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Intelligent prediction models 
based on machine learning for  CO2 
capture performance by graphene 
oxide‑based adsorbents
Farnoush Fathalian 1, Sepehr Aarabi 2, Ahad Ghaemi 2 & Alireza Hemmati 2*

Designing a model to connect  CO2 adsorption data with various adsorbents based on graphene oxide 
(GO) which is produced from various forms of solid biomass, can be a promising method to develop 
novel and efficient adsorbents for  CO2 adsorption application. In this work, the information of several 
GO‑based solid sorbents were extracted from 17 articles aimed to develop a machine learning based 
model for  CO2 adsorption capacity prediction. The extracted data including specific surface area, pore 
volume, temperature, and pressure were considered as input parameter, and  CO2 uptake capacity was 
defined as model response, alsoseven different models, including support vector machine, gradient 
boosting, random forest, artificial neural network (ANN) based on multilayer perceptron (MLP) and 
radial basis function (RBF), Extra trees regressor and extreme gradient boosting, were employed 
to estimate the  CO2 adsorption capacity. The best performance was obtained for ANN based on 
MLP method (R2 > 0.99) with hyperparameters of the following: hidden layer size = [45 35 45 45], 
optimizer = Adam, the learning rate = 0.003, β1 = 0.9, β2 = 0.999, epochs = 1971, and batch size = 32. To 
investigate  CO2 uptake dependency on mentioned effective parameters, three dimensional diagrams 
were reported based on MLP network, also the MLP network characteristics including weight and 
bias matrices were reported for further application of  CO2 adsorption process design. The accurately 
predicted capability of the generated models may considerably minimize experimental efforts, such as 
estimating  CO2 removal efficiency as the target based on adsorbent properties to pick more efficient 
adsorbents without increasing processing time. Current work employed statistical analysis and 
machine learning to support the logical design of porous GO for  CO2 separation, aiding in screening 
adsorbents for cleaner manufacturing.

List of symbols
b  Bias (–)
Ci  Center points (–)
f  Activation function
G  Gaussian function
i  Number of neurons in each hidden layer
N  Number of data for training (–)
n  Neurons
R2  Coefficient of determination
W  Weight matrix (–)
Wij  Weight-related each hidden neuron (–)
Exp  Experimental value (–)
X  Input variable (–)
xi  Input examples (attributes)
Y  Output vector (–)
yj  Target output
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Greek symbols
σ  Width of radial basis function (RBF) kernel (–)
σi  Spread of Gaussian function (–)

Abbreviations
ANN  Artificial neural network
MSE  Mean square error
MAE  Mean absolute error
RMSE  Root mean square error

Terminology
Outlier  A point that’s endlessly distinctive from other focuses in a dataset
Outlier detection  The method of finding outliers in a dataset
Neurons  The basic units of the large neural network
Bias  A constant which helps the model in a way that it can best fitted for the fit data
Activation function  A mathematical function between the input feeding current neuron and its output 

going to the next layer
Weight  Represents the importance and strengths of the feature/input to the Neurons
Epoch  In the training process, the inputs entering in each training step and giving an output 

that is compared with the target to calculate an error. With this process, weights and 
biases are calculated and modified in each epoch

Up to the present, diverse physical adsorbents, like mesoporous  silicates1, metal–organic frameworks (MOFs)2, 
carbon nanotubes (CNTs)3, permeable  polymers4, and  graphene5, have been applied to substitute conventional 
alkanolamines to eliminate their drawbacks, including propensity for amine misfortunes, corrosion, costly recov-
ery, and high energy  escalated6. Adsorption with progressed porous solid adsorbents is now beneath examination 
as a promising vitality and cost-efficient  option7. The vitality required to recover solid adsorbents is ordinarily 
lower than that for watery amine arrangements; however, the reactivity between solid sorbent and fluid should 
be caught on for evaluating the ideal response enthalpy in capturing  CO2

8. Understanding these details could be 
accommodating in planning the next-generation adsorbents with lower recovery vitality  requirements9.

Activated carbons and zeolites have been customarily utilized for gas  adsorption10; in any case, they require 
considerable heating for recovery, which leads to high cost and lower  efficiency11. Carbonaceous materials like 
graphene oxide (GO) are low-temperature adsorbents with specific properties, such as elevated specific sur-
face area and reduced production  price12. Graphene has received considerable attention  nowadays13. The more 
frequent method of exfoliating graphite is to use oxidizing chemicals to produce GO, a nonporous hydrophilic 
carbon  substance14. Even though the exact composition of GO is unclear, it contains epoxides, alcohols, ketone 
carbonyls, and carboxylic  groups15.

