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Interpretable prognostic modeling 
of endometrial cancer
Bulat Zagidullin 1,2*, Annukka Pasanen 3, Mikko Loukovaara 4, Ralf Bützow 3,4,5 & 
Jing Tang 1,6*

Endometrial carcinoma (EC) is one of the most common gynecological cancers in the world. In this 
work we apply Cox proportional hazards (CPH) and optimal survival tree (OST) algorithms to the 
retrospective prognostic modeling of disease-specific survival in 842 EC patients. We demonstrate 
that linear CPH models are preferred for the EC risk assessment based on clinical features alone, 
while interpretable, non-linear OST models are favored when patient profiles can be supplemented 
with additional biomarker data. We show how visually interpretable tree models can help generate 
and explore novel research hypotheses by studying the OST decision path structure, in which L1 
cell adhesion molecule expression and estrogen receptor status are correctly indicated as important 
risk factors in the p53 abnormal EC subgroup. To aid further clinical adoption of advanced machine 
learning techniques, we stress the importance of quantifying model discrimination and calibration 
performance in the development of explainable clinical prediction models.

Endometrial carcinoma (EC) is the most common gynecologic malignancy in the OECD member states. In 
2020, 417,000 new cases and 97,370 deaths have been attributed to the EC worldwide, which is a 10% increase 
in incidence and an 8% increase in mortality since 2018. Both metrics vary considerably geographically and 
across patients’ socioeconomic strata1,2. In the UK, the expected 5-year survival is 77%, with 85% for stage I 
disease and 25% for stage IV3. EC treatment options depend on tumor staging and histological findings, which 
are prone to misdiagnosis4. Addition of molecular profiling information to histological features has been shown 
to improve patient stratification and subsequent selection of adjuvant therapies5–9. To further improve the EC 
risk assessment, it is important to develop transparent computational models that utilize both clinical and 
molecular patient profiles.

Two commonly used statistical methods in the survival analysis of EC patients are the Kaplan–Meier method 
and the Cox proportional hazards (CPH) regression. The Kaplan–Meier method is used to approximate cumula-
tive survival probability (survival function) from lifetime and censored data10. It is well-suited to summarize sur-
vival functions from full cohorts, and it allows for their visual analysis. The CPH regression is the most popular 
model for the analysis of survival data when multiple variables are available11. Its utility is limited due to the CPH 
assumptions, such as the linearity and additivity of predictor variables, as well as the methodological difficulties 
related to variable selection. Machine learning (ML), such as deep learning and ensemble models, improve on 
these shortcomings. They have been shown to perform particularly well with high-dimensional datasets, such 
as -omics readouts, electronic health records, and high content imaging12,13. Deep learning and ensemble ML 
models have also been applied to prognostic prediction modeling of patient outcomes in the EC14–17. However, 
these ML models still see limited use in the clinical practice18. Their poor adoption may be attributed to the 
black-box nature that complicates model interpretability, a high risk of bias, and the need for larger training 
datasets to achieve similar performance, as compared to linear Cox regression19.

Tree-based ML methods have been used to account for non-linear effects and variable interactions in survival 
analysis20. Tree-based ML methods are interpretable by design as every prediction made by a trained model can 
be associated with a corresponding decision path, and the hierarchical structure of the model as a whole can be 
easily visualized. Further, they can take into account factors that may act differently in patient subgroups, unlike 
linear models that favor global factors with uniform effects across entire patient cohorts21. There are several vari-
ants of decision trees that can be used to estimate patient risks, such as the CART model proposed by Breiman 
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et al. or the conditional inference tree model by Hothorn et al.22,23. While decision trees can be ensembled lead-
ing to better performance than single trees, like in the random survival forest algorithm by Ishwaran et al., this 
makes them considerably less interpretable24,25. In light of recent research advances aimed at improving decision 
tree algorithms through better splitting and pruning criteria, single decision tree models are a good alternative 
to the CPH regression in the development of explainable clinical prediction models26,27.

