hui Jiang 1,2, Jingling Xie 1, Xinrui Jin 1, Baolin Li 1 & Jinbo Liu 1*

This study assessed the value of circRNAs (circular RNAs) as prognostic markers in BC (breast cancer). 
We searched pertinent studies on the PubMed, Embase, and Web of Science online databases 
published according to PRISMA guidelines. A random‑effects model for meta‑analysis was used to 
assess the combined effect size of the HRs (hazard ratios) of the included studies. The heterogeneity 
test used Cochran’s Q‑test and I2 statistics. Thirty of the 520 trials retrieved were included in the 
systematic review. A total of 11 chemotherapeutic agents were used in the included studies. A total 
of 30 studies on 30 circRNAs were included in the systematic review. Of the 30 relevant circRNAs, 28 
were upregulated and two were downregulated in breast cancer versus normal samples, and both 
were associated with increased drug resistance. Nine of 30 studies were used for the meta‑analysis. 
The results of the meta‑analysis showed that the groups with circRNA upregulation and circRNA 
downregulation showed the same prognostic risk (HR = 1.37, 95% Cl: 0.80–2.36, I2 = 63.7%). The results 
of subgroup analysis showed that both upregulated circRNAs (HR = 2.24, 95% Cl: 1.34–3.75, I2 = 0%) 
and downregulated circRNAs (HR = 0.61, 95% Cl: 0.45–0.83, I2 = 0%) were associated with poor BC 
prognosis. Collectively, the results of all relevant articles collected indicated that circRNAs showed 
good potential as possible clinical biomarkers of chemoresistance in BC patients.

Abbreviations
CircRNAs  Circular RNAs
BC  Breast cancer
CI  Confidence interval
HR  Hazard ratio
PRISMA  Preferred items for systematic reviews and meta-analyses
RT-PCR  Real-time reverse transcription-polymerase chain reaction
MiRNA  MicroRNA
OS  Overall survival

Currently, the incidence of BC ranks second-highest among that of cancers worldwide, with 2,261,419 cases every 
 year1. The incidence of BC is increasing year by year, and the age of onset is decreasing. Exploring new molecu-
lar markers of BC is beneficial for predicting prognosis accurately and monitoring curative effects. Therefore, 
finding an effective, rapid, noninvasive and specific marker is urgent and is crucial for the diagnosis, prognosis 
evaluation and drug resistance evaluation of  BC2,3.

The choice of drugs for BC patients varies according to individual  circumstances4. To date, the main treat-
ments for BC are surgery, radiotherapy and  chemotherapy5. Chemotherapy is a standard method for BC 
 treatment6. There are many commonly used chemotherapy drugs for BC, including anthracyclines (doxorubicin, 
epirubicin, doxorubicin liposomes, etc.), paclitaxel drugs (paclitaxel, docetaxel, paclitaxel liposomes, and nab-
paclitaxel) and fluorouracil (5-FU, capecitabine). In addition, there are targeted drugs such as trastuzumab and 
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 pertuzumab7,8 for BC. However, patients are developing resistance to conventional drugs. Chemotherapy resist-
ance is one of the main reasons for clinical treatment failure and poor prognosis in BC  patients9. This resistance 
might be due to alterations in several main regulatory pathways, such as PI3K/AKT10–12. Recently, some studies 
have found that certain circRNAs are strongly associated with resistance to a number of anticancer drugs, rang-
ing from traditional chemotherapy drugs to targeted and immunotherapy  drugs13–17.

CircRNAs are endogenous RNAs characterized by a covalent ring structure. Compared with other RNAs, 
circRNAs are less abundant, but circRNAs exhibit the advantage of high tissue  specificity18. Recently, many 
researchers have indicated that certain circRNAs in different tumors might play essential roles in tumor cell 
proliferation, metastasis and drug  resistance19. Several studies have suggested that circRNAs affect the develop-
ment of drug resistance and prognosis of BC patients. Upregulated or downregulated circRNAs are involved 
in tumor growth and drug resistance, affecting the prognosis of breast cancer patients. Liang et al. showed that 
circKDM4C could inhibit BC proliferation and doxorubicin resistance in vitro, and this circRNA is a tumor sup-
pressor in  BC20. Wang et al. found that miR-142 regulated the WWP1 and PI3K/AKT  genes10. Circ-WAC could 
act as a sponge for miR-142 and decrease the inhibitory effect of miR-142 on its target WWP1. In addition, if 
triple-negative breast cancer patients expressed a high level of miR-142, their overall survival time was longer 
than that of other patients with low miR-142 expression. Additionally, Yang et al. showed that circ-CDR1as was 
involved in breast carcinogenesis and sensitivity to cisplatin in vivo. Knockdown of circ-CDR1as might increase 
the sensitivity of drug-resistant BC cells by reducing REGγ expression by eliminating the competition of miR-
721. Some articles have reported an association between changes in circRNAs and changes in drug resistance 
status in  BC11,20–32. However, no article has summarized the specific mechanisms and modalities of circRNAs 
involved in BC drug resistance.