GO has different applications, primarily as an adsorbent, due to its high porosity, heightened surface area, 
and superior chemical stability, supporting several reactive functional groups, such as hydroxyl, epoxy, and 
 carboxyl16,17. Furthermore, GO is employed as an energy transformation and storage material for nanoscale 
 engineering18. It is a stretchy material that delivers many possibilities for simple alteration and vision to cre-
ate other preferred graphene-based  substances19. Permeable materials can be synthesized by utilizing different 
methods, and their surface parameters, including surface area (SBET), mesopore volume (Vmeso), micropore volume 
(Vmicro), can be changed  significantly20. Thus, the adsorption capacity of  CO2 is characterized by elements such 
as SBET, porosity, isosteric heat of adsorption value (Qst), and the existence of micropores with a size of lower 
than 1  nm21. To enhance  CO2 capture efficiency, extensive investigations have been committed to generate a 
permeable GO with increased specific surface area and pore volume. One of the most efficient methods for this 
purpose is functionalizing GO by amines. For example, Pokhrel et al. materialized and functionalized unique 
GO-based adsorbents by different amines, namely 3-aminopropyl-triethoxysilane (APTES), polyethyleneimine 
(PEI), and ethylenediamine (EDA)11. Their results can help develop optimum routes of functionalization and 
performance improvement of such adsorbents, paving the way for creating effective, feasible materials and 
methods for the forthcoming  CO2 capture processes. Szczęsneak et al. synthesized activated carbons generated 
from polymers, Cu-containing metal–organic frameworks (MOFs), and their mixtures with GO for assessing 
their capabilities of  CO2 adsorption under atmospheric conditions using simple procedures. Their work sug-
gested that graphene-containing composites might be harnessed for massive  CO2 removal under atmospheric 
 conditions22. Nevertheless, optimizing and maximizing the synthesis method by mixing functionalizing agents 
with an acceptable guideline is still uncertain. Aside from adsorption characteristics, the textural qualities and 
functional groups of porous GO are commonly regarded as important  CO2 capture  factors21. Moreover, the 
method for evaluating these characteristics is unknown so far; a prioritization strategy would help support the 
manufacture of permeable GO-based adsorbents.

Since research facility tests are time-consuming and troublesome, a scientific forecast show is recommended. 
Recently, there has been a surge of attention in the use of machine learning (ML) in various domains, such as 
waste-to-energy  conversion23, pyrolysis for organic and metal compound  sorption24, methane  adsorption25, 
and solid waste generated  treatment26. Adsorption at the equilibrium state is determined by adsorbent param-
eters, such as surface area, pore-volume adsorbate variables (size, molecule volume, and area), the existence of 
functional groups, and electrostatics. It is nearly hard to get a unique correlation using a theoretical statement 
frame of view with the capability of properly correlating all these features concerning the equilibrium adsorption 
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 uptake27. Unlike the traditional isotherm models which considered only pressure and temperature as effective 
parameters on gas adsorption capacity, machine learning based model can consider graphene oxide textural 
properties such as pore size, pore diameters, surface area, pore volume, and adsorbent precursor material for GO 
adsorbent synthesis. Machine learning algorithms can correlate the complicated and non-linear relationships 
between system characteristics and adsorption uptake, this feature is the main advantage of machine learning 
which make it applicable in multivariable  CO2 adsorption systems. Although machine learning based model 
can make relation among all of the variables which contributed to  CO2 adsorption, but it should be considered 
that huge amount of data is necessary for developing the model which make some limitation for developing 
machine learning based  model25.

There are different types of ML models, containing linear regression, support vector machines (SVMs), 
k-nearest neighbours, artificial neural networks (ANNs), and tree-based ML models. Among them, the last is 
a special category monitored ML methods that use iteratively numeric data  division23. Decision trees (DTs), 
random forests (RF), gradient boosting decision trees (GBDTs), light gradient boosting machines (LGBs), and 
extreme gradient boosting (XGB) are some of the most prevalent and applicable models. Considering their 
novelty, the final three mentioned enhancing tree-based models have experienced a rise in popularity and appli-
cability in scientific works due to their capacity to cope with fewer parameters, tolerance to errors, and ability 
to handle variable  characteristics28. Throughout this work, the experimental specification values of several solid 
GO-based adsorbents, pore volumes, adsorption temperature, adsorption pressure, and BET properties were 
extracted and applied as inputs for training models by considering  CO2 adsorption capacity as the target. This 
research aims to design algorithms that could determine the adsorption capacity of such adsorbents by applying 
distinctive functionalizing procedures. Furthermore, the influence of each parameter on  CO2 uptake is examined.

High adsorption potential and selectivity, stable operating potential, expense, reusability, convenience of 
recovery, and fast adsorption–desorption kinetics are meticulously employed for developing adsorbents sourced 
from GO. Nevertheless, we mainly concentrated on the  CO2 adsorption capacity collected at various temperatures 
and pressures, as well as the microstructural and morphologic properties of adsorbents, for a couple of reasons: 
(1) many papers have primarily focused on adsorption capacity, while only some have reported regeneration, 
capacity, and kinetic features; therefore, there is a limited data to present ML models for all of the stated essential 
properties; (2) in addition to adsorption efficiency, performance standards for other eligibility requirements were 
unreachable owing to the absence of ecological consequences and long-term socio analysis.

To develop the proposed model, the following parameters and methods are implemented during the collec-
tion of information. The general sketch of this study is shown in Fig. 1.

1. All reviewed data were first approved dispassionately, with no preconceived notions or judgments about the 
data’s trustworthiness.

2. The primary characteristics were divided into three types: (I) morphological features, (II) component com-
positions of the GOs, and (III) adsorption factors, including pressure and temperature (the operating pres-
sure range was between 0 and 3 bar, and the temperature range was between 273 and 324 K) which the  CO2 
adsorption data were undertaken.

3. The GO morphological parameters consisted of specific surface area (BET,  m2/g) and total pore volume 
 (cm3/g).

4. The target parameter was  CO2 adsorption capacity using GO-based adsorbents at various process conditions.

After a meticulous search, there is no publication available utilizing machine learning algorithms and com-
paring them for predicting the  CO2 adsorption capacity of GO-based adsorbents in order to evaluate each 
parameter’s impact on adsorption capacity.

