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An improved prognostic model 
for predicting the mortality 
of critically ill patients: 
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Hongda Chen 4* & Jinwen Cai 5*

A simple prognostic model is needed for ICU patients. This study aimed to construct a modified 
prognostic model using easy-to-use indexes for prediction of the 28-day mortality of critically ill 
patients. Clinical information of ICU patients included in the Medical Information Mart for Intensive 
Care III (MIMIC-III) database were collected. After identifying independent risk factors for 28-day 
mortality, an improved mortality prediction model (mionl-MEWS) was constructed with multivariate 
logistic regression. We evaluated the predictive performance of mionl-MEWS using area under the 
receiver operating characteristic curve (AUROC), internal validation and fivefold cross validation. A 
nomogram was used for rapid calculation of predicted risks. A total of 51,121 patients were included 
with 34,081 patients in the development cohort and 17,040 patients in the validation cohort (17,040 
patients). Six predictors, including Modified Early Warning Score, neutrophil-to-lymphocyte ratio, 
lactate, international normalized ratio, osmolarity level and metastatic cancer were integrated to 
construct the mionl-MEWS model with AUROC of 0.717 and 0.908 for the development and validation 
cohorts respectively. The mionl-MEWS model showed good validation capacities with clinical utility. 
The developed mionl-MEWS model yielded good predictive value for prediction of 28-day mortality in 
critically ill patients for assisting decision-making in ICU patients.
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The health condition of intensive care unit (ICU) patients can vary radically depending on many factors, includ-
ing previous health history, underestimation of illness severity, efficiency of care, and response to treatment1. 
Although great strides have been made in recent years in the field of critical care medicine, the mortality rate 
of ICU patients has seen only a small decrease and still remains around 20–40% due to the highly complex and 
heterogeneous diseases of these patients2,3.

In clinical practice, ICU prognostic models are critical for correctly evaluating and identifying high-risk ICU 
patients. This information helps clinicians to make appropriate medical judgements and prevent ICU deaths 
while also ensuring proper utilization of limited healthcare resources, especially in low- and middle-income 
countries (LMICs)4–6. These systems use bedside and digital distinguishing tools to identify the risk of serious 
aggravation and death in critical patients and can be used to help capture the intensity of resource utility and gain 
a better understanding of what constitutes true ICU-acquired organ dysfunction7. The predictive efficiencies of 
the commonly used scoring systems are reported in Table 18–10. Among these systems, the Acute Physiology and 
Chronic Health Evaluation (APACHE)-II combines three critical domains to predict the mortality of patients: 
demographic features, such as age and sex; an evaluation of the patient’s chronic health status and admission 
diagnosis; and the worst values of 12 physiological variables during the first 24 h following ICU admission. 
However, use of the APACHE-II is time consuming and requires considerable medical expenses, because more 
than 20 clinical variables are needed to complete the scoring, which should be finished within 24 h after admis-
sion. Similar to the APACHE-II, a sequential organ failure assessment focusing on multiple-organ dysfunction 
is also inconvenient for rapidly assessing ICU patients. Therefore, it may be impractical to apply these scoring 
systems widely in resource-restricted settings as in LMICs11.

The Modified Early Warning Score (MEWS) is a simple and efficient track-and-trigger system for identifying 
patients with acute illness. It is derived from five common and vital physiological signs: respiratory rate, body 
temperature, systolic blood pressure, pulse rate, and level of consciousness. This score is helpful for predicting 
ICU admission and in-hospital mortality through the detection of physiological abnormalities12. The MEWS has 
advantages in application as it uses easily measurable and available parameters, does not increase the burden of 
disease, and is suitable for resource-limited settings. In the Surviving Sepsis campaign guidelines, the MEWS 
is recommended as a screening tool for identifying and managing critically ill patients13. However, the MEWS 
has been determined to be inferior to the APACHE II in terms of predictive efficacy for ICU mortality. A com-
parative study regarding the predictive efficacy for 28-day mortality in shock patients reported area under the 
receiver operating characteristic curve (AUROC) values of 0.785 for the APACHE-II and 0.614 for the MEWS10.

An ideal risk scoring system for critically ill patients should be easy to use, with accurate and informative 
performance as well as a low cost in order to improve the treatment of ICU patients. However, development of 
such a system due has been difficult due to the highly complex and heterogeneous diseases of ICU patients. Some 
convenient laboratory indexes such as the neutrophil-to-lymphocyte ratio (NLR), red cell distribution width 
(RDW), lactate (lac) concentration, and osmolarity have been widely applied for the prediction of ICU mortality 
in multiple patient populations in the past few years14–17. Some reports also have shown that the combination of a 
scoring system with simple laboratory indexes can improve the predictive efficacy of traditional scoring systems. 
For example, in a 28-day mortality analysis of 292 shock patients, an innovative MEWS based on the conven-
tional MEWS, age, and transcutaneous oxygen saturation (AUROC = 0.696) was shown to be superior to the 
conventional MEWS (AUROC = 0.614; p < 0.05)10. Therefore, the integration of a traditional scoring system and 
simple laboratory indexes might offer a scoring system with a high predictive efficacy suitable for utility in LMICs.

In this study, we developed an improved MEWS scoring system using convenient data, including the MEWS, 
NLR, lac concentration, international normalized ratio (INR), osmolarity level, and presence of metastatic can-
cer, by analyzing the correlation of each variable with 28-day ICU mortality. We then compared the predictive 
efficacies of different scoring systems for 28-day mortality in a development group and verified our developed 
model in a validation group using clinical data of ICU patients included in the Medical Information Mart for 
Intensive Care III (MIMIC-III) database.

Table 1.   Comparison of scoring systems for predicting ICU mortality. APACHE II Acute Physiologic 
Assessment and Chronic Health Evaluation II, SOFA Sequential Organ Failure Assessment, SAPS-II Simplified 
Acute Physiology Score II, OASIS Oxford Acute Severity of Illness Score, LODS Logistic Organ Dysfunction 
System, MEWS Modified Early Warning System.

