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Development 
of a machine‑learning algorithm 
to predict in‑hospital cardiac 
arrest for emergency department 
patients using a nationwide 
database
Ji Hoon Kim 1,5, Arom Choi 1,5, Min Joung Kim 1*, Heejung Hyun 2, Sunhee Kim 3 & 
Hyuk‑Jae Chang 4

In this retrospective observational study, we aimed to develop a machine-learning model using data 
obtained at the prehospital stage to predict in-hospital cardiac arrest in the emergency department 
(ED) of patients transferred via emergency medical services. The dataset was constructed by attaching 
the prehospital information from the National Fire Agency and hospital factors to data from the 
National Emergency Department Information System. Machine-learning models were developed 
using patient variables, with and without hospital factors. We validated model performance and used 
the SHapley Additive exPlanation model interpretation. In-hospital cardiac arrest occurred in 5431 of 
the 1,350,693 patients (0.4%). The extreme gradient boosting model showed the best performance 
with area under receiver operating curve of 0.9267 when incorporating the hospital factor. Oxygen 
supply, age, oxygen saturation, systolic blood pressure, the number of ED beds, ED occupancy, and 
pulse rate were the most influential variables, in that order. ED occupancy and in-hospital cardiac 
arrest occurrence were positively correlated, and the impact of ED occupancy appeared greater in 
small hospitals. The machine-learning predictive model using the integrated information acquired in 
the prehospital stage effectively predicted in-hospital cardiac arrest in the ED and can contribute to 
the efficient operation of emergency medical systems.
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PPV	� Positive predictive value
SHAP	� SHapley Additive exPlanation
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Critically ill patients usually arrive at the emergency department (ED) through emergency medical services 
(EMS). Paramedics must quickly recognize the patient’s condition, and transport them to the optimal hospital, 
while providing appropriate first aid. Several studies have been conducted to develop a prehospital prediction tool 
for differentiating general patients from patients who are critically ill or have specific conditions, such as myocar-
dial infarction or stroke, that require immediate treatment1–4. Since the ED and EMS are increasingly overloaded, 
and ambulance diversion is frequent, it is important for paramedics to accurately select and transport critically ill 
patients to the appropriate hospital to save their lives and support the efficient operation of medical facilities5–7.

With the growing demand for high-quality healthcare, embedding artificial intelligence (AI) into healthcare 
systems is a solution which promises to improve productivity and efficiency8,9. Since in-hospital cardiac arrest 
(IHCA) has a low survival rate, and is a major public healthcare burden that causes intensive consumption of 
medical resources, it is valuable to predict and minimize the occurrence of IHCA10,11. Recently, several studies 
that used AI to predict IHCA through patient clinical features have reported that AI-based models are superior 
to conventional rule-based tools12–14. However, to our knowledge, no studies have been conducted to predict 
the occurrence of IHCA at the prehospital stage. Because it can be challenging to assess information and make 
accurate and objective decisions in chaotic prehospital scenes, automated AI predictive models can be used 
to help paramedics make optimal decisions. In addition, the quality of care in the ED is adversely affected by 
crowding and overwhelmed medical staff. Previous studies have also reported that ED crowding increases the 
incidence of IHCA10,15. Therefore, the patient’s clinical features and hospital conditions should be considered to 
predict IHCA occurrence. AI can be an effective tool to play an auxiliary role in decision-making by integrating 
such a wide range of information.

In this study, we developed a machine-learning (ML) model to predict the occurrence of IHCA in the ED of 
patients arriving via EMS. Our research hypothesis was that an ML model that includes both patient clinical data 
and hospital factors could effectively predict the occurrence of IHCA at the prehospital stage.

Methods
Study design and setting.  We conducted a retrospective, observational cohort study using a nationwide 
dataset that matched the National Fire Agency (NFA) data to the National Emergency Department Information 
System (NEDIS) in Korea. The Korean NFA is responsible for responding to fire, disaster, rescue, and EMS, fol-
lowing the Framework Act on Fire Services. The NFA has service headquarters in 18 cities and provinces and 
operates 210 fire stations. When paramedics transfer an emergency patient from the scene to the ED, they fill out 
a transfer record using a nationwide unified form and submit it to the NFA. The transfer record is written and 
transmitted in electronic form through a device owned by paramedics and managed by the NFA. Since 2013, 
the transfer record by paramedics has been amended four times by the Expert Quality Management Committee. 
This committee conducts audit and quality control of the NFA data registry and operates a data-based prehos-
pital quality management program.