Figure 1.  The general sketch of this research procedure.
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Data gathering and preparation
In order to gathering the  CO2 adsorption information, a comprehensive literature study on GO-based adsorbent 
for  CO2 capture was conducted using several keywords (including graphene oxide, Functionalized GO, porous 
carbon,  CO2 adsorption, and  CO2 capture). The data of textural characteristics and  CO2 adsorption of porous 
carbons at 1 bar were gathered from the reported tables in each reference. The  CO2 adsorption capacity at other 
pressures was obtained from adsorption isotherms using Origin Pro V9.9.0.225 Digitizer toolbox. The detailed 
range of operational conditions and results on GO-based adsorbents were gathered from 17 articles (895 data). 
Table A1 in Appendix A summarizes the sets of data obtained from the literature.

Data preparation was conducted trough examination of the papers on  CO2 adsorption by GO-based adsor-
bents to create the dataset. Input characteristics were correctly detected and tagged, as supported by evidence 
gathered. Following information gathering, data preprocessing was undertaken to enable efficient ML deploy-
ment, and seven kinds of ML models, including SVM, Random Forest, Extra Trees, Gradient Boosting, Extreme 
gradient boosting, and ANN (MLP and RBF), were assessed for prediction accuracy. All of the 895 row data were 
acquired from the papers, and no feature was missing, so there was no requirement to correct incomplete data. It 
is recommended to use outlier detection models to achieve a clean data set. There are different models for outlier 
data detection, among them Isolation Forest has been used in this work, and the outlier data has been deleted. 
Isolation forest is a sort of unsupervised ML calculation that can be utilized for inconsistency detection according 
to the guideline of separating  inconsistencies29. Table 1 reports the data description after removing the outliers.

Quantitative analysis of features and Pearson correlation matrix analysis. Statistical distribution 
map of each feature is shown in Fig. 2. This figure contains the structural information of the GO-based adsor-
bents and their related  CO2 adsorption capacity at different pressures. The interquartile range (IQR) was used to 
quantify information inconsistency by partitioning the information into quartiles. Within every figure, five lines 
from bottom to top indicated the lowest, first quartile (Q1), middle, third quartile (Q3), and the highest statistical 
information, correspondingly. The stated information corresponds to the scientific results within Q1 − 1.5*IQR 
and Q3 + 1.5*IQR, wherein IQR was equivalent to the change between Q3 and Q1, and data beyond the area were 
displayed separately with a folded form. According to the data obtained from the study, the average value of  CO2 
adsorbed on the porous GO-based adsorbent was 1.88 mmol/g with a standard deviation of 1.82 mmol/g. The 
surface area determined in the study varied from 9.6 to 2640  m2/g, with a mean quantity of 643.47  m2/g and an 

Table 1.  Detailed information of data acquired after outlier detection.

BET surface area  (m2/g) Temperature (K) Total pore volume  (cm3/g) Pressure (bar)
CO2 adsorption capacity 
(mmol/g)

Count 749.00 749.00 749.00 749.00 749.00

Mean 596.13 287.30 0.59 0.56 1.84

Std 580.83 17.70 0.41 0.30 1.83

Min 9.60 273.00 0.03 0.01 0.01

25% 99.54 273.00 0.31 0.30 0.68

50% 374.00 273.00 0.58 0.58 1.23

75% 1056.00 298.00 0.78 0.83 2.17

Max 2270.00 348.00 1.60 1.00 9.05

Figure 2.  Boxplot of variables.
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acceptable standard deviation of 578.92  m2/g. Total pore volume varied from 0.03 to 1.6  cm3/g, with a mean value 
of 0.59  cm3/g. The treatment for modifying GO considerably affected the surface area and total pore volume, 
as shown in Table A1. For example, Cu-containing metal–organic frameworks (MOFs) and their GO mixtures 
were produced using simple techniques and evaluated for  CO2 uptake in ambient environments. At 0 °C and 
25 °C, the Cu-containing MOFs demonstrated strong  CO2 adsorption of up to 9.59 mmol/g and 5.33 mmol/g at 
1 bar, correspondingly. The analysis indicates that the surface area (SA) ranged from 1380 to 1820  m2/g and the 
total pore volume (TPV) ranged from 0.73 to 0.88  cm3/g. Furthermore, porous carbon CUBTC-GO with a SA 
of 1820  m2/g and a TPV of 0.83  cm3/g yielded the maximum  CO2 capture of 9.05 mmol/g at 0 °C and 1  bar22. 
This conclusion showed that there was no easy and instant way to manufacture optimum porous GO for effective 
 CO2 collection based on various modifications. As per the 19 publications cited here (summarized in Table A1), 
the investigators just chose the best  CO2 adsorbent from several synthesized nanoparticles obtained from GO, 
suggesting that there was no valuable and concise advice for the formation of high  CO2 adsorbents based on GO. 
Overall, the textural chracteristics of porous GOs were more important used for changing their  CO2 adsorption 
capacity than chemical composititions in every considered scenario.