Scoring systems Patients Mortality ROC Significance Reference

APACHE II 2054 septic patients in ICU between June 2009 and February 
2014 11.8% 0.80 APACHE II scores in septic patients were very strong predic-

tors of hospital mortality
8

SAPS II
2470 cases of sepsis recorded in the MIMIC-III database 
from 2001 to 2012 20.4%

0.768 The scores of SOFA, SAPS-II, OASIS, and LODS can predict 
ICU mortality in patients with sepsis, but SAPS-II and OASIS 
scores have better predictive value than SOFA and LODS 
scores

9SOFA 0.757

OASIS 0.739

LODS

MEWS 292 shock patients 45.89% 0.614 Conventional MEWS but inferiority to the APACHE II 10
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Methods
Study design.  This study analyzed a retrospective cohort of patients admitted to the ICU (aged 14 years 
or older). A new MEWS scoring system was developed with the aim of better predicting the 28-day all-cause 
mortality of critically ill patients with a validation display in a nomogram. The datasets used in this study were 
derived from the publicly available database MIMIC-III (version 1.4), which contains high-quality health-related 
data from patients who were admitted to the ICU of the Beth Israel Deaconess Medical Center between 2001 
and 2012. After completing the National Institutes of Health web-based training course, we obtained approval to 
access the database (Certification Number: 37764466). Informed consent was not required because all protected 
health information had been de-identified.

Study population.  We reviewed the discharge summaries of all patients in the MIMIC-III database admit-
ted to the ICU between 2001 and 2012. All ICU patients aged > 14 years old with a measured MEWS within 24 h 
after ICU admission were included in this study. Patients who met any of the following criteria were excluded: 
(1) age less than 14 years; (2) readmission in the same hospitalization (only data from the first ICU admission 
were included in forming the final cohort); (3) unavailability of MEWS due to omission of a measurement within 
24 h after ICU admission. The screened ICU patients were eligible for subsequent analysis.

Data extraction, management, and processing.  Demographic, clinical, and laboratory data and 
risk scoring results were extracted with structured query language using PostgreSQL tools (version 9.6) or cal-
culated from the following tables: ADMISSIONS, ICUSTAYS, CHARTEVENTS, DIAGNOSIS_ICD, d_items, 
d_icd_diagnoses, LABEVENTS, PATIENTS, prescriptions, and Materialized Views. The extracted items for 
demographic, clinical, and laboratory data and risk scoring results in the database are listed in Table 2. The 
data processing, including missing data imputation and Winsorizing, was only performed on the development 
set, and the validation set was used to validate the predictive performance of the developed model. The worst 
values for lab parameters were selected if they were measured multiple times within 48 h before and after ICU 
admission. The body mass index (BMI) was calculated as weight (kg)/height (m)2, and osmolarity was calcu-
lated as (2 × sodium + potassium) + (glucose/18) + (blood urea nitrogen/2.8). The risk scoring systems including 
the APACHE-II and MEWS. The APACHE II scoring system is based on 12 physiological variables (tempera-
ture, mean arterial pressure, heart rate, respiratory rate, alveolar-arterial oxygen tension difference [fraction of 
inspired oxygen (FiO2 > 50%)] or partial pressure of oxygen in the arterial blood (PaO2; FiO2 < 50%), arterial pH 
or HCO3, serum sodium, serum potassium, serum creatinine, hematocrit, white blood cell count, and the Glas-
gow Coma Scale score, a chronic health evaluation and age adjustment score. Each variable was calculated using 
the worst values for these parameters recorded during the first 24 h in the ICU; the range for the total Apache 
II score is 0–71 points. The APACHE-II scores for all ICU patients were acquired with the SQL code from the 
Materialized Views of the MIMIC-III database. The MEWS was calculated according to Table 37 with the worst 
values within 24 h after ICU admission selected for the parameter used for the MEWS evaluation.

Because the true ages of patients over 89 years old were omitted due to the privacy policy of the MIMIC 
database, we selected age × 90/300 as a surrogate age for those patients. In data processing, we used multiple 

Table 2.   Demographic, clinical, laboratory and risk scoring systems extracted from the database.

Demographic information

Clinical characteristics 
(preexisting chronic medical 
conditions or comorbidities) Laboratory parameters Risk scoring systems

Age Congestive heart failure Other neurological abnormality White blood cell counts (WBC) International normalized ratio 
(Inr) Apache II

Gender Cardiac arrhythmias Psychoses Neutrophil-to-lymphocyte ratio 
(NLR) Ph

BMI Pulmonary circulation abnor-
mality Depression Hemoglobin (HGB) Pao2

Admission date into ICU Valvular disease Solid tumor Red cell distribution width 
(RDW), PaCO2

Discharge date out of ICU Peripheral vascular disease Metastatic cancer Platelets SO2

Date of death

Hypertension Lymphoma PaO2/FiO2

Application of vasoactive drug 
used within 48 h before and after 
ICU admission)

Coagulopathy Total bilirubin (TBIL) Lactate

Chronic pulmonary disease Blood loss anemia Aspartate transaminase (AST), Sodium

Liver disease Deficiency anemias Alanine Transaminase (ALT) Potassium

Peptic ulcer Alcohol abuse Blood glucose (GLU)

Renal failure Drug abuse Blood urea nitrogen (BUN)

Diabetes Rheumatoid arthritis Serum creatinine (SCR)

Hypothyroidism Acquired immune deficiency 
syndrome Prothrombin time (PT),

Paralysis Activated partial thromboplastin 
time (APTT)
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imputation to fulfill missing values based on patients with known values that were most similar to those patients 
with missing values. The missing data were predicted by the relationship between variables, and multiple com-
plete datasets were generated by the Monte Carlo method. After analyzing these datasets, the analysis results were 
summarized. After imputations, we selected Winsor means to duplicate outliers with the command of winsor2 
with replace cuts (1,99). To further examine the effect of osmolarity, the data were additionally categorized into 
different levels for analysis in the logistic regression models, which could facilitate quick individualized scoring 
for further validation and clinical utility as follows: osmolarity level 1, < 300 mmoL/L; level 2, ≥ 300 mmoL/L.