In this retrospective study we explore a cohort of 842 EC patients with 43 clinicopathological and molecular 
features collected at the Helsinki University Hospital between 2007 and 2012. We report two interpretable models 
that predict disease-specific survival: a multivariable CPH regression and a visually interpretable optimal survival 
tree (OST)27. Both are built on two sets of variables: a clinical set and an extended set, which enriches the former 
with biomarker data, namely CD171 (L1CAM, L1 cell adhesion molecule expression), estrogen receptor (ER) 
status, peritoneal washing and tumor size. We use Harrell’s time-independent concordance index (C-index) and 
time-dependent integrated Brier score (IBS) to compare model performance28. These two measures report related, 
but distinct performance metrics, as C-index quantifies discrimination, or how well a model separates low-risk 
from high-risk patients, while IBS also quantifies calibration, which is the extent of an agreement between 
observed outcomes and model predictions29. In this work we show that to select an optimal EC prognostic model, 
a discrimination measure should be supplemented with a calibration measure, such as IBS30–33. We find that 
the CPH models trained on the clinical variables have a higher C-index than the OST models, whereas the IBS 
scores of both model types are comparable. Extending clinical data with biomarker information improves the 
discrimination and calibration performance in both model types, with a larger improvement and the overall best 
C-index and IBS scores seen in the OST models. Finally, we suggest that the Cox proportional hazards regression 
should be used in the EC risk assessment based on clinical data only, while optimal survival trees are preferred 
when biomarker information is available.

Materials and methods
Study cohort.  This retrospective analysis is based on a cohort of 842 patients with unselected EC that 
underwent surgical treatment between 2007 and 2012 at the Helsinki University Hospital. The follow-up time 
ranges from 1 to 136 months with a median of 82 months. In total, 591 (70.2%) patients survived until the end 
of the study, 148 (17.6%) died from the EC, 103 (12.2%) died from other causes. The endpoint of interest is 
disease-specific survival. Based on tumor molecular profiles derived through The Cancer Genome Atlas pro-
ject, 604 (71.7%) patients were assigned to one of four ProMisE classes, for the remaining 238 (28.2%) patients 
the ProMisE categories were not assigned experimentally5,6. Four categories are: (a) mismatch repair deficient 
(MMRd), (b) no specific molecular profile (NSMP), (c) p53 abnormal and (d) polymerase-ε hypermutated 
(POLE). Among 604 patients that have ProMisE classes assigned to them, 74 died due to other causes and 30 
belong to the POLE subgroup, where no one died from the EC. Each patient is described with a feature vector 
consisting of 43 variables, out of which 33 are categorical and 10 are numeric. Please refer to the Supplementary 
Materials—Extended variable information for a more detailed variable description.

Data preprocessing.  All numeric variables, except for age and BMI, are winsorized at the 99% level to 
limit the effect of extreme values using the quantile function derived via the inverse of an empirical distribution 
function34. Variables with more than five categories, such as FIGO stage, or those with unbalanced class propor-
tions, such as adjuvant therapy status, are simplified by combining subcategories together.

We impute missing values to prevent the exclusion of observed data35. Missing values are imputed using the 
multivariate imputation by chained equations method, where numerical and binary variables are predicted with 
random forest models consisting of 100 decision trees, unordered categorical data with more than two levels 
are imputed with the polytomous regression, and ordered categorical variables with more than two levels are 
imputed with the proportional odds model36. Variables are imputed in the order of low to high proportion of 
missingness. R mice package version 3.14.7 is used to generate 120 imputed datasets, which are subsequently 
merged by taking mean values for the numeric variables and mode values for categorical variables37. The response 
variable is kept throughout the imputation38.

Finally, to select variables for the CPH regression models we compare the distributions of numerical and 
binary categorical variables, stratified by the response. We apply the Pearson correlation coefficient to identify 
collinear numerical variables, and Goodman and Kruskal’s lambda to identify associated categorical variables. 
Our primary goal is to optimize the CPH regression performance. Therefore, simplification of categorical data 
and variable selection in the subsequent steps are iterated several times. We use the analysis of deviance test to 
compare nested CPH models, while the Akaike information criterion is preferred for the comparison of non-
nested models.

The complete experimental pipeline is shown in Fig. 1.