Pearson correlation coefficient matrix is the covariance of two mentioned feature and the product of their 
standard deviation. According to pearson correlation coefficient matrix which represented in Fig. 3, Pressure had 
a slight positive relation with  CO2 uptake capability (r = 0.37), and a mildly negative relation with temperature 
(r = − 0.24). However, based on the total adsorption data, the  CO2 adsorption capacity was determined to have 
a limited association with the characteristics of porous GOs. The adsorption capacity was positively and weakly 
related to total pore volume (r = 0.2); on the other hand, the adsorption capacity was positively and highly related 
to surface area (r = 0.55), which was consistent with previous studies finding out that higher surface area resulted 
in higher adsorption capacity.

The resulting data were divided into 3 parts: 75% of the data was considered as training data, from the remain-
ing 25%, 60% was defined as test data for models hyperparameter optimization, and remaining 40% was defined 
as validation data (unseen data). Machine learning algorithms do not work well when numerical features have 
exceptionally distinctive scales, so feature scaling is one of the most critical changes to be made to the data. There 
are two common ways to urge all properties to have the same scale including normalization and standardization. 
Unlike normalization, standardization does not bound values to a particular extent. In any case, standardization 
is much less influenced by  outliers30. For this purpose, the standardScaler class from preprocessing module of 
the scikit-learn (sklearn) was used, which its formula is presented here.

where u is the average value of the training samples and s is each training sample’s standard deviation. Figure 4, 
shows the general procedure of data gathering and data classification for training the mentioned machine learn-
ing models aim to achieve the best model.

Modeling methods
Model selection. Various machine learning methods or models may be used to solve numerous classifica-
tion, clustering, and regression problems. The current challenge is that whichever model and hyperparameter 
combinations would function better upon the particular dataset. The optimization algorithm in this scenario 
contains several learning algorithms (models) and hyperparameters. One needs to produce many hyperpa-
rameter combinations to maximize predictive accuracy and obtain the optimal collection of hyperparameters. 
Next, the one that yields the best predictive precision may be achieved by exploring hyperparameter combina-
tions. Grid search may be employed to detect the optimal collection of hyperparameters by searching across all 
possible permutations. The sklearn library’s "GridSearchCV" function can be utilized to connect linear search 
through hyperparameters. The sets of all hyperparameters to be adjusted are handed to GridSearchCV. The 
GridSearchCV develops a design based on the optimum hyperparameter combination for the incoming and out-
going  parameters31. In this study, seven mentioned models are used, which their brief explanations are presented 
first. The models are Random forest, support vector machine (SVM), gradient boosting, extra trees, extreme 
gradient boosting (XGB), and ANN (MLP, RBF), respectively.

Isolation forest. This model can be a proficient calculation for outlier detection. The calculation builds an Irreg-
ular Forest in which each Chosen Tree is developed arbitrarily; at each node, it picks a feature at random; at 
that point, it picks an arbitrary limit value (between the minimum and maximum values) to part the dataset in 
two sections. The dataset slowly gets chopped into pieces this way until all occurrences are separated from one 
another. Inconsistencies are ordinarily distant from other instances, so on regular (overall the Chosen Trees), 
they tend to urge separated in fewer steps than typical instances.

Support vector machine (SVM) regression. SVM is a training machine learning technique that may be utilized 
for classification and regression tasks. In contrast to many ML algorithms, during which the goal is to minimize 
the cost function. The primary goal of SVM seems to be maximizing the margin among support vectors via a 
separating  hyperplane32. It covers not only linear and nonlinear classification but also covers linear and nonlin-
ear regression. The secret to using SVMs for regression rather than classification is to reverse the goal. In this 
work, to do SVM Regression, the SVR class from the SVM module from scikit-learn API was used.

(1)Z =
x − u

s
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Random forest. Random Forest is a simple machine learning algorithm that typically generates excellent results 
even when its meta-parameters are not adjusted. This algorithm is among the most extensively employed ML 
algorithms for both "Regression" and "Classification" because of its simplicity and applicability. The random for-
est algorithm starts by dividing the input features into subsets that form a tree; then, a proper fitting function 
is developed for each decision tree that works on the random features picked. A random forest model is built at 
the end of the training procedure. It is worth noting that every tree is built from randomly chosen input vectors 
during the training process, namely "random"  forest33. For implementing this model, the RandomForestRegres-
sor class from the ensemble module in the scikit-learn API was employed. Figure 5 illustrates a schematic of how 
the random forest model works.

In Fig. 3, ̂r(X,V)  is the representative tree at the end of the training phase, X is the set of input feature vectors, 
T is the collective set indicating the input–output pair  Vi = (x1, y1), (x2, y2),…(xn, yn), and k is the number of trees.

Figure 3.  Pearson correlation matrix between any two properties, and between adsorption efficiency and each 
variable.
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Figure 4.  Procedure and algorithm diagram of the current machine learning-based modelling.

Figure 5.  Schematic diagram of random forest procedure.
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Extra trees regressor. Extra trees are a supervised machine learning technique comparable to the random for-
est and can be harnessed for regression and classification. In a Random Forest, just a random subset of the 
features is considered for splitting at every node. Instead of searching for the best possible thresholds, trees can 
be made even more random by applying random thresholds for every feature. A forest of such highly random 
trees is named an extremely randomized trees ensemble. Such a strategy trades more bias for less variance. Also, 
it makes extra-trees significantly quicker to train than standard Random Forests since one of the most time-
consuming aspects of tree growth is detecting the optimum threshold for every feature at each  node34.