Development of the risk prediction model and model validation.  The eligible patients were ran-
domly assigned at a ratio of 2:1 to either the derivation cohort for model development or the internal validation 
cohort for model verification. We performed an initial analysis of all available variables between survivors and 
nonsurvivors in the development and validation cohorts. Univariate and multivariate logistic analyses were used 
to identify independent predictors for 28-day all-cause mortality of critically ill patients and to develop the 
predictive model. Collinearity analysis was used to avoid potential multicollinearity of the predictive model. 
The discriminative performance of the obtained predictive model was compared with that of the APACHE-II, 
MEWS, RDW, NLR, lac, and osmolarity in the development and validation groups based on AUROC and 95% 
confidence interval (CI) values. Calibration of the constructed model was assessed by the H/L C-statistic and 
calibration curves, and the accuracy of the constructed model was evaluated by the Brier score. Precision-recall 
area under the curve (PR-AUC) values were calculated for the constructed model and the APACHE-II using the 
validation cohort.

k‑Fold cross validation of the mionl‑MEWS score.  We performed k-fold cross-validation with five 
random folds for the total of 51,121 patients. We compared the AUROC, positive predictive value (PPV), and 
negative predictive value (NPV) values between the model and cross-validation to show the robustness of our 
model.

Nomogram development for the simplified prediction model.  A nomogram is a graphical tool that 
can be easily used by clinicians in a resource-limited environment, as no statistical software or online electronic 
calculator is required. In this study, a nomogram was formulated with clinical practicability based on the results 
for the obtained predictive model.

Statistical analysis.  All patients were divided into two cohorts (development vs. validation) with complete 
randomization. The distributions of continuous variables were assessed by the Kolmogorov–Smirnov test, and 
data with skewed distributions were log normalized. Normally distributed continuous variables were expressed 
as mean ± standard deviation (SD), and non-normally distributed continuous variables were expressed as 
median (interquartile range). Categorical variables were expressed as absolute values (percentages). Descriptive 
statistics from the development and validation cohorts were used to compare the baseline data between survi-
vors and nonsurvivors with the t test for normally distributed data, the Mann–Whitney U test for non-normally 
distributed data, and the chi-squared test for categorical variables. The covariates associated with 28-day all-
cause mortality were further identified with univariate and multivariate logistic regression analyses. For each 
variable, the unadjusted and adjusted odds ratios (ORs) were assessed and reported with p-values and 95% CIs. 
The multivariate logistic regression model (mionl-MEWS) was built using a forward selection modeling pro-
cess with a significance level of 0.05. The variables independently associated with 28-day mortality (metastatic 
cancer, MEWS, lac concentration, NLR, INR, and osmolarity level) were included in the final model. Further-
more, potential multicollinearity was tested using a mean variance inflation factor (VIF), where a value ≥ 10 
indicated multicollinearity. Additionally, we assessed the discriminative abilities of the different models based 
on AUROC values. We then applied the obtained model generated from the development dataset to the valida-
tion dataset and assessed the discriminative ability based on the AUROC and the calibration capacity based 
on the H/L C-statistic. We also generated the calibration curves and calculated the Brier scores for predicting 
mortality among both the development and validation cohorts. The PR-AUC was applied to evaluate the predic-
tive performance considering clinical application with the validation cohort. The robustness of the developed 
model was evaluated via k-fold cross validation. To enhance the clinical utility of the model, a nomogram was 
constructed based on the results of the multivariate analysis. All analyses were performed using Stata software 
(StataCorp. 2017, Stata Statistical Software: Release 15, College Station, TX: StataCorp LLC, version 14.0). A 
two-sided p < 0.05 was considered statistically significant.

Table 3.   Details of modified early warning score.

Score 3 2 1 0 1 2 3

Respiratory rate (min−1)  ≤ 9 9–14 15–20 21–29  ≥ 30

Heart rate (min−1)  ≤ 40 41–50 51–100 101–110 111–129  ≥ 130

Systolic BP (mmHg)  < 70 71–80 81–100 101–199  ≥ 200

Temperature (°C)  < 35 35–38.4  > 38.5

Neurological Alert Reacting to voice Reacting to pain Unresponsive
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Ethical approval and consent to participate.  Informed consent was not required because all protected 
health information had been de-identified.

Results
Study population and baseline characteristics.  According to the inclusion and exclusion criteria, 
1,444,795 ICU patients were selected from the MIMIC-III database. Of these, we excluded 1,301,179 cases as 
repeated ICU admissions, 32,089 patients with an age < 14 years, and 60,406 patients because the MEWS was not 
measured within 24 h before or after ICU admission. In total, 51,121 cases with sufficient data were included in 
the final analysis, including 28,742 male patients (55.52%) and 22,379 female patients (44.48%). The mean age 
of all patients was 74.80 ± 55.04 years. A total of 6825 patients died within 28 days, establishing an initial 28-day 
mortality rate of 13.35%. The detailed process of study population selection is shown in Fig. 1. Hypertension 
(54.68%) was the most common comorbidity, followed by cardiac arrhythmia (30.00%), diabetes (28.15%), and 
congestive heart failure (28.05%). In our study, 34,081 patients (66.67%) were randomly assigned to the develop-
ment cohort, and 17,040 patients (33.33%) were assigned to the validation cohort.