Hospitals must transmit emergency patient information via the NEDIS, a computerized system that collects 
data, such as clinical information and treatment results, of patients visiting ED nationwide. This system is man-
aged by the National Emergency Medical Center (NEMC). Hospitals are also obligated to periodically transmit 
data related to ED crowding, such as the number of beds and occupants. This crowding information is disclosed 
online in real time for public purposes. Our study data were constructed by attaching the NFA’s prehospital infor-
mation and ED crowding status at the time of patient arrival to the data of each patient registered in the NEDIS.

This study included patients transported to the ED by EMS and had information transmitted to the NEDIS 
from September 2017 to December 2018. Children younger than 18 years of age, and those who experienced 
cardiac arrest before ED arrival, were excluded from the study. Data were provided anonymously by the NFA 
and NEMC, and the work was performed in a secure manner on a computer that only the researchers in this 
study had access to. The institutional review boards of Severance Hospital permitted us to proceed with the 
study, including an exemption from obtaining the patient’s informed consent (4-2021-0580). This research was 
conducted in accordance with the principles in the Declaration of Helsinki.

Data processing.  The NEMC recommends that crowding data be automatically transmitted at least once 
every 15 min or at least once every hour for manual transmissions. We obtained NEDIS data for our sample, 
including the patients’ age and sex, arrival time and treatment codes at the ED. The number of hospitals, beds, 
and patients occupying the ED at arrival was added to the matched patient data. We selected the crowding data 
transmitted closest to the patient’s arrival at the ED.

The NFA data included the following variables: patient’s age, sex, category of non-medical problems (e.g. 
hanging, trauma, or poisoning), medical history, symptoms, level of consciousness, vital signs (blood pressure, 
pulse rate, body temperature, and oxygen saturation), blood sugar level, emergency care provided during trans-
port (cardiopulmonary resuscitation (CPR), laryngeal mask airway, oxygen administration, and intravenous 
infusion of fluid), phone call time, ED arrival time, area of occurrence, and the name of the hospital to which 
the patient was transferred. Hypo- and hyperglycemia were defined as blood sugar levels below 80 mg/dL and 
above 250 mg/dL, respectively.
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We matched the NFA data to the NEDIS data based on patient age, sex and arrival time. We accepted a 10-min 
difference for the arrival time of the two datasets. If two or more patients in the NFA data were matched for one 
patient in the NEDIS database, the records were matched to the hospital name.

Since the NEDIS data contained information on the treatment performed in the ED, we used it to deter-
mine the occurrence of sudden IHCA requiring resuscitation. The electronic data interchange code M1583-7, 
corresponding to CPR, was used to define the IHCA group. Patients were excluded if the NFA data indicated 
CPR before arrival at the hospital. ED occupancy rate was used as an indicator of crowding. We calculated the 
occupancy rate by dividing the number of occupants by the number of beds16. Although there are no globally 
agreed representative indicator for measuring ED crowding, the occupancy rate is one of the most promising 
methods for quantification17.

Model development.  The complete dataset was randomly split into training and test sets in an 8:2 ratio. 
We used the training set to develop the prediction model for IHCA. Two datasets were generated: one containing 
all variables, including hospital factors, and a second model containing only patient factors (excluding hospital 
factors). We trained three ML models: logistic regression (LR), extreme gradient boosting (XGB, XGBoost), 
and multilayer perceptron network (MLP). The training set was split into 10 folds. We performed grid-search 
for hyperparameter tuning and the details of search space and selected setting are in Supplementary Table 1. 
In order to resolve the data imbalance problem, we applied naïve random sampling in training folds where the 
validation fold and test set were untouched. First, we oversampled IHCA positive samples to raise the class ratio 
by 10%. Next, we under-sampled negative samples to change the class ratio by 30%. After random sampling, the 
size of training folds was shrunk to 30% of the original total training folds. The area under the receiver operat-
ing characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) were calculated in the 
test fold in every epoch. We used the highest AUROC score among every ten iterations to select the single best 
model from LR, XGB, and MLP.