Gradient boosting. Gradient boosting is an ensemble supervised ML method that may be utilized for regres-
sion and classification. The term "ensemble" refers to methods, like random forest, extra trees, gradient boosting, 
that builds an ultimate model according to various individual models. Gradient boosting trains several models 
sequentially by assigning greater weights to examples with incorrect predictions. As a result, tough instances are 
the focus of training. Gradient boosting is used in sequential model training to gradually reduce a loss func-
tion. This function will be minimized in the similar way as an ANN  model35. GBR provides several advantages, 
remarkedly strong prediction accuracy and stable output. The additive training mechanism of the boosted model 
may be represented in a forward linear way as:

where T is the number of RTs for boosting; Θj is the structure of the jth RT; ν is the shrinkage parameter (dis-
tinguished by the learning rate that satisfies 0 < ν < 1 for shrinking the contribution of RTs); ŷ(j) is the estimation 
of target variable by first j RTs; and fj is the output of the jth RT without shrinkage, which employs predictor 
variables x to approximate y − ŷ(j−1) (i.e., residuals) with tree structure Θj. As the number of RTs grows, the 
residuals will normally decrease. Figure 6 depicts a schematic diagram of the Gradient boosting procedure for 
illustrative  purposes36.

Extreme gradient boosting (XGB). Tianqi Chen invented extreme gradient boosting, often called XGBoost, as 
a ML method that may be utilized for regression and classification. XGBoost is a gradient boosting approach 
that distinguishes from a gradient boosting model in multiple ways: (1) because of the multithreading of tree 
structures, XGBoost is generally quicker than gradient boosting, (2) because it can accept incomplete data inside 
a collected data, data preprocessing takes less  time37. The XGBRegressor class from the xgboost package was 
used to implement this model.

ANN‑MLP. In the early 1940s, the network technique was utilized to assess and analyze data for many themes, 
and the ANN structure was applied. Currently, scientists are working to improve understanding of how the 
human brain works to create the next generation of neuroscientific machine  learning38. One of the benefits of the 
neural network is that it needs less time to solve complicated problems. If there is no specific relation between 
the data, ANNs, as patterned after the human biological brain, are harnessed to discover one. The neural network 
has the following characteristics: parallel computing (top intensity), nonlinear calculations, generality, output 
and input data interchange, adaptability, large data response, error tolerance, and  training39. The neural network 
approach describes as human nerve anatomy. McCulloch and Pitts invented the ANN based on the activity of 
actual elements of the brain. The analysis process in neural networks is similar to the operations of neurons in 
human  brains40. The functioning of neurons in the human brain is quantitatively represented in ANNs. The 
terms neural networks (NNs) and ANNs will be used equally henceforth. NNs have two potential applications: 
Discovering a relationship among a group of quantitative inputs (features) and outputs (target) and clustering. 
In general, NNs are made up of a set of "Neurons" arranged in a layered architecture. Every input and output 
variable may correspond to a node, which functions similarly to a real neuron. Nodes are organized into layers 
in which input and output layers are linked. The number of hidden layers and the number of nodes per each that 
link the input to the output layer are specified by the architecture of NNs. Weights (wij) indicate the link among 
each of the two nodes, where i and j demonstrate nodes in the source and destination nodes,  respectively41. The 
ANN approach is also one of the most extensively utilized techniques in nonlinear applications. This method’s 
excellent properties include nonlinearity, classification, identification, data analysis, and optimization. In the NN 
approach, the network design is taught based on experimental data, and all parameters in the network model are 
optimized to achieve the best result. The target in ANN is to obtain the proper weights (w) for a specific function 
(f). Every input (xi) is multiplied by the relavant weight, all quantities are added together, and then the threshold 
or bias quantity (b) is added to the sum of the quantities. The equation below represents this approach for input 
data:

(2)

ŷ(0) = 0

ŷ(1) = vf1(x;�1) = ŷ(0) + vf1(x;�1)

ŷ(2) = v

2∑

j=1

fj
(
x;�j

)
= ŷ(1) + vf2(x;�2)

. . .

ŷ(T) = v

T∑

j=1

fj
(
x;�j

)
= ŷ(T−1) + vfT (x;�T )
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The output quantities, y, are created by feeding the data into a transfer function, f, as given in Eq. (4).

The common transfer functions are step, Relu, LeakyRELU, hyperbolic tangent, and sigmoid (S shape).
Optimization algorithms or optimizers are critical components in improving the performance of a NN They 

conventionally adjust the hyperparameters of a model based on its design. Hyperparameters that impact an 
optimizer’s behavior, such as learning rate, control its update rule, determining the optimizer. The integration 
of hyperparameters and update rule separates any two optimizers. An optimizer must adjust the weights and 
learning rate of the model’s nodes throughout the training phase to minimize the loss function. To summarize, 
the primary aim of an optimizer is to minimize training  error42. The optimization procedure of the best ANN 
algorithm is summarized in Fig. 7.

Overfitting and extended training times are two significant difficulties in multi-layered neural network learn-
ing, especially deep learning. Overfitting occurs when a model conducts properly on training data but badly on 
test data; in other words, the model has low training error but high test error. Regularization is a collection of 
approaches for decreasing overfitting. Dropout advocated randomly changing the network architecture when 
overfitting in deep learning to lessen the risks that the learnt weight values are excessively customized to the 

(3)sum =

(
N∑

i=1

ωixi

)
+ b

(4)y = f (sum)

Figure 6.  Schematic diagram of gradient boosting procedure.
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underlying training data and consequently cannot be generalized properly to test. Dropout simulates model 
ensembling without the need for several  networks43.