Development of a risk prediction model for 28‑day all‑cause mortality of ICU patients.  The 
28-day all-cause mortality percentages among critically ill patients were 13.39% in the development cohort 
(4069/30,399) and 13.61% in the validation cohort (2319/17,040). Significant differences in baseline clinical 
features, risk scores, and laboratory data were observed between survivors and nonsurvivors, as summarized in 
Tables 4 and 5. In the development cohort, nonsurvivors were predominantly male and compared with survi-
vors, they had a significantly higher incidence of chronic medical conditions or comorbidities such as congestive 
heart failure, cardiac arrhythmia, pulmonary circulation disease, vasoactive drug use, liver disease, renal failure, 
hypothyroidism, paralysis, other neurological disease, solid tumor, metastatic cancer, lymphoma, and coagulop-
athy; and had a significantly lower incidence of valvular disease, hypertension, diabetes, psychoses, depression, 
and alcohol or drug abuse. Compared with survivors, nonsurvivors also were older and had significantly higher 
values for length of ICU stay, APACHE-II score, MEWS, white blood cell count, RDW, NLR, platelet (PLT) 
count, total bilirubin level, INR, aspartate transaminase level, alanine transaminase level, prothrombin time, 
activated partial thromboplastin time, blood urea nitrogen level, serum creatinine level, blood glucose level, lac 
concentration, osmolarity, and sodium level. In addition, the nonsurvivors had significantly lower hemoglobin, 
pH, PaO2, PaCO2, SO2, and PaO2/FiO2 values compared with the survivors. No significant differences in the rates 
of peripheral vascular disease, chronic pulmonary disease, peptic ulcer, anemia due to blood loss, deficiency 
anemia, rheumatoid arthritis, or acquired immune deficiency syndrome were observed between survivors and 
nonsurvivors in the development cohort. However, significant differences in the incidence rates like congestive 
heart failure, valvular disease, peripheral vascular disease, anemia due to blood loss, rheumatoid arthritis, and 
acquired immune deficiency syndrome etc. were also observed between the survivors and nonsurvivors in the 
validation cohort. The baseline characteristics showed similar distributions between the development and vali-
dation cohorts, indicating the successful randomization in the present study.

Figure 1.   Study population and protocol flowchart. Flow chart illustrating the major steps in the development 
and validation of the mionl-MEWS model.
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Table 4.   Baseline characteristics and comparisons of demographics data, chronic medical conditions or 
comorbidities, risk scores and laboratory parameters of the study population between different survival status 
in development group. The normally-distributed continuous variables are shown as mean values and standard 
errors. The non-normally-distributed continuous variables are shown as medians. The categorical variables are 
shown as proportions of each subgroup. The comparison of baseline data between survivors and nonsurvivors 
is performed by t test for normally distributed data, the Mann–Whitney U test for non-normally distributed 
data, and the chi-squared test for categorical variables.

Survivors (n = 26,373)
Non-survivors 
(n = 4078) p Survivors (n = 26,373)

Non-survivors 
(n = 4078) p

Demographic data Risk scores

Age (years) 64.67 (52.15–76.59) 74.74 (61.24–83.59)  < 0.001 APACHE-II 39 (29–51) 59(45–71)  < 0.001

Body mass index (kg/m2) 27.99 (23.52–34.85) 26.72 (22.26–33.65)  < 0.001 MEWS 5 (4–7) 7(5–9)  < 0.001

Sex, n (%)  < 0.001 63.14 ± 17.04 71.30 ± 15.32

 Female 11,484 (43.62%) 1904 (46.79%) 31.64 ± 14.61 30.64 ± 14.90

 Male 14,846 (56.38%) 2165 (53.21%)

Length of ICU stay (days) 2.14 (1.22–4.14) 2.92 (1.46–6.16)  < 0.001

Chronic medical conditions or comorbidities Laboratory parameters

Heart and great vessel disease Blood routine examination

 Congestive heart failure 7320 (27.80%) 1506 (37.01%)  < 0.001

White blood cell counts 
(× 109/L) 13.49 ± 5.67 16.44 ± 7.37  < 0.001

Neutrophil to lympho-
cyte ratio 9.01 (5.52–12.73) 10.96(7.18–14.93)  < 0.001

 Cardiac arrhythmias 7763 (29.48%) 1581 (38.85%)  < 0.001 Hemoglobin (g/L) 115.53 ± 20.68 110.41 ± 21.10  < 0.001

 Pulmonary circulation 
disease 2041 (7.64%) 366 (8.99%) 0.006 Red cell distribution 

width (%) 15.06 ± 1.45 15.86 ± 1.63  < 0.001

 Valvular disease 4164 (15.81%) 558 (13.71%) 0.001 Platelet count (× 1012/L) 250.49 ± 94.90 251.93 ± 112.54  < 0.001

 Peripheral vascular 
disease 2762 (10.49%) 446 (10.96%) 0.363 Liver function test

 Hypertension 14,496 (56.95%) 2101 (51.63%)  < 0.001  Total bilirubin (mg/dL) 0.60 (0.40–0.90) 0.70(0.40–1.50)  < 0.001

 Use of vasoactive drug 
(− 48 to 48 h) 4614 (17.52%) 1131 (27.80%)  < 0.001  Aspartate transaminase 

(U/L) 30.00 (21.00–59.00) 52.00(27.00–143.00)  < 0.001

Chronic pulmonary 
disease 5325 (20.22%) 853 (20.96%) 0.275  Alanine transaminase 

(U/L) 25.00 (16.00–44.00) 34.00(19.00–86.00)  < 0.001

Digestive system diseases Coagulation function

 Liver disease 2058 (7.82%) 506 (12.44%)  < 0.001  International normal-
ized ratio 1.60 (1.20–2.70) 1.90(1.30–3.10)  < 0.001

 Peptic ulcer 30 (0.11%) 6 (0.15%) 0.563  Prothrombin time (s) 14.10 (13.00–15.80) 15.30(13.60–20.10)  < 0.001

Renal failure 4206 (15.97%) 811 (19.93%)  < 0.001  Activated partial 
thrombo-plastin time (s) 31.60 (27.00–43.80) 36.00(28.30–63.60)  < 0.001

Endocrine system diseases Kidney function

 Diabetes 7610 (28.90%) 1111 (27.30%) 0.036  Blood urea nitrogen 
(mg/dL) 19.00 (14.00–28.00) 31.00(20.00–49.00)  < 0.001

 Hypothyroidism 2740 (10.41%) 473 (11.62%) 0.019  Serum creatinine (mg/
dL) 1.00 (0.80–1.30) 1.40(1.00–2.40)  < 0.001

Neurological and psychiatric diseases Blood gas analysis

 Paralysis 927 (3.52%) 174 (4.28%) 0.016  PH 7.38 ± 0.08 7.36 ± 0.10  < 0.001

 Other neurological 
disease 3165 (12.02%) 614 (15.09%)  < 0.001  PaO2 (mmHg) 168.86 ± 107.28 148.34 ± 98.53  < 0.001