Model validation.  The performances of the LR, XGB and MLP models with and without hospital factors 
were validated in the test set. Model performance was estimated using AUROC, AUPRC, sensitivity, specificity, 
accuracy, positive predictive value (PPV), and negative predictive value (NPV) with 95% confidence intervals. 
We compared the AUROC values of different model algorithms, and selected the final model with the highest 
AUROC value.

In order to interpret the final predictive model, we adopted the SHapley Additive exPlanation (SHAP) pro-
posed by Lundberg and Lee in 201718. SHAP can explain any ML model’s output by calculating the impact of 
each feature on model prediction based on game theory. SHAP allows us to understand which feature is the most 
important to model prediction, and the positive or negative direction of the feature impact. Applying SHAP to 
our developed model, we used the DeepExplainer module, which enables the fast approximation of SHAP val-
ues in the deep learning model, and the TreeExplainer module, which is an optimized SHAP algorithm for tree 
ensemble methods such as XGB19. First, we ranked the feature importance by SHAP values. We calculated the 
AUROC score in the test set, starting from feature values all set by zero-value, sequentially adding one feature to 
replace feature values from zero to their own data. We confirmed the increasing trend of AUROC when variables 
were added one by one in the order of the most influential variables.

Considering that the patient characteristics and frequency of IHCA could differ depending on the size of the 
hospital, additional validation was carried out in four subgroups defined by the quartile of the number of hospital 
beds. We confirmed the SHAP value of ED crowding according to hospital size by visualizing the dependence 
plot to evaluate the impact of the hospital factors.

Statistical analysis.  Continuous variables were presented as the mean and standard deviation and com-
pared between groups using Student’s t test. Nominal variables are expressed in frequency and fraction and 
analyzed using the Chi-square test. We developed models using three ML methods, LR, XGB and MLP, and com-
pared the AUROC of each model using the DeLong test to determine whether the difference between models 
was statistically significant20. Meanwhile, the significance of the AUPRC difference was calculated by a bootstrap 
of 1000 iterations. Estimations of confidence intervals by single model prediction were obtained from Hanley 
JA for AUROC, Boyd for AUPRC, Wilson score interval for sensitivity, specificity, and accuracy, and Mercaldo 
ND for PPV and NPV21–24. The optimal cut-off value was calculated using Jouden’s index. We calibrated the final 
model by platt scaling and isotonic regression and checked the Brier score. All statistical analyses were imple-
mented and performed in Python with the SciPy and scikit-learn packages, and p-values < 0.05 were considered 
statistically significant.

Results
We identified 1,530,160 patients from the NEDIS who arrived nationwide at the ED via EMS during the study 
period (Fig. 1). Within that group, 23,504 patients did not match the NFA data. Among 1,506,656 patients who 
succeeded in matching, we excluded 120,465 patients under 18, 27,560 patients with out-of-hospital cardiac 
arrest, and 7938 patients with missing data. Our final data set consisted of 1,350,693 eligible patients. The training 
set had 1,080,554 individuals, and the test set consisted of 270,139 individuals. The clinical characteristics of the 
patients in the training and test sets were similar and are presented in Supplementary Table 2. IHCA occurred 
in 5431 patients (0.4%). Patients in the IHCA group were significantly older (70.13 ± 15.50 vs. 57.98 ± 19.09, 
p < 0.001) and had a lower proportion of men than those in the non-IHCA group (Table 1). The IHCA group had 
a higher mean number of hospital beds (761.65 ± 462.17 vs. 621.97 ± 441.80, p < 0.001) and higher ED occupancy 
(0.63 ± 0.51 vs. 0.45 ± 0.36, p < 0.001).
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Model validation.  The performances of the models were evaluated using a test set, and ML models with a 
combination of naïve random over/under-sampling did not show better performance (Supplementary Table 3). 
Figure 2 shows the ROC and PR curves of models predicting the occurrence of IHCA developed using LR, XGB, 
and MLP. The AUROC of all three ML models showed high performance with 0.9 or higher, and XGB, including 
the hospital factor, was the highest at 0.9267. In AUPRC, the value of the XGB model, including all variables, was 
0.1319, the highest compared with LR and MLP. The comparative analysis of AUROC and AUPRC between the 
models are shown in Supplementary Table 4. We used logistic regression and isotonic regression for probability 
calibration and the calibrators were fit with validation fold. We selected the ML model of the XGB method, 
including all variables, as the final model. The Brier score of the final XGB model was 0.0037 and the calibration 
plot is shown in Supplementary Fig. 1.