In the related meta-analysis, the involvement of circRNAs in BC was included, and we investigated the undis-
covered prognostic value of circRNAs in BC. Several studies found that the expression of certain circRNAs was 
associated with increased drug resistance and a poor prognosis in BC  patients10,22,23,32. Preclinical and clinical 
observational studies have shown that circRNA expression profiles can help identify patients at possible high 
risk for chemotherapy-resistant  BC11,33. Therefore, we attempted to conduct a comprehensive systematic review 
and meta-analysis of published studies on circRNA-mediated chemoresistance in BC.

Materials and methods
Registration. We have registered the protocol on PROSPERO. Our registration number is CRD42022295180.

Data search strategy. We searched all relevant articles through the PubMed, Embase, and Web of Science 
online databases that were published before 13 October 2022. The following entry words were used: (1) “Breast 
Neoplasms” or “Breast Cancer” or “BC." (2) “RNA, Circular” or “circRNAs” or “hsa circ”; (3) “Resistance, Drug” 
or “Drug resistance” or “chemoresistance.". The Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines were used to conduct search strategies.

Inclusion and exclusion criteria. The selection criteria for inclusion in the literature were as follows: (1) 
studies that involved the effect of circRNAs on drug resistance or drug sensitivity in BC; (2) studies that collected 
clinical samples or involved in vitro preclinical analysis; and (3) studies that involved the effect of circRNA on 
the prognosis of BC. The criteria for exclusion were as follows: (1) duplicate studies; (2) reviews, editorials, opin-
ions, case studies, and reports; unpublished materials, uninterpretable data, conference proceedings, or theses; 
(3) articles without complete information; (3) studies that did not indicate whether circRNA expression was 
upregulated or downregulated; (4) studies that did not include specific drug resistance changes; and (5) studies 
in languages other than English.

Data extraction. Two researchers (Z.Z. and H.J.) extracted the data independently. When necessary, diver-
gences were resolved by a third investigator (J.X.). The extracted information was as follows: (1) first author, 
publication year, circRNA, number of patients, detection methods for circRNAs, HR, CI; (2) follow-up time and 
outcomes; and (3) clinicopathological features, including TNM stage and T classification. When the results were 
not directly shown in the articles for HRs and 95% CIs, survival data were extracted from Kaplan‒Meier plots 
using Engauge Digitizer 4.1 software. The Excel program file of Tierney et al34. was then be used to calculate the 
HRs and 95% CIs.

Quality assessment. Two independent investigators (Z.Z. and H.J.) used the Newcastle Ottawa Scale 
(NOS) to assess the quality of the articles for meta-analysis. If one study had a total score of > 6 points, it was 
considered high quality. When necessary, divergences were resolved by a third investigator (J.X.).

Statistical analysis. Statistical analysis was performed using Stata 15.0. Data in the form of Kaplan‒Meier 
survival curves were converted to HRs and 95% CIs. Pooled outcome data were generated for forest plots to 
assess the prognostic value of circRNAs in BC. Heterogeneity tests were obtained by Cochran’s Q test and 
Higgins I2. According to the rule, a random-effects model was used to generate pooled results if the I2 value 
was > 50%, and a fixed-effects model was used if the I2 value was <  = 50%. A p value < 0.05 was used to determine 
statistical significance.
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Results
Selection of studies. Figure 1 shows a flowchart for study selection. Through the search strategy, 520 arti-
cles were identified from PubMed, Embase, and Web of Science. After deduplication, screening criteria were 
used to review 291 potentially eligible studies. A careful selection of 137 articles was made by finalizing 34 full-
text studies with available information according to PRISMA guidelines. Of these 34 articles, four studies were 
excluded since they were about other cancers. After multistep screening, the remaining 30 articles were used for 
systematic  reviews10–12,20–32,35–47, of which nine were used for meta-analysis.