 Psychoses 1085 (4.12%) 101 (2.48%)  < 0.001  PaCO2 (mmHg) 41.56 ± 9.68 40.76 ± 11.91  < 0.001

 Depression 2504 (9.51%) 242 (5.95%)  < 0.001  SO2 (%) 97.00 (95.00–98.00) 97.00(93.00–98.00) 0.002

Tumor  PaO2/FiO2 276.74 ± 119.51 248.43 ± 127.06  < 0.001

 Solid tumor 1229 (4.67%) 257 (6.32%)  < 0.001  Lactate (mmol/L) 2.54 ± 1.43 3.32 ± 2.12  < 0.001

 Metastatic cancer 1341 (5.09%) 537 (13.20%)  < 0.001 Electrolyte

 Lymphoma 488 (1.85%) 128 (3.15%)  < 0.001  Sodium (mmol/L) 139.64 ± 3.91 140.67 ± 5.52  < 0.001

Hematological diseases  Potassium (mmol/L) 4.81 ± 0.90 4.80 ± 0.95 0.501

 Coagulopathy 2809 (10.67%) 817 (20.08%)  < 0.001  Osmolarity 305.28 ± 9.31 310.84 ± 12.66  < 0.001

 Blood loss anemia 575 (2.18%) 82 (2.02%) 0.491   ≥ 300 (mmoL/L) 71.35% 83.68%  < 0.001

 Deficiency anemia 5129 (19.48%) 755 (18.55%)  = 0.165  Blood glucose (mg/dL) 162.03 ± 64.05 187.29 ± 82.07  < 0.001

 Alcohol abuse 2025 (7.69%) 249 (6.12%)  < 0.001  < 0.001

 Drug abuse 894 (3.40%) 70 (1.72%)  < 0.001

 Rheumatoid arthritis 810 (3.08%) 118 (2.90%) 0.543

 Acquired immune 
deficiency syndrome 
(AIDS)

292 (1.11%) 36 (0.88%) 0.198
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Table 5.   Baseline characteristics and comparisons of demographics data, chronic medical conditions or 
comorbidities, risk scores and laboratory parameters of the study population between different survival status 
in validation group.

Survivors (n = 14,721)
Non-survivors 
(n = 2319) p Survivors (n = 14,721)

Non-survivors 
(n = 2319) p

Demographic data Risk scores

Age (years) 64.20 (51.29–76.55) 75.00 (61.92–83.62)  < 0.001 APACHE-II 38 (28–50) 58 (44–71)  < 0.001

Body mass index (kg/m2) 27.28 (23.71–31.87) 26.17 (22.41–30.81)  < 0.001 MEWS 5 (3–7) 7 (5–9)  < 0.001

Sex, n (%) 0.057

 Female 6292 (42.74%) 1040 (44.84%)

 Male 8429 (57.26%) 1279 (55.15%)

Length of ICU stay (days) 2.09 (1.21–3.96) 2.84 (1.33–6.04)  < 0.001

Chronic medical conditions or comorbidities Laboratory parameters

Heart and great vessel disease Blood routine examination

 Congestive heart failure 3954 (26.86%) 825 (35.58%)  < 0.001

 White blood cell counts 
(× 109/L) 12.40 (9.40–16.20) 15.00 (10.80–20.00)  < 0.001

 Neutrophil to lympho-
cyte ratio 5.76 (3.32–10.39) 8.82 (5.15–16.73)  < 0.001

 Cardiac arrhythmias 4298 (29.20%) 868 (37.43%)  < 0.001  Hemoglobin (g/L) 115.92 ± 26.84 111.01 ± 24.04  < 0.001

 Pulmonary circulation 
disease 1032 (7.01%) 196 (8.45%) 0.013

 Red cell distribution 
width (%) 14.62 ± 1.85 15.89 ± 2.38  < 0.001

 Platelet count (× 1012/L) 252.35 ± 107.02 249.65 ± 125.56  < 0.001

 Valvular disease 2249 (15.28%) 307 (13.24%) 0.011 Liver function test

 Peripheral vascular 
disease 1595 (10.83%) 265 (11.43%) 0.395  Total bilirubin (mg/dL) 0.60 (0.40–0.90) 0.80 (040–1.60)  < 0.001

 Hypertension 8117 (55.14%) 1287 (55.50%) 0.747  Aspartate transaminase 
(U/L) 31.00 (21.00–62.00) 54.00 (27.00–142.00)  < 0.001

 Use of vasoactive drug 
(− 48 to 48 h) 2458 (16.70%) 618 (26.65%)  < 0.001  Alanine transaminase 

(U/L) 25.00 (16.00–46.00) 18.00 (34.00–95.00)  < 0.001

Chronic pulmonary 
disease 2942 (19.99%) 523 (22.55%) 0.004 Coagulation function

Digestive system diseases  International normal-
ized ratio 1.20 (1.10–1.50) 1.50 (1.20–2.20)  < 0.001

 Liver disease 1199 (8.14%) 266 (11.47%)  < 0.001  Prothrombin time (s) 14.00 (13.00–15.60) 15.60 (13.70–19.90)  < 0.001

 Peptic ulcer 28 (0.10%) 0 (0.00%) 0.036  Activated partial 
thrombo-plastin time (s) 31.20 (26.80–41.90) 35.35 (28.20–61.45)  < 0.001

Renal failure 2347 (15.94%) 436 (18.80%) 0.001 Kidney function

Endocrine system diseases  Blood urea nitrogen 
(mg/dL) 19.00 (14.00–27.00) 30.00 (20.00–50.00)  < 0.001

 Diabetes 4116 (27.96%) 634 (27.34%) 0.536  Serum creatinine (mg/
dL) 1.00 (0.80–1.30) 1.35 (0.90–2.50)  < 0.001

 Hypothyroidism 1432 (9.73%) 242 (10.44%) 0.287  Blood gas analysis

Neurological and psychiatric diseases  PH 7.38 ± 0.08 7.35 ± 0.12  < 0.001

 Paralysis 538 (3.65%) 125 (5.39%)  < 0.001  PaO2 (mmHg) 171.62 ± 113.06 149.52 ± 106.68  < 0.001