Statistical modeling.  We train two types of interpretable models to predict individual survival probabili-
ties for the full patient cohorts, and the subcohorts stratified by the ProMisE classes. We assess model perfor-
mance using C-index and IBS. We estimate 95% confidence intervals for the performance metrics by 1000 rep-
etitions of the ordinary bootstrap with replacement. We also report the performance of seven additional survival 
analysis models using the C-index metric in the Supplementary Materials—Additional ML models section. We 
follow the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis 
(TRIPOD) Initiative hoping to decrease reporting bias and enable model interoperability39.

Cox proportional hazards model.  Survival CPH regression is defined as a product of a non-parametric 
hazard function λ(t) and the eXβ term, where t is time, X is a vector of variables describing a patient, and β is a vec-
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tor of the model’s coefficients. The λ(t) part of the CPH model is identical for all patients at a time t. It is referred 
to as a hazard function of a standard patient, which is a patient with Xβ = 0. The second term is patient-specific, 
and it is used to calculate a hazard ratio without knowing the hazard function λ(t), where the hazard ratio is 
the risk of death in relation to a control40. We use the Breslow method, as implemented in R riskRegression 
package version 2022.03.22, to specify the hazard function, which is required for estimating individual survival 
probabilities41. We use Schoenfeld residuals to test for the proportional hazards assumption, as implemented in 
R survival package version 3.3.1. We estimate CPH model parameters by maximizing the partial log-likelihood.

Optimal survival tree model.  We use the optimal survival tree (OST) method to develop interpretable 
decision tree models for estimating patient survival probabilities. The OST algorithm creates multiple candidate 
decision trees and optimizes their variable splitting thresholds one variable at a time using coordinate descent42. 
The main idea is to use previously optimized parameters in subsequent splitting criteria updates, ultimately 
outputting a single decision tree that can be visually examined. The OST loss function compares how close the 
predicted eXβ terms for each patient are to the cumulative survival probabilities, obtained by the Nelson-Aalen 
estimator27. We prioritize model robustness in the training process by: (a) limiting the tree size, since too deep 

Figure 1.   Experimental pipeline. POLE stands for polymerase-ε hypermutated ProMisE class, MMRd – 
mismatch repair deficient, NSMP – no specific molecular profile, p53ab – p53 aberrant, where ProMisE is 
Proactive Molecular Risk Classifier for Endometrial Cancer. CPH is Cox proportional hazards regression, OST 
– optimal survival tree, IBS – integrated Brier score and CI95 is 95% confidence interval.
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or too wide trees obfuscate the model interpretability, (b) increasing the number of random restarts to use in 
the local search algorithm, and (c) controlling the minimum number of points that must be present in every leaf 
node of the fitted trees. The complexity parameter that determines the tradeoff between the accuracy and model 
complexity is tuned automatically by assessing the out-of-sample performance. The patient cohorts for the OST 
model training are split, such that the complete cases are used for model fitting, and the imputed subsets are 
used for validation. The final validated models are then retrained on the combined (complete case and imputed) 
patient cohorts. We fit the OST models, as implemented in R iai package version 1.7.0, using the log-likelihood 
criterion43.

Model performance metrics.  C-index reports model discrimination performance, i.e. the model’s ability 
to predict correct rankings of the survival times. C-index is defined as a ratio of concordant pairs of subjects to 
the total number of comparable pairs. A pair is concordant when a subject with shorter survival time is estimated 
to have a higher risk than the one with longer survival time. A pair is comparable if (a) it is possible to determine 
which subject experienced the event first or (b) a subject with a shorter survival time experienced an event, while 
the other one is censored and is not lost to follow-up yet. C-index ranges between 0 and 1, where higher values 
are better.

IBS reports both model discrimination and calibration, i.e. the extent of an agreement between observed 
outcomes and model predictions44. Brier score is defined as a mean squared difference between event indicators 
and predicted survival probabilities at a time t28. By summing Brier scores over a time interval we obtain the 
integrated Brier score (IBS), which is then adjusted for patients lost to follow-up using the inverse probability 
censoring weighting method45. We use R pec package version 2022.05.04 to compute IBS at 12, 24, 60, and 
136 months based on the predicted individual survival probabilities of patients. IBS ranges between 0 and 1, 
where lower values are better.