The performance of the final model was verified using four subgroups of the test set. The test set was divided 
into quartiles (Q1–Q4) bordering 296, 568, and 818 of the number of hospital beds. From Q1 to Q4, there were 
more patients with dyspnea, chest pain, and mental change, and more emergency care was performed at the 
site. The incidence of IHCA in the ED was also higher (Supplementary Table 5). The AUROC of the model’s 
prediction of IHCA occurrence was evaluated to be 0.9 or higher in all subgroups, and the AUPRC increased 
from Q1 to Q4 and was the highest at 0.1532 in Q4 (Supplementary Fig. 2). Supplementary Table 6 presents the 
performance analysis results of the subgroups.

Model interpretation.  The parsimony plot in Fig. 3 shows the trend of increasing the AUROC of the final 
model when variables were added one by one in the top-ranking order. The largest increase in model perfor-
mance was observed from the first to the eighth variables, after which marginal gains in performance were added 
as the remaining variables were input. The most influential variable was oxygen supply, followed by age, oxygen 
saturation, and systolic blood pressure. The number of ED beds and ED occupancy were the fifth and sixth most 
influential variables in the model performance, respectively.

Figure 4 shows the SHAP of the variables when the model was applied to the test set. The top ten variables 
with the most influence on the model are shown on the y-axis in rank order. As shown in the parsimony plot, 
oxygen supply, age, oxygen saturation, and systolic blood pressure were the top four most influential variables in 
the test set, which was also confirmed in the subgroups. ED occupancy was selected as the 5th or 6th most influ-
ential variable, and ED occupancy and IHCA occurrence were positively correlated in large and small hospitals. 
Figure 5 shows a dependence plot of the SHAP value of ED occupancy according to the number of hospital beds. 
Compared with hospitals with many beds, the SHAP value of ED occupancy tends to be higher in small hospitals.

Discussion
In this study, we found that the ML-based predictive model using integrated information acquired in the pre-
hospital stage effectively predicted the occurrence of IHCA in the ED. We also confirmed that hospital factors 
such as ED crowding, were the main factors in the prediction model. The application of ML for decision-making 
is gradually expanding in the medical field, including during the prehospital stage25,26. However, while the data 
generated during the prehospital stage are not yet fully utilized in ML research, it is significant that we developed 

Figure 1.   Included patients. ED emergency department, EMS emergency medical service, NEDIS National 
Emergency Department Information System.
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Variables Total (n = 1,350,693) IHCA (n = 5431)
Non-IHCA 
(n = 1,345,262) p-value