 Other neurological 
disease 1756 (11.93%) 374 (16.13%)  < 0.001  PaCO2 (mmHg) 41.93 ± 11.14 42.20 ± 15.69 0.020

 Psychoses 644 (4.37%) 68 (2.93%)  < 0.001  SO2 (%) 97.00 (95.00–98.00) 97.00 (93.00–98.00) 0.002

 Depression 1398 (9.50%) 139 (5.99%)  < 0.001  PaO2/FiO2 279.15 ± 132.07 253.58 ± 146.87  < 0.001

Tumor  Lactate (mmol/L) 2.10 (1.40–3.20) 2.70 (1.60–5.60)  < 0.001

 Solid tumor 665 (4.52%) 144 (6.21%)  < 0.001 Electrolyte

 Metastatic cancer 668 (4.54%) 306 (13.20%)  < 0.001  Sodium (mmol/L) 139.69 ± 4.44 141.20 ± 7.08  < 0.001

 Lymphoma 285 (1.94%) 64 (2.76%) 0.009  Potassium (mmol/L) 4.80 ± 0.98 4.87 ± 1.11  = 0.092

Hematological diseases  Osmolarity 303.20 ± 10.82 316.55 ± 20.47  < 0.001

 Coagulopathy 1566 (10.64%) 401 (17.29%)  < 0.001   ≥ 300 (mmoL/L) 61.58% 81.23%  < 0.001

 Blood loss anemia 317 (2.15%) 49 (2.11%) 0.901  Blood glucose (mg/dL) 168.04 ± 93.44 202.26 ± 112.64  < 0.001

 Deficiency anemia 2795 (18.99%) 396 (17.08%) 0.028

 Alcohol abuse 1180 (8.02%) 152 (6.55%) 0.015

 Drug abuse 586 (3.98%) 35 (1.51%)  < 0.001

 Rheumatoid arthritis 444 (3.02%) 75 (3.23%) 0.570

 Acquired immune 
deficiency syndrome 
(AIDS)

156 (1.06%) 28 (1.21%) 0.522



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21450  | https://doi.org/10.1038/s41598-022-26086-1

www.nature.com/scientificreports/

Next, we included the variables that differed significantly between survivors and nonsurvivors of the devel-
opment cohort in univariate logistic regression analysis. The results presented in Table 6 demonstrated that all 
selected variables were significantly associated with 28-day mortality in the univariate logistic regression analysis, 
similar to the results of the abovementioned univariate analyses. The demographic characteristics with the three 
largest OR values were: age, OR = 1.033, p < 0.001; BMI, OR = 0.995, p < 0.001; and sex, OR = 0.880, p < 0.001. The 
three chronic medical conditions or comorbidities with the largest OR values were: metastatic cancer, OR = 2.833, 
p < 0.001; coagulopathy, OR = 2.100, p < 0.001; and requirement of vasoactive drug therapy, OR = 1.812, p < 0.001. 
For risk scores and laboratory parameters, we selected the indicators with a low cost and a high frequency of use 
in the ICU. For example, the MEWS can be obtained by simple calculation with the parameters on the nursing 
record sheet; the RDW and NLR can be obtained via routine blood tests; and the lac concentration, INR, and 
osmolarity can be obtained using portable testing tools. Regarding the lac concentration, INR, RDW, NLR, and 
osmolarity, significantly increasing 28-day mortality rates were observed in patients with a lower BMI or a higher 

Table 6.   Univariate analyses of factors associated with 28-day ICU mortality rate in development cohort.

Unadjusted OR 95% CI p Unadjusted OR 95% CI p

Demographic data Risk scores

Age (years) 1.033 1.031–1.035  < 0.001 MEWS 1.306 1.289–1.323  < 0.001

Body mass index 0.995 0.993–0.997  < 0.001

Sex 0.880 0.823–0.940  < 0.001

Chronic medical conditions or comorbidities Laboratory parameters

Heart and great vessel disease Blood routine examination

 Congestive heart 
failure 1.526 1.424–1.635  < 0.001  White blood cell 

counts (× 109/L) 1.074 1.065–1.082  < 0.001

 Cardiac arrhythmias 1.520 1.419–1.627  < 0.001  Neutrophil to lympho-
cyte ratio 1.069 1.062–1.075  < 0.001

 Pulmonary circulation 
disease 1.176 1.047–1.322 0.007  Hemoglobin (g/L) 0.889 0.865–0.914  < 0.001

 Valvular disease 0.846 0.769–0.931 0.001  Red cell distribution 
width (%) 1.396 1.366–1.426  < 0.001

 Hypertension 0.872 0.816–0.931  < 0.001  Platelets (× 1012/L) 1.000 1.000–1.001 0.429

 Use of vasoactive drug 
(− 48 to 48 h) 1.812 1.680–1.954  < 0.001 Liver function test

Digestive system diseases  Total bilirubin (mg/
dL) 1.222 1.186–1.259  < 0.001

 Liver disease 1.675 1.510–1.857  < 0.001  Aspartate transami-
nase (U/L) 1.001 1.001–1.001  < 0.001

 Renal failure 1.309 1.204–1.424  < 0.001  Alanine transaminase 
(U/L) 1.001 1.001–1.001  < 0.001

Endocrine system diseases Coagulation function

 Diabetes 0.924 0.858–0.995 0.037  International normal-
ized ratio 1.198 1.171–1.226  < 0.001

 Hypothyroidism 1.132 1.021–1.256 0.025  Prothrombin time (s) 1.081 1.073–1.090  < 0.001

Neurological and psychiatric diseases
 Activated partial 
thrombo-plastin 
time (s)

1.009 1.007–1.010  < 0.001

 Paralysis 1.224 1.038–1.444 0.018 Kidney function

 Other neurological 
disease 1.301 1.185–1.428  < 0.001  Blood urea nitrogen 

(mg/dL) 1.031 1.029–1.034  < 0.001

 Psychoses 0.592 0.482–0.728  < 0.001  Serum creatinine 
(mg/dL) 1.580 1.509–1.655  < 0.001