Computational resources.  All computations are performed using R 4.2.0 on MacOS 12.5 and Python 
3.9.7 on Ubuntu 20.04 LTS.

Institutional review board statement.  This study was approved by the Institutional Review Board of 
the Helsinki University Hospital (journal number 135/13/03/03/2013) and conducted according to the guide-
lines of the Declaration of Helsinki.

Informed consent.  Participant informed consent was waived because this was a retrospective study. The 
Institutional Review Board of the Helsinki University Hospital called for an approval by the National Supervi-
sory Authority for Welfare and Health, which was granted (journal number 753/06.01.03.01/2016).

Results
The initial cohort consists of 842 patients diagnosed with unselected endometrial carcinoma. Following the 
missing value imputation, excluding subjects that died due to other causes (n = 103) and those that belong to the 
POLE group (n = 39), where no one died, the final analysis cohort consists of 700 patients. Among 700 patients 
in the final cohort, 305 (43.6%) belong to the MMRd subgroup, 308 (44%) belong to the NSMP subgroup and 
87 (12.4%) belong to the p53ab subgroup. Majority of the tumors are histopathological grade 1–2 (74%) and 
FIGO stage I disease (73%). The median follow-up time for censored cases is 92 (interquartile range, 78–122) 
months. There are 182 subjects who had disease recurrence and 147 that died during the follow-up time. Patient 
demographics are shown in Table 1.

The multivariable CPH models are compared with the OST models in prediction of the disease-specific 
survival using two feature sets in four patient cohorts. Variable selection for both feature sets is performed to 
optimize the CPH discrimination performance. Subsequently, the OST models are fit on the selected feature sets. 
The feature set I (FSI) consists of seven variables: age, FIGO stage, histological subgroup, ProMisE, deep myo-
metrial invasion, lymphovascular invasion, and tumor diameter > 3 cm. The feature set II (FSII) adds four more 
variables to the FSI, namely tumor diameter > 5 cm, peritoneal washing status, ER status and CD171 expression 
(L1CAM, postoperative L1 cell-adhesion molecule expression status).

Model discrimination.  The C-index scores of the CPH and OST models with the corresponding 95% con-
fidence intervals are shown in Table 2.

Model discrimination performance is improved by the inclusion of four additional biomarker variables, as 
indicated by higher C-index scores in the FSII versus FSI feature sets. The OST models trained on the FSII report 
the highest overall C-index in all ProMisE subcohorts, but the NSMP. Where the CPH model trained on the FSI 
has the best C-index of 0.8376, followed by the OST model with the C-index of 0.8368. We note that the CPH 
models trained on the FSI feature set report on average 2.2% higher C-index than the OST models. This trend is 
reversed in the FSII, where the OST models report on average 2.5% better C-index than the CPH models. The 
largest C-index increase in the OST models is 10.8% in the MMRd and 8.7% in the p53ab subcohorts, while in 
the CPH models it is 1.4% in the p53ab subcohort. Overall, non-linear optimal survival tree models benefit more 
from the additional biomarker data than the linear Cox proportional hazards models.

Model calibration.  We report the IBS scores with the 95% confidence intervals for both the CPH and the 
OST models at 12, 24, and 60 months, and the overall IBS at 136 months of follow-up in Fig. 2 and Supplemen-
tary Table 1.
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All models across all cohorts and feature sets show better (i.e. lower) IBS at shorter follow-up times, e.g. the 
IBS scores at 12 months are up to an order of magnitude lower than at 136 months of follow-up. Both OST and 
CPH model types generally report better IBS scores when trained on a larger feature set (FSII), as compared with 
the models trained on FSI. The OST models trained on the FSII report 15.4% better IBS at 1 year, 21.6% better 
IBS at 2 years, 21.0% better IBS at 5 years and 16.2% better IBS at the complete follow-up, as compared with the 
FSI-trained OST models. The IBS improvements for the CPH models trained on the FSII are 5.7% at 1 year, 7.5% 
at 2 years, 3.9% at 5 years and 4.4% at the complete follow-up, as compared with the FSI-trained models. Both 
model types are on par with each other on the FSI feature set, however, the OST models have better IBS scores 
than the CPH models on the FSII set. The OST models improve more from the additional biomarker data than 
the CPH models.