Adam optimizer was utilized to solve the network, an algorithm for first-order gradient-based optimization 
of stochastic objective functions according to adaptive predictions of lower-order moments. This method is 
simple to advance, computationally effective, needs minimal memory, invariant to gradient diagonal rescaling, 
and is ideally suitable for issues with immense amounts of data and/or parameters. The hyperparameters have 
straightforward interpretations and need a slight adjustment in most  cases44.

Radial based function (RBF). The radial based function (RBF) neural network is a feedforward network with 
an individual hidden layer; also, Broomdhead and Lowe suggested this network for the first  time45. The solu-
tion of an over-specified set of linear correlations can be solved using some highly stable approaches during 
the training of RBF networks with pre-determined nonlinearities. The RBF networks have a solid theoretical 
foundation since they are closely related to the well-studied field of linear models’ regularization  theory46. The 
data from the input layers are gathered from the hidden layer and moved forward the Gaussian transfer function, 
converting the data into nonlinear functions. The RBF algorithm utilizes nonlinear transfer functions to link the 
hidden and input layers. The geometrical dimension-based distance between the weights and the output vector 
is determined by the individual hidden neurons in the network. Equation (6) presents the combiners-based RBF 
algorithm network output layer in its linear form:

where N is the number of training data sets, Wij is the weight attributed to every hidden neuron, x is the input 
vector, ci is the center points, and b is the bias. A Gaussian equation, Eq. (7) can be employed to detect the cen-
tralized solution from the hidden point, as follows:

The Gaussian function’s spread is σi. This equation is the range of �x − ci� within the input domain to which 
the RBF neuron can respond. The procedure of choosing neurons in the RBF network is typically according to 
trial and error, thus the algorithm begins with a considerable number of neurons in the single hidden layer and 
then is conducted to decrease the number of neurons as much as the minimum MSE.

In this work, Rmsprop optimizer was harnessed to train the network. RMSprop and Adadelta entered the 
scene concurrently but independently, intending to cope with Adagrad’s diminishing learning rates. RMSprop 
is a gradient-based optimizer that, rather than treating the learning rate as a hyperparameter, uses an adaptive 
learning rate that varies over  time47.

(6)f (x) =

N∑

i=1

wijG(�x − ci� ∗ b)

(7)G(�x − ci� ∗ b) = exp

(
(−

1

2σ 2
i

(�x − ci� ∗ b)
2

)

Figure 7.  Different stages for optimizing the ANN models.
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Error metric. The performance of the models is compared by the following metrics (RMSE, R2, MSE, MAE), 
and ultimately, the criterion R2 is considered to select the best model.

Mean absolute error (MAE) It is just the mean of the absolute difference between the estimated and actual 
data, which can be calculated as follows:

Mean squared error (MSE) As the title implies, it is the mean of the squared errors. MSE can also be taken 
into account as a loss function that must be decreased. It is often utilized in real-world machine learning appli-
cations because greater errors are penalized more when employing MSE as the objective function than when 
using MAE35.

Root Mean Square Error (RMSE) RMSE is the square root of MSE35.

Coefficient of determination (R2) It assesses the model’s fitness to the liable, scientific results. The nearer the 
coefficient of determination (R2) is to 1, the higher the predictions fit the experimental data. R2 is calculated as 
 follows48:

where Ymean is the mean of the actual quantities.

Results and discussion
Hyperparameters of each model. SVM The mentioned hyperparameters are properly considered when 
the optimization of SVM is carried out: (C, gamma, kernel, and epsilon), and the optimal values are 2500 for C, 
the gamma is scale, the kernel is rbf, and epsilon is 0.0075.

Random forest To optimize the random forest, the following hyperparameters are considered: (n_estima-
tors, min_samples_leaf, and min_samples_split), where the optimal values are 700, 2, and 1 for n_estimators, 
min_samples_split, and min_samples_leaf, respectively.

ExtratreesRegressor To tune ExtraTreesRegressor, the following hyperparameters are considered: (max_fea-
tures, n_estimators, min_samples_split, min_samples_leaf, and max_depth), the optimal values are 3372 for 
n_estimators, and the criterion is squared_error, min_samples_split = 2, and min_samples_leaf = 1.

Gradient boosting The following hyperparameters are considered to optimize the Gradient BoostingRegressor. 
(n_estimators, learning_rate, criterion) where the optimal values are 900 for n_estimators, the learning_rate = 0.4 
and the criterion is friedman_ MSE.

Extreme gradient boosting To optimize XGBRegressor, the following hyperparameters are considered: (n_esti-
mators, learning_rate, reg_alpha, booster, gamma, and reg_lambda). The optimal values are as follows: n_estima-
tors = 2800, learning_rate = 0.2, reg_alpha = 0.1, booster = “dart”, gamma = 0.0001, and reg_lambda = 0.92.

RBFNN The RBF network training was conducted through optimization of the network characteristic such 
as, the number of neurons, the number of epochs, the used optimizer, the learning rate, and the batch_size to 
achieve the best result on the test data. This model was coded using the TensorFlow API. The tuned parameters 
are the number of neurons = 185, the optimizer is RMSprop, the lerning_rate = 0.003, epochs = 4500, and the 
batch_size = 32. Figure 8 depicts a schematic of this type of neural network, whereas its learning curve will be 
shown in Fig. 10.