 Depression 0.602 0.525–0.690  < 0.001 Blood gas analysis

Tumor  PH 0.051 0.032–0.082  < 0.001

 Solid tumor 1.299 1.132–1.491  < 0.001  PaO2 (mmHg) 0.998 0.998–0.998  < 0.001

 Metastatic cancer 2.833 2.548–3.150  < 0.001  PaCO2 (mmHg) 0.992 0.988–0.996  < 0.001

 Lymphoma 1.720 1.412–2.095  < 0.001  SO2 (%) 0.983 0.977–0.990 0.002

Hematological diseases  PaO2/FiO2 0.998 0.998–0.999 0.007

 Coagulopathy 2.100 1.930–2.293  < 0.001  Lactate (mmol/L) 1.302 1.278–1.326  < 0.001

 Alcohol abuse 0.782 0.683–0.896  < 0.001 Electrolyte

 Drug abuse 0.498 0.390–0.637  < 0.001

 Sodium (mmol/L) 1.060 1.048–1.072  < 0.001

 Osmolarity 1.053 1.050–1.056  < 0.001

  ≥ 300 (mmoL/L) 2.059 1.887–2.247  < 0.001

 Blood glucose (mg/dL) 1.005 1.004–1.005  < 0.001
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age, INR, RDW, and osmolarity level (osmolarity ≥ 300: nonsurvivors, 83.68% vs. survivors, 71.35%, p < 0.001; 
Fig. 2a–g). Therefore, we selected age, BMI, sex, metastatic cancer, coagulopathy, vasoactive drug use, MEWS, 
lac concentration, RDW, NLR, INR, and osmolarity level for inclusion in the initial multivariate logistic regres-
sion analysis. The present selection strategy is more convenient to use in the clinic than the selection strategy in 
which all variables based on the results of the univariate analyses in the development cohort are included. The 
multivariate logistic analyses identified age, metastatic cancer, coagulopathy, MEWS, lac concentration, RDW, 
NLR, INR, and osmolarity level as independent risk factors for 28-day mortality. The adjusted OR values with 
95% CIs for these variables are presented in Table 7. Furthermore, we evaluated the potential multicollinearity 
of the model above based on the VIF. The VIFs for the RDW, age, and osmolarity level in the prediction model 
for 28-day mortality were 12.39, 12.23, and 12.34, respectively, thus indicating the multicollinearity of the initial 
predictive model. To acquire an ideal model, we removed the RDW and age due to multicollinearity as well as 
coagulopathy given that the INR can simply reflect abnormal coagulation. Finally, we selected metastatic cancer, 
MEWS, lac concentration, NLR, INR, and osmolarity level for multivariate logistic regression analysis again to 
build a simplified model. The adjusted ORs together with the 95% CIs and VIF values for the simplified predic-
tive model for 28-day mortality are listed in Table 7.

Figure 2.   Comparisons of age, body mass index (BMI), red cell distribution width (RDW), neutrophil-to-
lymphocyte ratio (NLR), international normalized ratio (INR), lactate (lac) concentration, and osmolarity 
between survivors and nonsurvivors in the development cohort. (a) Comparison of age by the U test, 
p < 0.001; (b) comparison of BMI by the U test, p < 0.001; (c) comparison of RDW by the t test, p < 0.001; (d) 
comparison of NLR by the U test, p < 0.001; (e) comparison of INR by the U test, p < 0.001; (f) comparison of lac 
concentration by the t test, p < 0.001; and (g) comparison of osmolarity by the chi-squared test, p < 0.001.

Table 7.   Multivariate analyses and VIF assessment of factors associated with 28-day mortality rate in 
development cohort.

Variables

28-day mortality

Initial model Simplified model

Adjusted OR 95% CI p VIF Adjusted OR 95% CI p VIF

Age 1.038 1.036–1.041  < 0.001 12.23

BMI 0.506

Gender 0.309

Metastatic cancer 2.641 2.320–3.007  < 0.001 1.12 2.791 2.474–3.150  < 0.001 1.10

Coagulopathy 1.575 1.416–1.751  < 0.001 1.20

Use of vasoactive drug 0.113

MEWS scores 1.240 1.220–1.259  < 0.001 6.47 1.223 1.205–1.241  < 0.001 6.20

NLR 1.034 1.026–1.041  < 0.001 4.87 1.045 1.038–1.053  < 0.001 4.49

RDW level 1.512 1.377–1.660  < 0.001 12.39

INR 0.898 0.869–0.929  < 0.001 6.56 0.937 0.910–0.968  < 0.001 6.31

Lac 1.253 1.212–1.290  < 0.001 7.34 1.230 1.197–1.263  < 0.001 7.27

Osmolarity level 1.461 1.322–1.615  < 0.001 12.34 1.669 1.517–1.836  < 0.001 7.68

Mean VIF = 7.21
Mean VIF = 5.51, 
H/L C-statistic = 5.64 
(p = 0.688)
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Considering that this predictive model was constructed based on the MEWS, NLR, lac concentration, INR, 
osmolarity level, and presence of metastatic cancer, the model was named the “mionl-MEWS” model. The 
AUROC for 28-day mortality using the mionl-MEWS for critically ill patients was 0.717 (95% CI 0.708–0.726, 
p < 0.001). The calculated H/L C-statistic was equal to 11.27 (p = 0.187), and the calibration plot of the observed 
versus expected probabilities for assessment of model performance is displayed in Fig. 3. The AUROC values for 
the APACHE-II, MEWS, RDW, NLR, lac concentration, and osmolarity were 0.743, 0.667, 0.639, 0.603, 0.594, 
and 0.622, respectively (Table 8). Statistical differences were detected among these AUROC (p < 0.001; Fig. 4). 
The Brier scores, which indicate model accuracy for measuring prediction at an individual level, were 0.097 
(p = 0.575) for the mionl-MEWS, 0.102 (p = 0.673) for the APACHE-II, 0.108 (p = 0.575) for the MEWS, 0.110 
(p = 0.492) for RDW, 0.109 (p = 0.574) for lac concentration, 0.112 (p = 0.507) for the NLR, and 0.111 (p = 0.671) 
for osmolarity (Table 8).