Model interpretation.  The hazard ratios with the corresponding 95% confidence intervals of the CPH 
models trained on a full cohort on two feature sets are in Table 3. It is important to note that the interpretation 
of the CPH model coefficients should be performed when the proportional hazards (PH) assumption is satisfied. 
We found evidence that according to the Schoenfeld residual test “non-endometrioid” and “estrogen receptor 
positive” terms do not satisfy the PH assumption in the CPH models built on the FSI and FSII feature sets. Upon 
the visual inspection, the violations are minor for both. Further, since both model types pass the global PH test 
with p values of 0.245 and 0.25, respectively, we deem it appropriate to ignore the PH violations.

Age, more advanced disease stages, larger tumor sizes, deep myometrial invasion, lymphovascular space inva-
sion, positive peritoneal washing, negative ER status and positive CD171 are associated with poor survival46,47. 
The MMRd and p53ab classes are identified as more aggressive EC forms than the NSMP class, with the HR of 
1.61 and 2 (1.8 and 1.88 in the FSII), respectively. Similarly, histological subgroup G3 is associated with a higher 
risk of death than the G1-G2 subgroup with the HR of 2.04 on the FSI and 1.66 on the FSII. Interestingly, the 
non-endometrioid EC subgroup is not robustly associated with a higher risk in either FSI or FSII feature sets, 

Table 1.   Patient demographics (n = 700). Feature set I consists of 7 features (FSI), and feature set II consists 
of 11 features (FSII). FIGO stage refers to the International Federation of Gynecology and Obstetrics staging 
system, ProMisE stands for Proactive Molecular Risk Classifier for Endometrial Cancer, MMRd – mismatch 
repair deficient, NSMP – no specific molecular profile, p53ab – p53 aberrant, ER – estrogen receptor status, 
CD171 – L1 cell adhesion molecule expression status (L1CAM).

Event No Yes

N 553 147

Feature set I (7 features)

Age (median [IQR]) 66.00 [59.00, 72.00] 71.00 [63.00, 78.00]

FIGO stage (%)

I 455 (82.3) 56 (38.1)

II 39 (7.1) 11 (7.5)

III 54 (9.8) 56 (38.1)

IV 5 (0.9) 24 (16.3)

Histological subgroup (%)

G1-2 463 (83.7) 65 (44.2)

G3 51 (9.2) 39 (26.5)

Non-endometrioid 39 (7.1) 43 (29.3)

ProMisE group (%)

MMRd 233 (42.1) 72 (49.0)

NSMP 274 (49.5) 34 (23.1)

p53ab 46 (8.3) 41 (27.9)

Deep myometrial invasion (%)
No 383 (69.3) 46 (31.3)

Yes 170 (30.7) 101 (68.7)

Lymphovascular invasion (%)
No 449 (81.2) 66 (44.9)

Yes 104 (18.8) 81 (55.1)

Tumor diameter > 3 cm (%)
No 261 (47.2) 22 (15.0)

Yes 292 (52.8) 125 (85.0)

Feature set II (Feature set I with 4 additional features)

Tumor diameter > 5 cm (%)
No 469 (84.8) 77 (52.4)

Yes 84 (15.2) 70 (47.6)

Peritoneal washing (%)
Negative 541 (97.8) 113 (76.9)

Positive 12 (2.2) 34 (23.1)

ER (%)
Negative 52 (9.4) 49 (33.3)

Positive 501 (90.6) 98 (66.7)

CD171 (%)
Negative 507 (91.7) 99 (67.3)

Positive 46 (8.3) 48 (32.7)
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Table 2.   C-index of the Cox proportional hazards (CPH) models vs optimal survival tree (OST) models 
using. Two feature sets are: FSI (7 features) and FSII (11 features). Models in bold perform the best in their 
corresponding cohorts. NSMP refers to no specific molecular profile subtype, MMRd – mismatch repair 
deficient, p53ab – p53 aberrant. 95% confidence intervals (CI95) are calculated using 1,000 iterations of the 
ordinary bootstrap with replacement.