MLP The MLP network architecture, which includes the number of neural network layers, number of neurons 
per layer, activation function per layer, dropout layer percentage, dropout layer(s) position, number of epochs, 
used optimizer, learning rate, The β1 and β2 parameters for adam optimizer, and batch_Size were considered to 
achieve best results on test data. The neural network architecture used can be seen in Fig. 9.

The optimal hyperparameters of MLP network are as follows: optimizer = adam, the learning_rate = 0.003, 
β1 = 0.9, β1 = 0.999, epochs = 1971 and batch size = 32. For applying this neural network, the Dense model of 
the Keras module in the TensorFlow API has been employed. Figure 10 shows the learning rate of the optimal 
architecture of the MLP and RBF networks.

The MSE and R2 were utilized as assessment parameters to link the model outputs to the validation data. 
Analytical criteria, such as MAE, RMSE, R2, and MSE as reported in the previous equations, are employed to 
evaluate the model’s performance. In the last stage, the optimum model is selected. The results are shown in 
Table 2. The ANN-MLP was the best-fitted model for predicting the experimental results. This model has a MSE 
of 0.024 and a maximum R2 value of 0.9943, while the RBF model has a MSE of 0.103 and a maximum R2 value 
of 0.9747. According to the R2 and MSE values which reported in Table 2, we can choose MLP as the best model 
algorithm among these seven models. In order to further testing of the optimal network performance, some of 

(8)MAE =
1

n

∑n
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∣∣yi − ŷi
∣∣
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1

n

n∑
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2

(10)RMSE =
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experimental values of  CO2 adsorption which results from the papers were selected randomly and compared 
with the model predicted values. The results of comparison are presented in the next section.

Comparison between experimental datas and predictions. The specified hyperparameters were 
employed to retrain the models with training datasets (75%), which were then verified by validation data (10%) 

Figure 8.  Schematic diagram of RBFNN model used for optimizing.

Figure 9.  Schematic diagram of MLP network.
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in each case. The graph compares estimated  CO2 adsorption capacity to experimental quantities of test groups 
depicted in Fig. 11. The high R2 (0.9943) and low MSE (0.024) values confirmed that the ANN-MLP model 
is suitable to estimate the  CO2 capture capacity of GOs based on their structural characteristics and adsorp-
tion conditions. The precise ML model, not as it were, may foresee the  CO2 adsorption capacity under various 
adsorption conditions for modern new GOs with diverse structures. Moreover, it may overcome a few lacks 
of conventional adsorption isotherm models (for example, Langmuir model). The reasons are (1) ML mod-
els are not constrained by type of adsorbents and adsorption conditions. In contrast, the model parameters of 
conventional isotherm models are not applicable to utilizing diverse temperatures or adsorbents with various 
morphological features. (2) With ML models, experimental data was directly used without making verifiable 
assumptions like Langmuir’s monolayer  adsorption49. Thus, ML models created in this work could decrease 
time-consuming and costly investigational screening tests for various adsorbents utilized in diverse scenarios, 
thereby facilitating cost-effective and cleaner generation for green supportability. Figure 11 suggests an elevated 
level of accuracy in the organization between the ANN-MLP outputs and the  CO2 adsorption data. The experi-
mental data provided here were also frequently agreed with the model predictions (Fig. 11). With an R2 quantity 
of 0.9943 and an MSE quantity of 0.024, the ANN-MLP model achieved the most accurate result, showing that 
it correctly estimates the experimental data.

To check the accuracy of the obtained models, seven papers were selected randomly among the considered 
ones. In Table 3, the amount of experimental absorption given in these papers, The calculated value is determined 
according to the operating conditions with each model separately. Also, the ANN-MLP model indicated the most 
accurate prediction of  CO2 adsorption in most cases reported in Table 3 among all models.

According to the reported data, ANN-MLP is the best algorithm for predicting experimental data related 
to  CO2 adsorption. The network’s training algorithm seeks to reduce the mean of the overall inaccuracy. Thus, 
the ANN-MLP model was used for obtaining three dimensional graphs which show the relationship between 
structural parameters or adsorption conditions and  CO2 adsorption capacity. Figure 12 illustrates the ANN-MLP 
forecasting model’s 3D curves. The curves were gathered in order to understand better the effects of textural 
factors (BET surface area and total pore volume) and operational conditions (temperature and pressure) on  CO2 
adsorption capacity. According to Fig. 12a, At a constant temperature (273 K), the  CO2 uptake increases with 
enhancing pressure, it can be related to improving the mass transfer driving force and enhancement of diffusion 
of the  CO2 molecules inside tha adsorbent cavities. At constant pressures, temperature increases from 273 to 
298 K slightly decreases The  CO2 adsorption capacity, it can be related to physically nature of  CO2 adsorption 

Figure 10.  The learning curve of ANN (MLP and RBF) models.

Table 2.  Analytical criteria for models comparison.