Male gender 636,175 (47.10) 2088 (38.45) 634,087 (47.13)  < 0.001

Age 58.03 ± 19.09 70.13 ± 15.50 57.98 ± 19.09  < 0.001

Non-medical problem 465,531 (34.47) 742 (13.66) 464,789 (34.55)  < 0.001

Medical history

Hypertension 368,997 (27.32) 1683 (30.99) 367,314.0 (27.30)  < 0.001

Diabetes mellitus 213,650 (15.82) 1165 (21.45) 212,485.0 (15.80)  < 0.001

Heart disease 100,119 (7.41) 711 (13.09) 99,408.0 (7.39)  < 0.001

Brain disease 71,871 (5.32) 484 (8.91) 71,387.0 (5.31)  < 0.001

Cancer 70,343 (5.21) 913 (16.81) 69,430.0 (5.16)  < 0.001

Lung disease 29,485 (2.18) 324 (5.97) 29,161.0 (2.17)  < 0.001

Renal failure 20,633 (1.53) 203 (3.74) 20,430.0 (1.52)  < 0.001

Liver cirrhosis 16,125 (1.19) 241 (4.44) 15,884.0 (1.18)  < 0.001

Hepatitis 3075 (0.23) 18 (0.33) 3057.0 (0.23) 0.108

Tuberculosis 2138 (0.16) 18 (0.33) 2120.0 (0.16) 0.001

Allergy 1910 (0.14) 4 (0.07) 1906.0 (0.14) 0.183

Other disease 303,485 (22.47) 2038 (37.53) 301,447.0 (22.41)  < 0.001

Symptom

Other pain 395,188 (29.26) 592 (10.90) 394,596 (29.33)  < 0.001

Nausea and vomiting 174,088 (12.89) 453 (8.34) 173,635 (12.91)  < 0.001

Abdominal pain 169,553 (12.55) 436 (8.03) 169,117 (12.57)  < 0.001

General weakness 163,428 (12.10) 1053 (19.39) 162,375 (12.07)  < 0.001

Laceration 106,514 (7.89) 226 (4.16) 106,288 (7.90)  < 0.001

Dizziness 93,868 (6.95) 119 (2.19) 93,749 (6.97)  < 0.001

Flank pain 91,052 (6.74) 111 (2.04) 90,941 (6.76)  < 0.001

Headache 81,742 (6.05) 75 (1.38) 81,667 (6.07)  < 0.001

Abrasion 69,210 (5.12) 151 (2.78) 69,059 (5.13)  < 0.001

Fever 62,188 (4.60) 254 (4.68) 61,934 (4.60) 0.798

Bleeding 55,438 (4.10) 294 (5.41) 55,144 (4.10)  < 0.001

Dyspnea 55,096 (4.08) 1399 (25.76) 53,697 (3.99)  < 0.001

Contusion 48,928 (3.62) 66 (1.22) 48,862 (3.63)  < 0.001

Mental change 48,203 (3.57) 1681 (30.95) 46,522 (3.46)  < 0.001

Chest pain 42,247 (3.13) 416 (7.66) 41,831 (3.11)  < 0.001

diarrhea 38,918 (2.88) 108 (1.99) 38,810 (2.88)  < 0.001

Syncope 17,843 (1.32) 77 (1.42) 17,766 (1.32) 0.531

Fracture 17,172 (1.27) 116 (2.14) 17,056 (1.27)  < 0.001

Side weakness 16,634 (1.23) 37 (0.68) 16,597 (1.23)  < 0.001

Epistaxis 16,010 (1.19) 71 (1.31) 15,939 (1.18) 0.405

Seizure 13,768 (1.02) 53 (0.98) 13,715 (1.02) 0.749

Voiding difficulty 10,647 (0.79) 21 (0.39) 10,626 (0.79)  < 0.001

Sprain 10,620 (0.79) 5 (0.09) 10,615 (0.79)  < 0.001

Cough 9546 (0.71) 26 (0.48) 9520 (0.71) 0.044

Hematemesis 8927 (0.66) 261 (4.81) 8666 (0.64)  < 0.001

Psychosis 6629 (0.49) 7 (0.13) 6622 (0.49)  < 0.001

Tachycardia 6408 (0.47) 15 (0.28) 6393 (0.48) 0.033

Dislocation 5256 (0.39) 5 (0.09) 5251 (0.39)  < 0.001

Constipation 4731 (0.35) 7 (0.13) 4724 (0.35) 0.006

Convulsion 4149 (0.31) 17 (0.31) 4132 (0.31) 0.938

Burn 3143 (0.23) 3 (0.06) 3140 (0.23) 0.007

Hypothermia 2359 (0.17) 43 (0.79) 2316 (0.17)  < 0.001

Hemoptysis 2310 (0.17) 28 (0.52) 2282 (0.17)  < 0.001

Extremities weakness 2043 (0.15) 8 (0.15) 2035 (0.15) 0.940

Vaginal bleeding 1970 (0.15) 2 (0.04) 1968 (0.15) 0.035

Other foreign body 1489 (0.11) 4 (0.07) 1485 (0.11) 0.416

Airway foreign body 1297 (0.10) 27 (0.50) 1270 (0.09)  < 0.001

Compartment 921 (0.07) 5 (0.09) 916 (0.07) 0.499

Amputation 853 (0.06) 2 (0.04) 851 (0.06) 0.439

Labor pain 395 (0.03) 2 (0.04) 393 (0.03) 0.743

Others 246,151 (18.22) 916 (16.87) 245,235 (18.23) 0.009

Continued
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Variables Total (n = 1,350,693) IHCA (n = 5431)
Non-IHCA 
(n = 1,345,262) p-value