Feature Set Model Cohort C-index CI95

I
CPH

All

0.8425 0.0653

II 0.8489 0.0637

I
OST

0.8493 0.0564

II 0.8586 0.0607

I
CPH

NSMP

0.8376 0.1727

II 0.8325 0.1772

I
OST

0.8368 0.1468

II 0.8284 0.1542

I
CPH

MMRd

0.8200 0.0874

II 0.8251 0.0877

I
OST

0.7886 0.0865

II 0.8843 0.0707

I
CPH

p53ab

0.7636 0.1508

II 0.7744 0.1541

I
OST

0.7246 0.1470

II 0.7936 0.1245

Figure 2.   Integrated Brier score (IBS) at 1 year, 2 years, 5 years and 136 months (all) for models trained on 
four patient cohorts, namely the full cohort, MMRd (mismatch repair deficient), NSMP (no specific molecular 
profile) and p53ab (p53 aberrant). KM is a non-parametric Kaplan–Meier estimator that may be used as a 
reference for the parametric models. Cox proportional hazards (CPH) and optimal survival tree (OST) models 
are trained on two feature sets: FSI with 7 features and FSII with 11 features. Error bars indicate 95% confidence 
intervals calculated using ordinary bootstrap with replacement, repeated 1000 times.
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with HR of 1.35, p value 0.24 and HR of 0.95, p value 0.87, respectively. This ambiguity in assessing the survival 
differences between type I and type II tumors has been previously reported in the literature48,49.

We next explore how the tree models may supplement conventional linear methods in the interpretation of 
EC risk factors by studying the OST and CPH model types trained on the p53ab subcohort and the FSII feature 
set. We focus on the p53ab subgroup (n = 87), as it shows the largest relative improvement in the C-index from 
the additional biomarker data in the CPH models (0.7636 vs 0.7744) and the second largest in the OST models 
(0.7246 vs 0.7936). The CPH IBS values improve by 3% in FSII, whereas for the OST model the improvement is 
19%. The HR scores with the 95% confidence intervals of the FSII-trained CPH model are in Table 4. The deci-
sion tree for the FSII-trained OST model is in Fig. 3.

The p53ab CPH model reports a relatively high C-index of 0.7744, but the model coefficients are not always 
informative and require additional validation. For instance, HR 95% confidence intervals of the “FIGO stage” 
terms do not have an upper bound and all the coefficients’ p values are above the 0.05 threshold of statistical 
significance (Table 4). Therefore, it is not advised to use this model as is for the downstream tasks that require 
model interpretation, such as designing nomograms to estimate event probabilities in a clinical setting. The p53ab 

Table 3.   Hazard ratios (HR) of the Cox proportional hazards model trained on the full cohort using 7 features 
(FSI) and 11 features (FSII) with Wald 95% confidence intervals and log-rank test p values. FIGO stage refers 
to the International Federation of Gynecology and Obstetrics staging system, ProMisE stands for Proactive 
Molecular Risk Classifier for Endometrial Cancer, MMRd – mismatch repair deficient, NSMP – no specific 
molecular profile, p53ab – p53 aberrant, ER – estrogen receptor status, and CD171 – L1 cell adhesion molecule 
(L1CAM).

Term HR on FSI p value HR on FSII p value

Age 1.04 (1.02–1.06) 1.78E−05 1.04 (1.02–1.06) 9.73E−06

FIGO stage II 1.33 (0.68–2.58) 4.08E−01 1.33 (0.68–2.61) 4.07E−01

FIGO stage III 2.73 (1.78–4.19) 4.06E−06 2.2 (1.4–3.47) 6.80E−04

FIGO stage IV 7.85 (4.35–14.16) 7.52E−12 3.81 (1.9–7.63) 1.64E−04

ProMisE MMRd 1.61 (1.05–2.47) 3.07E−02 1.8 (1.17–2.77) 7.77E−03

ProMisE p53ab 2 (1.2–3.32) 7.57E−03 1.88 (1.13–3.14) 1.51E−02

Histological subgroup G3 2.04 (1.32–3.16) 1.29E−03 1.66 (1.05–2.63) 2.99E−02

Histological subgroup Non-endometrioid 1.35 (0.82–2.21) 2.40E−01 0.95 (0.54–1.68) 8.70E−01