Study characteristics and quality assessment. All included studies were collected until 13 October 
2022 (the details of the description of the 30 included studies are shown in supplemental appendix 1). The 11 
chemotherapy drugs used in the studies included 5-FU, lapatinib, adriamycin, doxorubicin, paclitaxel, cisplatin, 
monastrol, tamoxifen, docetaxel, trastuzumab, and oxaliplatin. Of these, paclitaxel is the most commonly used 
chemotherapeutic agent in clinical practice, while lapatinib and oxaliplatin are the least used. A total of 2077 
BC tissue samples were included in the analysis. Seven of 30 studies documented clinical stage, including 187 in 
stage I, 464 in stage II, and 211 in stage III. Thirty studies used reverse transcription-polymerase chain reaction 
(RT‒qPCR) to detect circRNA, and only one study used the raw sequencing reads. Nine studies with survival 
curves were included in the meta-analysis, containing a total of 1962 individuals.

Figure 1.  Flowchart of trial selection.
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Preclinical and clinical investigation of circRNA expression. A total of 17 different cell lines were 
used in 30 studies to explore circRNA expression and its association with drug resistance and associated path-
ways or proteins/axes. MCF-7 was the most commonly used cell line, while the U343 and U251 cell lines were 
the least commonly used. The experimental methods used in these studies include western blot, transfection and 
vector construction, flow cytometry, Transwell, ELISA, cytotoxicity assay, dual-luciferase reporter assay, RNA 
pull-down, RIP assay, IHC assay, RNase R treatment assay, 5-ethynyl-2′-deoxyuridine (EdU) assay, fluorescence 
in situ hybridization (FISH) assay, exosome tracing and blockade of exosome secretion.

After excluding duplicate circRNAs, our systematic review included a total of 30 different circRNAs, 28 of 
which were associated with increased drug resistance and a poor prognosis in breast cancer patients when their 
expression was upregulated, while only 2 were associated with increased drug resistance and a poor prognosis 
in breast cancer patients when their expression was downregulated.

BC chemoresistance and drug‑regulated genetic pathways. In these 30 studies, a total of 32 circR-
NAs were reported, and excluding duplicate circRNAs, a total of 30 circRNAs were reported, and these circRNAs 
led to resistance to 11 drugs through 28 pathways or associated proteins/axes. (Table 1).

Findings of prognosis analysis. Nine circRNAs were used for meta-analysis. Seven circRNAs were 
upregulated, and two were downregulated (Table 2 demonstrates details of prognostic research). The Newcastle–
Ottawa Scale (NOS) was used to evaluate the quality of the included research (Table 3). The results showed that 
they all qualified for meta-analysis. The results of the meta-analysis showed that both the upregulated and down-
regulated groups were at risk for poor prognosis (HR = 1.37, 95% Cl: 0.80–2.36, I2 = 63.7%). There was significant 
heterogeneity between the studies. Therefore, we classified all circRNAs into "enhanced resistance"-related cir-
cRNAs and "attenuated resistance"-related circRNAs according to the expression of circRNAs. Subgroup analysis 
was performed according to the upregulation or downregulation of circRNAs. Interestingly, the heterogeneity 
was significantly reduced after performing a subgroup analysis (Fig. 2), which suggested that circRNAs could be 
used to determine the prognosis of BC patients (upregulated circRNAs (HR = 2.24, 95% Cl: 1.34–3.75, I2 = 0%) 

Table 1.  Genetic pathways, proteins or axes involved in BC drug resistance.

Downregulated Upregulated

Drug CircRNA
Pathway or associated protein/
axis Drug CircRNA Pathway or associated protein/axis