Mental status

Alert 1,256,230 (93.01) 2905 (53.49) 1,253,325 (93.17)  < 0.001

Verbal 50,435 (3.73) 739 (13.61) 49,696 (3.69)  < 0.001

Pain 36,699 (2.72) 1091 (20.09) 35,608 (2.65)  < 0.001

Unresponsive 7306 (0.54) 694 (12.78) 6612 (0.49)  < 0.001

Vital sign

Systolic blood pressure 132.01 ± 24.50 112.34 ± 34.91 132.08 ± 24.42  < 0.001

Diastolic blood pressure 82.39 ± 16.12 71.35 ± 23.39 82.43 ± 16.07  < 0.001

Pulse rate 85.62 ± 17.76 94.10 ± 28.74 85.59 ± 17.69  < 0.001

Respiratory rate 17.85 ± 4.28 19.69 ± 6.31 17.84 ± 4.27  < 0.001

Body temperature 37.82 ± 8.37 37.69 ± 8.61 37.82 ± 8.37 0.252

Oxygen saturation 97.02 ± 5.33 86.48 ± 13.64 97.06 ± 5.23  < 0.001

Blood sugar
Hypoglycemia 3751 (0.28) 37 (0.68) 3714 (0.28)  < 0.001

Hyperglycemia 4188 (0.31) 54 (0.99) 4134 (0.31)  < 0.001

Emergency care

Laryngeal mask airway 675 (0.05) 80 (1.47) 595 (0.04)  < 0.001

Oxygen administration 183,903 (13.62) 3913 (72.05) 179,990 (13.38)  < 0.001

Intravenous fluid infusion 29,345 (2.17) 711 (13.09) 28,634 (2.13)  < 0.001

Day of arrival

Monday 199,311 (14.76) 866 (15.95) 198,445 (14.75) 0.013

Tuesday 187,454 (13.88) 756 (13.92) 186,698 (13.88) 0.929

Wednesday 187,152 (13.86) 725 (13.35) 186,427 (13.86) 0.279

Thursday 187,108 (13.85) 718 (13.22) 186,390 (13.86) 0.177

Friday 192,685 (14.27) 767 (14.12) 191,918 (14.27) 0.763

Saturday 199,923 (14.80) 807 (14.86) 199,116 (14.80) 0.905

Sunday 197,060 (14.59) 792 (14.58) 196,268 (14.59) 0.989

Hour of arrival

0 54,370 (4.03) 172 (3.17) 54,198 (4.03) 0.001

1 47,824 (3.54) 161 (2.96) 47,663 (3.54) 0.021

2 41,447 (3.07) 146 (2.69) 41,301 (3.07) 0.104

3 36,808 (2.73) 117 (2.15) 36,691 (2.73) 0.010

4 33,296 (2.47) 136 (2.50) 33,160 (2.46) 0.853

5 33,841 (2.51) 161 (2.96) 33,680 (2.50) 0.030

6 38,036 (2.82) 202 (3.72) 37,834 (2.81)  < 0.001

7 47,209 (3.50) 244 (4.49) 46,965 (3.49)  < 0.001

8 60,012 (4.44) 291 (5.36) 59,721 (4.44) 0.001

9 72,559 (5.37) 321 (5.91) 72,238 (5.37) 0.078

10 72,488 (5.37) 322 (5.93) 72,166 (5.36) 0.066

11 66,660 (4.94) 286 (5.27) 66,374 (4.93) 0.259

12 62,318 (4.61) 276 (5.08) 62,042 (4.61) 0.099

13 61,435 (4.55) 238 (4.38) 61,197 (4.55) 0.556

14 61,921 (4.58) 261 (4.81) 61,660 (4.58) 0.435

15 61,195 (4.53) 225 (4.14) 60,970 (4.53) 0.169

16 60,570 (4.48) 234 (4.31) 60,336 (4.49) 0.531

17 59,906 (4.44) 268 (4.93) 59,638 (4.43) 0.073

18 63,341 (4.69) 253 (4.66) 63,088 (4.69) 0.914

19 67,091 (4.97) 268 (4.93) 66,823 (4.97) 0.912

20 63,486 (4.70) 239 (4.40) 63,247 (4.70) 0.296

21 62,923 (4.66) 232 (4.27) 62,691 (4.66) 0.175

22 62,635 (4.64) 202 (3.72) 62,433 (4.64) 0.001

23 59,322 (4.39) 176 (3.24) 59,146 (4.40)  < 0.001

Time from call to ED 
arrival 27.19 ± 12.87 28.69 ± 13.24 27.18 ± 12.87  < 0.001

Continued
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Variables Total (n = 1,350,693) IHCA (n = 5431)
Non-IHCA 
(n = 1,345,262) p-value