Deep myometrial invasion Yes 1.25 (0.831.88) 2.89E−01 1.13 (0.74–1.73) 5.69E−01

Lymphovascular invasion Yes 1.94 (1.35–2.79) 3.45E−04 2.05 (1.42–2.97) 1.25E−04

Tumor diameter > 3 cm Yes 2.35 (1.44–3.83) 6.49E−04 2.35 (1.37–3.88) 1.39E−03

Tumor diameter > 5 cm Yes 1.29 (0.88–1.9) 1.89E−01

Peritoneal washing positive 2.73 (1.68–4.43) 4.95E−05

ER positive 0.7 (0.45–1.09) 1.14E−01

CD171 positive 1.37 (0.97–2.17) 1.78E−01

Table 4.   Hazard ratios (HR) of the p53ab subcohort Cox proportional hazards model trained on the FSII with 
Wald 95% confidence intervals and log-rank test p values. FIGO stage refers to the International Federation 
of Gynecology and Obstetrics staging system, ProMisE stands for Proactive Molecular Risk Classifier 
for Endometrial Cancer, MMRd – mismatch repair deficient, NSMP – no specific molecular profile, p53ab 
– p53 aberrant, ER – estrogen receptor status, and CD171 – L1 cell adhesion molecule expression status 
(L1CAM).

Term HR on FSII p value

Age 1.02 (0.98–1.07) 3.10E−01

FIGO stage II 106.52 (0-Inf) 1.00E+00

FIGO stage III 6417.32 (0-Inf) 1.00E+00

FIGO stage IV 0 (0-Inf) 1.00E+00

Histological subgroup G3 1.08 (0.35–3.36) 8.90E−01

Histological subgroup Non-endometrioid 1.25 (0.46–3.38) 6.70E−01

Deep myometrial invasion Yes 1.28 (0.55–2.98) 5.60E−01

Lymphovascular invasion Yes 1.19 (0.57–2.52) 6.40E−01

Tumor diameter > 3 cm Yes 2.74 (0.88–8.51) 8.00E−02

Tumor diameter > 5 cm Yes 1.13 (0.52–2.46) 7.60E−01

Peritoneal washing positive 1.94 (0.82–4.58) 1.30E−01

ER positive 1.22 (0.56–2.65) 6.20E−01

CD171 positive 1.12 (0.55–2.3) 7.50E−01
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OST model reports a C-index of 0.7936, and the decision tree path recapitulates some of the existing clinical 
knowledge (Fig. 3). The OST model selects the CD171 status (L1CAM, L1 cell adhesion molecule expression) as 
the most informative variable to stratify the cohort on and marks the estrogen receptor status as an important risk 
factor in the p53ab group. Significance of the ER and CD171 biomarkers in the non-endometrioid p53 aberrant 
tumors, which are overrepresented in the p53ab ProMisE subcohort with 49.5% of subjects belonging to the 
non-endometrioid EC subtype versus 11.7% in the full cohort, has been previously reported47,50,51. This analysis 
demonstrates how tree-based ML can supplement and even supersede conventional Cox regression in the EC 
risk assessment if routinely collected clinical data can be enriched with biomarker information.