Doxorubicin
circ-LARP4 miR-761/p53, p21

5‐FU
circ-CDR1as CCNE1

circ-KDM4C miR-548p/PBLD axis circ-FBXL5 HMGA2

Lapatinib circ-MMP11 miR-153-3p/Anillin axis

Adriamycin

circ-0006528 MAPK and PI3K/AKT

circ-0001667 NCOA3

circ-0006528 miR-1236-3p/CHD4 axis

circ-0085495 miR-873-5p/integrinβ1 axis

circ-0044556 miR-145/NRAS axis

Doxorubicin
circ-UBE2D2 miR-512-3p/CDCA3 axis

circ-0092276 miR-348/ATG7 axis

Paclitaxel

circ-RNF111 E2F3

circ-ABCB10 Let-7a-5p/DUSP7 axis

circ-WAC WWP1, PI3K/AKT

circ-HIPK3 HK2

circ-AMOTL1 AKT

circ-0006528 miR-1299/CDK8 axis

Cisplatin
circ-CDR1as miR-7/REGγ

circUBAP2 miR-300/ASF1B axis chaperone/PI3K/AKT/
mTOR axis

Monastrol circ-MTO1 TRAF4/Eg5 axis

Tamoxifen

circ-0025202 miR-197-3p/HIPK3 axis

circTRIM28 miR-409-3p/HMGA2 axis

circMET miR-204/AHR

circ-0097922 miR-876-3p/ACTN4 axis

circ-0025202 miR-182-5p/FOXO3a Axis

Docetaxel circ-EPHA3.1/circ-EPHA3.2/circ-ABCB1 PI3K-AKT/AGE-RAGE

Trastuzumab
circCDYL2 HER2

circ-0001598 miR-1184/PD-L1

Oxaliplatin circFAT1 miR-525-5p/SKA1 axis
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and downregulated circRNAs (HR = 0.61, 95% Cl: 0.45–0.83, I2 = 0%) were associated with poor BC prognosis.). 
All four circRNAs in the upregulated group were highly expressed in tumor tissues, and they affected gene path-
ways that promoted drug resistance in breast cancer cells, while the two circRNAs in the downregulated group 
were expressed at low levels in tumor tissues and affected gene pathways that inhibited proliferation, metastasis 
and drug resistance in breast cancer cells.

Sensitivity analysis and publication bias. We also performed a sensitivity analysis for OS. No signifi-
cant changes were observed compared to previous results after each study was removed (Fig. 3). In addition, 
we used funnel plots to assess publication bias. Each dot represents one study. Nine studies fell within the 95% 
confidence interval. The reason for the poor symmetry may be due to the inconsistent effect of circRNAs in 
the upregulated and downregulated groups (Fig. 4). Finally, we performed Begg’s test, which showed P = 0.004 
(< 0.05), and Egger’s test suggested publication bias, which may be because far more circRNAs were upregulated 
than downregulated among the nine circRNAs (Fig. 5).

Discussion
Studies have shown that abnormal circRNA expression is important in tumor cell proliferation, metastasis and 
cancer recurrence in BC  patients10–12,20–32,35–39. Many studies have also confirmed that several specific circRNAs 
are consistently expressed in human tissues and blood. Therefore, circRNAs have the chance to be excellent 
biomarkers for BC diagnosis, prognosis and drug resistance  assessment3,33,48,49.

Some studies have concentrated on the effects of circRNAs on chemoresistance in breast,  cervical50, 
 colorectal51,52,  gastric53,54,  lung55,  oral56,  ovarian57,  pancreatic58 and  prostate59 cancers. In this study, we collected 
relevant articles before 25 October 2021 and conducted a systematic review and meta-analysis, hoping to find 
clues about the value of circRNAs as biomarkers for BC prognosis. In the systematic review, studies incorporating 
30 circRNAs, including 28 upregulated circRNAs and two downregulated circRNAs, were included. Most stud-
ies investigated only one circRNA, while only one study focused on more than one  circRNA12. Our systematic 

Table 2.  Basic features of studies for prognostic analysis.

Author Year Country CircRNA Cancer type High Low Methods Regulation
follow up 
(month) HR CI

Wu et al.22 2021 China circ-MMP11 BC 27 21 RT‒qPCR Upregulated 60 2.43 0.79–7.49

Dou et al.23 2020 China circ-UBE2D2 BC 33 33 RT‒qPCR Upregulated 60 2.39 0.9–6.32

Wang et al.26 2021 China circ-WAC BC 45 45 RT‒qPCR Upregulated 80 2.44 0.57–10.5

Hao et al.10 2021 China circ-0006528 BC 32 31 RT‒qPCR Upregulated 60 2.46 0.47–12.5

Zhang et al.20 2020 China circ-LARP4 BC 142 141 RT‒qPCR Downregu-
lated 60 0.51 0.22–1.15

Liang et al.32 2019 China circ-KDM4C BC 474 587 RT‒qPCR Downregu-
lated 150 0.65 0.41–1.03

Yang et al.40 2022 China circTRIM28 BC 32 32 RT‒qPCR Upregulated 60 1.84 0.15–5.18

Ling et al.43 2022 China circMET BC 64 63 RT‒qPCR Upregulated 120 1.74 0.35–8.67

Huang et al.47 2022 China circ-0025202 BC 50 50 RT‒qPCR Upregulated 80 2.34 0.57–9.51

Table 3.  Quality assessment of included studies using the Newcastle Ottawa Scale checklist. ① Adequacy of 
case definition ② Number of cases ③ Representativeness of the cases ④ Ascertainment of relevant cancers 
⑤ Ascertainment of detection method ⑥ CircRNA expression ⑦ Assessment of outcome ⑧ Adequate 
follow-up.