Area

Gyeonggi 314,987 (23.32) 1329 (24.47) 313,658 (23.32) 0.045

Seoul 293,835 (21.75) 1064 (19.59) 292,771 (21.76)  < 0.001

Inchoen 91,070 (6.74) 281 (5.17) 90,789 (6.75)  < 0.001

Busan 80,320 (5.95) 407 (7.49) 79,913 (5.94)  < 0.001

Gyeongbuk 71,509 (5.29) 226 (4.16) 71,283 (5.30)  < 0.001

Chungnam 59,358 (4.39) 170 (3.13) 59,188 (4.40)  < 0.001

Jeonbuk 53,817 (3.98) 265 (4.88) 53,552 (3.98)  < 0.001

Daegu 52,475 (3.89) 470 (8.65) 52,005 (3.87)  < 0.001

Gangwon 52,084 (3.86) 246 (4.53) 51,838 (3.85) 0.010

Jeonnam 49,521 (3.67) 129 (2.38) 49,392 (3.67)  < 0.001

Daejeon 49,496 (3.66) 152 (2.80) 49,344 (3.67)  < 0.001

Gyeongnam 47,450 (3.51) 242 (4.46) 47,208 (3.51)  < 0.001

Chungbuk 46,594 (3.45) 159 (2.93) 46,435 (3.45) 0.035

Gwangju 34,105 (2.53) 149 (2.74) 33,956 (2.52) 0.304

Jeju 32,995 (2.44) 86 (1.58) 32,909 (2.45)  < 0.001

Ulsan 21,077 (1.56) 56 (1.03) 21,021 (1.56) 0.002

Hospital factor

Hospital bed 622.53 ± 441.97 761.65 ± 462.17 621.97 ± 441.80  < 0.001

ED bed 26.73 ± 14.94 32.34 ± 15.25 26.71 ± 14.94  < 0.001

ED occupancy 0.45 ± 0.36 0.63 ± 0.51 0.45 ± 0.36  < 0.001

Table 1.   Comparison of patient characteristics between IHCA and non-IHCA group. IHCA in-hospital 
cardiac arrest, ED emergency department.

Figure 2.   Performance of machine-learning models to predict the occurrence of in-hospital cardiac arrest. ROC 
receiver operating characteristic, PR precision-recall, AUC​ area under the curve, LR logistic regression, XGB 
extreme gradient boosting, MLP multilayer perceptron network.
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Figure 3.   Parsimony plot of variables and predictive performance of model using extreme gradient boosting. 
AUROC area under the receiver operating characteristic curve, ED emergency department.

Figure 4.   SHapley Additive exPlanation of model predicting the occurrence of in-hospital cardiac arrest in the 
test set. SHAP SHapley Additive exPlanation, ED emergency department.
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a predictive model with integrated information based on the national dataset extracted from the standardized 
prehospital care system.

All three machine-learning algorithms trained in our study showed AUROC values above 0.9 for ED IHCA 
prediction. The disadvantage of the imbalanced dataset is that the AUROC is optimistic; therefore, all our models 
yielded high AUROC results, which were statistically significant but with minimal numerical differences. There-
fore, it is desirable to consider AUPRC along with AUROC for model performance. AUPRC was 0.13 in XGB, 
which was higher than that of LR and MLP. The AUPRC is a single number summary of the information in the 
precision-recall curve, and is a useful performance metric for imbalanced data in a setting focused on finding 
positive examples24,27. While the baseline of AUROC is always 0.5, AUPRC is a relative indicator because the 
baseline is the proportion of positive cases to the population24. In our dataset, which has 0.004 as the baseline 
AUPRC, an AUPRC value of 0.132 by the XGB algorithm reflects favorable performance in IHCA prediction. 
XGB, a tree ensemble model, has been reported to perform better in classification and regression problems 
involving tabular data organized in rows and columns, which are the most common data types in traditional 
statistical modeling28–30.