Model R2 MAE MSE RMSE

ANN 0.994 0.097 0.024 0.153

ExtraTreesRegressor 0.989 0.109 0.043 0.207

GradientBoostingRegressor 0.987 0.101 0.055 0.234

RandomForestRegressor 0.981 0.175 0.078 0.280

XGBRegressor 0.979 0.139 0.086 0.293

RBFNN 0.975 0.189 0.103 0.321

SVR 0.965 0.188 0.141 0.375
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Figure 11.  CO2 adsorption experimental versus predicted data using the models: (a) Extratree, (b) 
Gradientboosting, (c) SVM, (d) Extragradient boosting, (e) Randomforest, (f) ANN-MLP, and (g) ANN-RBF.
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by graphene oxide. Although graphene oxide is a porous media with various types of functional group, but it 
should be considered that lack of electron donor group (Lewis base) such as amine or amides causes the  CO2 
adsorption process occurs physically through weak dipole-quadropole interaction between  CO2 molecules and 
adsorbent  surface55. Figure 12b displays the effect of pressure and total pore volume on  CO2 adsorption capac-
ity. At constant pressure, the adsorption capacity increases with enhancing the total pore volume. When the 
pressure is low (0.2 bar), the rate of capacity increment is considerable in the range of pore volume between 
0.1 and 0.5  cm3/g. After this range, the rate of capacity enhancement is not remarkable. The best condition for 
 CO2 adsorption is when the pressure and total pore volume are high. Figure 12c shows the effect of surface area 

Figure 11.  (continued)
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and pore volume on the adsorption capacity. According to this figure, at a constant pore volume, the relation-
ship between  CO2 capture capacity and BET surface area is positive and remarkable, meaning that the  CO2 
uptake increases by enhancing BET surface area. For surface areas < 1500  m2/g, increasing pore volume would 
not improve the adsorption, as other important factors have an enormous influence on the quantity of adsorp-
tion; however, when BET > 1500  m2/g at a constant surface area, the adsorption capacity increases slightly with 
increasing the pore volume.

As it can be seen in Fig. 13, BET surface area has a considerable impact on the  CO2 adsorption capacity, and 
by increasing BET area from 300 to 1400  m2/g, the adsorption capacity has raised upon three times, but more 
importantly, at high values of the BET BET area, increment of the pore volume does not necessarily increase 
the  CO2 uptake capacity. After a specific value of the pore volume, usually around 0.8  (cm3/gr), the increment 
of pore volume at a constant BET area decreases the adsorption capacity, which can be related to the reduction 
in ratio of the volume of mesopores to the total pore volume and the pore diameter incrreasing, which reduces 
the adsorption capacity.

This project proposes a sound and efficient methodology to predict  CO2 adsorption and optimize  CO2 adsorp-
tion linked to various GO-based adsorbents with the help of seven different algorithms. Also, it provided con-
fidence in the ANN designs as predictive deep learning utilizing  CO2 adsorption and properties of GO-based 
adsorbents through producing more reliable estimations for  CO2 uptake in industrial operations.

Conclusions
This study studied several GO-based adsorbents to establish a machine learning prediction for  CO2 adsorption. 
A massive amount of data was collected from 19 articles (895). Several models have been employed to predict 
 CO2 adsorption capacity. Among them, the ANN-MLP model demonstrated the best estimation with R2 of 
0.9943 and MSE of 0.024. To investigate the effect of temperature, pressure, surface area of GO, and total pore 
volume on  CO2, three dimensional surfaces were reported, also the MLP network weight and biases matrix 
were reported for further process design applications. The findings revealed that pressure and surface area were 
the most influential factors in  CO2 adsorption capacity. Textural characteristics (surface area and total pore 
volume) were more important than chemical compositions of adsorbents in their  CO2 adsorption capacity at 
different temperatures and pressures. If additional significant parameters are incorporated with sufficient data, 
 CO2 adsorption models can be more comprehensive and reliable. In the future, interaction software might be 
produced to allow the straight identification of suitable adsorbents for diverse  CO2 adsorption requirements in 
numerous applications.

Table 3.  Calculation of adsorption paraemters by models by fitting the experimental data. Significant values 
are on bold.

References
Adsorbent 
name

BET 
Surface 
area  (m2/g)

Temperature 
(K)

Total pore 
volume 
 (cm3/g)

Pressure 
(bar)

Actual 
value SVR

Random 
forest Extra tree

Gradient 
Boosting Xgboost ANN-MLP RBFNN

50 GEPM-1 253 273 0.7 0.24 1.52 1.53 1.32 1.44 1.57 1.44 1.52 1.60

51 TiO2 /
GO-0.2 87.77 273 0.3 0.9 1.45 1.50 1.52 1.52 1.48 1.54 1.45 1.49

52 CG-3 1470 273 0.61 0.52 5.45 5.45 5.25 5.47 4.54 4.73 5.44 5.57

22 aPPy/
GO-20 2270 273 1.1 1 6.75 6.91 7.42 5.97 6.70 7.48 6.74 6.03

51 TiO2 /
GO-0.1 99.54 273 0.38 0.21 0.79 0.80 0.75 0.79 0.84 0.86 0.80 0.91

53 CTS/GO-5 241 298 0.89 0.7 2.43 2.36 2.27 2.22 2.38 2.37 2.41 2.52

54 CuBTC/
GO-5 1637 273 0.67 0.1 1.36 1.34 1.37 1.40 1.34 1.41 1.38 1.40
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Figure 12.  3D response surface plots generated by ANN-MLP model: (a) temperature verus pressureat 
BET = 1500 and pore volume = 0.4 (b) pressure versus pore volume at T = 273 K and BET = 99.54 (c) BET versus 
pore volume at T = 303 K and P = 1 bar.
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