Author/Year ① ② ③ ④ ⑤ ⑥ ⑥ ⑧ Total points

Wu et al.  202122 1 1 1 1 1 1 1 0 7

Dou et al.  202123 1 1 1 1 1 1 1 0 7

Zhang et al. 
 201926 1 1 1 1 1 1 1 1 8

Wang et al. 
 202110 1 1 1 1 1 1 1 0 7

Liang 
et al.201920 1 1 1 1 1 1 1 1 8

Hao et al.  202132 1 1 1 1 1 1 1 0 7

Yang et al.202240 1 1 1 1 1 1 1 1 8

Ling et al.202243 1 1 1 1 1 1 1 1 8

Huang 
et al.202247 1 1 1 1 1 1 1 1 8
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review focused on pharmacological modulation pathways, including MAPK, PI3K/AKT, AKT and AGE-RAGE, 
in BC chemotherapy resistance and sensitivity.

Several studies have shown that target genes of upregulated circ-00006528 play a role in the MAPK and PI3K/
AKT gene pathways. Further validation showed that the expression of circ-0006528 showed a negative correlation 

Figure 2.  Pooled HRs for the overall survival of patients in the included studies.

Figure 3.  Sensitivity analysis for the involved studies.
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with miR-7-5p in adriamycin resistance. Another study showed a significant increase in both phosphorylated 
and total AKT protein in some circ-AMOTL1-overexpressing cells, suggesting that AKT might be a key factor in 
adjusting the resistance effect. Thus, circ-AMOTL1 affected the expression of proapoptotic (BAX and BAK) and 
antiapoptotic (BCL-2) factors associated with AKT59. This suggested that circ-AMOTL1 might be important in 
paclitaxel resistance in BC cells by affecting the AKT pathway, promoting antiapoptotic proteins and inhibiting 
proapoptotic proteins. In addition, data from a study showed that circ-ABCB1, circ-cEPHA3.1 and circ-EPHA3.2 
might sponge several significantly expressed miRNAs related to drug resistance through the PI3K-AKT and AGE 
signaling pathways and lead to doxorubicin  resistance59. They also found that the expression of RNA molecules 

Figure 4.  Funnel plot of publication bias related to the association between the expression of circRNAs and the 
prognosis of patients with BC.

Figure 5.  Egger’s test for publication bias.
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transcribed from this region might be due to DNA amplification in doxorubicin-treated cells. These results are 
beneficial for subsequent research on the mechanisms of drug resistance in BC.

Nine circRNAs related to prognosis were included in the meta-analysis and were critical to the development 
of drug resistance. Among them, seven were upregulated (circ-MMP11, circ-WAC, circ-UBE2D2, circ-0006528, 
circTRIM28, circCDYL2, circ-0001598), and two were downregulated (circ-LARP4, circ-KDM4C). Certain 
cancer-related genes could increase susceptibility to breast cancer, leading to poorer survival rates. In our analy-
sis, the results showed that the overall HR (95% CI) of upregulated circRNAs was 2.24 (1.34, 3.75), and that of 
downregulated circRNAs was 0.61 (0.45, 0.83), suggesting that both upregulated circRNAs and downregulated 
circRNAs could predict poorer cancer prognosis. It is worth noting that if circRNAs could be used as prognostic 
biomarkers of breast cancer, their clinical application prospects would be very broad. Other typical clinical indi-
cators of tumor status are susceptible to change, but the expression of circRNAs is  stable60. Steps should be taken 
to comprehensively assess the role of circRNAs as biomarkers for BC prognosis and drug-resistance assessment.

Some shortcomings must be acknowledged. First, in our study, all of the samples we collected were from 
Asian populations. Samples collected from a single source may not be able to distinguish between regional and 
racial differences and ethnic differences. Second, the method used to detect circRNAs was RT‒PCR, except for 
one study that used raw sequencing reads. The relative homogeneity of the methods used to detect circRNAs 
may affect the value of the assay results. Third, the meta-analysis involved a relatively small sample size and was 
limited by the number of available articles. In addition, the number of studies included in the meta-analysis was 
so low that the results of publication bias using funnel plots may not be meaningful.

Overall, circRNAs, as stably expressed molecules, are expected to be biomarkers for breast cancer prognosis. 
The relationship between circRNA expression and breast cancer features needs to be further investigated, and 
the practical value of circRNAs in evaluation BC drug resistance and prognosis needs to be further explored.

Conclusion
Currently available evidence suggests that circRNAs might be considered potential prognostic biomarkers for 
BC patients and that there is a significant association between the expression of circRNAs and the prognosis of 
breast cancer patients. We anticipate that our findings might contribute to BC treatment.

Data availability
Data are available in a public, open access repository. The corresponding author of this paper can provide relevant 
information supporting the conclusions of this study if needed.
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