The disadvantage of our model was that the AUPRC and PPV were very low due to the imbalanced dataset. 
Therefore, when applied to the real world, the problem of false alarms is inevitable. However, we expect that our 
predictive model has high sensitivity and can be used for the purpose of screening patients with the potential to 
develop IHCA. IHCA in the ED is sudden and unpredictable, but considered to be preventable if early identifica-
tion of at-risk patients and adequate interventions are possible15,31. Therefore, a predictive model for screening 
patients at the emergency scene and transporting them to the optimal hospital will help reduce the incidence of 
IHCA and increase the survival of patients.

Machine learning-based predictive tools may raise doubts about their clinical applicability because they do 
not provide explanations supported by clinical relevance9,13. In this study, to overcome the black-box aspect of 
machine learning, we tried to present clinical validity by using an explanatory machine learning called SHAP. 
Based on the SHAP analysis, we found that clinical variables associated with the occurrence of IHCA (i.e. oxygen 
supply and saturation, vital signs, and mental status) in previous studies were in line with variables that had 
a high influence on the output of the present model32–34. In addition to these key factors, our model included 
more clinical data such as medical history, symptoms, first aid, and hospital factors, increasing the predictive 
power over traditional statistical methods. Making the optimal choice from such a wide range of information is 
an advantage of AI. However, these various data must be input in real time to apply AI models in an emergency 
scene, which cannot be done using a conventional manual system. Automated collection and rapid processing 
of real-time integrated data must be available to ensure the feasibility of predictive models.

Along with variables reflecting the patient’s medical condition, hospital factors such as the number of ED beds 
and ED occupancy also ranked highly as significant predictors of IHCA. These results were found consistently 
across all subgroups divided based on hospital size. A comparison of the patient characteristics of the subgroups 
showed that large hospitals have numerous ED beds, more crowded ED, and a higher frequency of IHCA. In the 
dependence plot analyzed to consider the relationship between these variables, we found a positive correlation 
between ED crowding and its impact on IHCA incidence in hospitals of all sizes. ED crowding is associated 
with a lack of resources for patients needing immediate resuscitation35. Previous studies have reported that ED 
crowding is associated with the occurrence of IHCA10,15. In the dependence plot, we could also confirm that ED 
crowding had a greater effect on the occurrence of IHCA in small hospitals than in large hospitals. In the case 
of ED crowding, small hospitals do not have sufficient medical resources available and are less able to cope with 

Figure 5.   Dependence plot of the degree of influence of ED occupancy on the occurrence of in-hospital 
cardiac arrest according to the number of hospital beds. SHAP SHapley Additive explanation, ED emergency 
department.
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crises than large hospitals. For this reason, paramedics usually decide to transfer seriously ill patients in urgent 
situations to a larger hospital, but the level of crowding is often not considered. Although the ED crowding status 
is shared online, it is not easy for paramedics to manually search for this information in emergencies. As ED 
crowding is a factor that affects the quality of care, it is necessary to establish a process that can be considered for 
the selection of an appropriate transfer hospital by quickly obtaining crowding information when transporting 
emergency patients. In addition, because ED crowding causes ambulance diversion, paramedics can use this 
process to reduce the retransfer of emergent patients36.

Our study had several limitations. First, our study included the potential bias of its retrospective design. 
Second, as this study was conducted in a single country, caution is needed when generalizing the study results. 
Finally, the present predictive model has not been validated in the real world. In particular, since our predictive 
model has suboptimal performance metrics due to imbalanced data, the usefulness of the developed model 
needs to be verified through additional prospective studies before being applied to prehospital care. Establishing 
a digital platform to deploy the ML algorithm developed in this study is necessary to demonstrate its usefulness 
prospectively.

Conclusions
The ML-based predictive model developed by integrating various data, including hospital factors and patients’ 
clinical information generated in the prehospital stage, effectively predicted the occurrence of IHCA. The AI 
decision support system will enable evidence-based judgment with increased utilization of the information 
available in emergencies, thereby providing the basis for the efficient use of emergency medical resources while 
ensuring patient safety.

Data availability
The data that support the findings of this study are available from the National Fire Agency (NFA) and the 
National Emergency Medical Center (NEMC) but restrictions apply to the availability of these data, which were 
used under license for the current study, and so are not publicly available. Data are however available from the 
authors upon reasonable request and with permission of NFA and NEMC.
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