Discussion
We have trained the CPH and OST models on the full, MMRd, NSMP and p53ab ProMisE subcohorts using 
clinical and extended feature sets. Linear CPH and non-linear OST models trained on seven clinical variables 
report comparable discrimination performance with the C-index of 0.8425 vs 0.8493 in the complete cohort, and 
0.8376 vs 0.8368 in the NSMP subcohort. Model calibration scores are also similar with a 5-year IBS of 0.0677 vs 
0.0666 in the full cohort and 0.0309 vs 0.0314 in the NSMP subcohort. In contrast, the CPH models have a better 
discrimination performance than the OST models with the C-index of 0.82 vs 0.7886 in the MMRd subcohort, 
and 0.7636 vs 0.7246 in the p53ab subcohort. The CPH models are as well-calibrated as the OST models in these 
subcohorts with the 5-year IBS of 0.0736 vs 0.0752 and 0.1467 vs 0.1508, respectively. Considering comparable 
calibration and better discrimination performance, we recommend the Cox proportional hazards regression over 
the optimal survival tree models for prognostic EC modelling using patient clinical data.

By enriching the clinical variables with biomarker information, namely estrogen receptor and L1 cell adhe-
sion molecule expression status indicators, peritoneal washing status and tumor size < 5 cm, we improve the dis-
crimination and calibration performance of the CPH and OST models. The OST models better utilize additional 
features and are overall the best EC risk assessment models in the complete (C-index of 0.8586, IBS at 5 years of 
0.0573), p53ab (C-index of 0.7936, IBS at 5 years of 0.1185) and MMRd subcohorts (C-index of 0.8843, IBS at 
5 years of 0.0416). Further, we show how interpretable OST decision trees may offer insights into the molecular 
mechanisms of the EC, where the conventional CPH analysis falls short. The p53ab OST model trained on the 
extended feature set prioritize the L1 cell adhesion molecule and estrogen receptor status indicators as important 
predictors in the non-endometrioid p53 aberrant tumors. While the p53ab CPH model reports infinitely wide 
95% confidence intervals for the FIGO stages and no model coefficients have p values below the 0.05 threshold of 
statistical significance. Therefore, due to overall good discrimination and calibration performance, as well as the 
model interpretability through the decision path analysis, we recommend the OST method over the CPH regres-
sion in the endometrial cancer risk assessment, if patient clinical profiles can be enriched with biomarker data.

There are several limitations in our study. Firstly, better prognostic survival models could be created if we 
had access to an external validation cohort52,53. In general, we hope that the research community could share 
anonymized patient datasets more freely, as open-access initiatives contribute to the development of better prog-
nostic prediction models54. Further, in addition to the IBS, we are interested in exploring other model calibration 
measures, such as the integrated calibration index or standardized mortality ratio55. The third limitation stems 
from the methodological difficulties in the assessment of data imputation methods and their downstream effects. 
In this work we did not perform any formal tests to identify the missingness type, assuming missing at random 
for all explanatory covariates56. We performed an ad hoc assessment of imputation quality by comparing imputed 

Figure 3.   Optimal survival tree for the p53ab subcohort (n = 87) trained on the FSII set consisting of 11 
features. Colors indicate leaf (terminal) nodes. Darker hues denote shorter expected survival measured in 
months and calculated via the integral of a survival function. CD171 refers to the L1 cell adhesion molecule 
(L1CAM) expression status, FIGO stage is a shorthand for the International Federation of Gynecology and 
Obstetrics staging system, ER – estrogen receptor status.
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variable distributions with those in the complete case cohorts. More robust and comprehensive methods for the 
assessment of data imputation techniques are needed57.

Conclusion
We show that the Cox proportional hazards and optimal survival tree models are well-suited for the prognostic 
survival modeling of endometrial carcinoma. The Cox proportional hazards regression is the method of choice 
for the EC risk assessment on the clinical feature set, consisting of seven variables. Extending clinical variables 
with the ER and L1CAM status indicators, tumor diameter > 5 cm and peritoneal washing status, improves the 
discrimination and calibration performance in both model types. Due to the overall best C-index and IBS scores, 
as well as visually interpretable structure, we recommend optimal survival tree models if clinical variable set can 
be supplemented with additional biomarker data. Finally, we stress the importance of reporting model discrimi-
nation and calibration metrics to promote further adoption of ML prognostic models into the clinical practice.

Data availability
The code and individual survival probabilities estimated using the OST and CPH models are available on https://​
github.​com/​netph​ar/​survi​val_​analy​sis. The datasets used and/or analyzed during the current study available from 
the corresponding author on reasonable request.
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