Figure 3.   Calibration plot of observed versus expected probabilities for assessment of the predictive 
performance of the mionl-MEWS model in the development cohort.

Table 8.   Performance of mionl-MEWS, APACHE-II, MEWS, RDW, NLR, and lac for predicting 28 day-
mortality in critically ill patients in the development and validation cohorts. *mionl-MEWS versus APACHE-II 
or MEWS or RDW or NLR or Lac or Osmolarity (p < 0.001). # mionl-MEWS versus APACHE-II (p = 0.120), 
*mionl-MEWS versus MEWS or RDW or NLR or Lac or Osmolarity (p < 0.001).

Performance mionl-MEWS* APACHE-II* MEWS* RDW* NLR* Lac* Osmolarity*

Predictive efficiency for 28-day mortality in development cohort

AUROC 0.717 (0.708–
0.726)

0.743 (0.734–
0.751)

0.667 (0.658–
0.677)

0.639 (0.629–
0.649)

0.603 (0.593–
0.613)

0.594 (0.583–
0.604)

0.622 (0.612–
0.632)

Brier score 0.097 
(p = 0.575)

0.102 
(p = 0.673)

0.108 
(p = 0.575)

0.110 
(p = 0.492)

0.112 
(p = 0.507)

0.109 
(p = 0.574)

0.111 
(p = 0.671)

Performance mionl-MEWS*# APACHE-II MEWS* RDW* NLR* Lac* Osmolarity*

Predictive efficiency for 28-day mortality in validation cohort

AUROC 0.908 (0.883–
0.933)

0.884 (0.853–
0.915)

0.877 (0.846–
0909)

0.712 (0.662–
0.761)

0.630 (0.577–
0.682)

0.729 (0.682–
0.775)

0.751 (0.705–
0.797)

Brier score 0.122 
(p = 0.540)

0.102 
(p = 0.287)

0.111 
(p = 0.538)

0.138 
(p = 0.326)

0.157 
(p = 0.421)

0.138 
(p = 0.512)

0.163 
(p = 0.890)
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Internal validation of the mionl‑MEWS score.  Next, we internally validated the mionl-MEWS model 
in the validation group. All VIF values for the mionl-MEWS model are listed in Table 9. The H/L C-statistic in 
the validation group was equal to 12.33 (p = 0.518), and the calibration plot is displayed in Fig. 5. The AUROC for 
the mionl-MEWS model for predicting 28-day mortality among ICU patients demonstrated good discriminative 
power in the validation group (0.908, 95% CI 0.883–0.933, p < 0.001). The AUROC values for the APACHE-II, 
MEWS, RDW, NLR, lac concentration, and osmolarity in the validation group were 0.883 (0.853–0.915), 0.877 
(0.846–0909), 0.712 (0.662–0.761), 0.630 (0.577–0.682), 0.729 (0.682–0.775), and 0.751 (0.705–0.797), respec-
tively (Table  8). Similarly, statistical differences were also detected among these AUROC values (p < 0.001). 
Although the AUROC for the mionl-MEWS appeared to be greater than that for the APACHE-II, the differ-
ence was not found to be significant (p = 0.120; Fig. 6). The PR-AUCs for the mionl-MEWS and APACHE-II 
were 0.907 and 0.899, respectively (Fig. 7). The Brier scores were as follows: mionl-MEWS, 0.122 (p = 0.540); 
APACHE-II, 0.102 (p = 0.287); MEWS, 0.111 (p = 0.538); RDW, 0.138 (p = 0.326); lac, 0.138 (p = 0.512); NLR, 
0.157 (p = 0.421); and osmolarity, 0.163 (p = 0.890) (Table 8). These results indicate that the mionl-MEWS had 
good predictive ability with great calibration abilities. Importantly, the mionl-MEWS was not found to be infe-
rior to the APACHE-II and was shown to be superior to other risk scores in the validation group.

k‑Fold cross validation of the mionl‑MEWS score.  To further illustrate the robustness of the devel-
oped mionl-MEWS model, we used repetitive randomization and k-fold cross validation (k = 5) to analyze the 
total of 51,121 patients. The AUROC for our model was 0.898 and that with k-fold cross-validation was 0.895 

Figure 4.   Predictive performance of the mionl-MEWS, APACHE-II, MEWS, neutrophil-to-lymphocyte ratio 
(NLR), red cell distribution width (RDW), lactate (lac) concentration, and osmolarity level for 28-day mortality 
in critically ill patients in the development cohort.

Table 9.   VIF assessment of factors associated with 28-day mortality rate in validation cohort.

Variables VIF

Metastatic cancer 1.10

MEWS 7.30

NLR 1.85

INR 1.42

Lac 2.78

Osmolarity level 6.08

Mean VIF = 3.42, H/L C-statistic = 12.33 (p = 0.518)
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Figure 5.   Calibration plot of observed versus expected probabilities for assessment of the predictive 
performance of the mionl-MEWS model in the development cohort.

Figure 6.   Predictive performance of the mionl-MEWS, APACHE-II, MEWS, neutrophil-to-lymphocyte ratio 
(NLR), red cell distribution width (RDW), lactate (lac) concentration, and osmolarity level for 28-day mortality 
in critically ill patients in the validation cohort.
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Figure 7.   Comparison of precision-recall area under the curves (PR-AUCs) between the mionl-MEWS and 
APACHE-II in the validation cohort.

Figure 8.   Comparison of the area under the receiver operating characteristic curve (AUROC) values between 
the mionl-MEWS and cross validation.
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(Fig. 8). Under k-fold cross validation, the PPV and NPV were similar between our model and k-fold cross-
validation (PPV 0.842 vs. 0.847 and NPV 0.805 vs. 0.810, respectively).

Nomogram for the mionl‑MEWS score.  Because the AUROC value provides limited information 
regarding how a prediction score works in clinical practice, a nomogram is needed to visualize the prognostic 
model for clinicians, and this graph is useful in resource-limited settings such as those without statistical soft-
ware or electronic calculators. We translated the model with integrated independent factors into a nomogram 
using Stata statistical software. The prognostic nomogram derived from the mionl-MEWS score for clinical 
application is shown in Fig. 9.

Discussion
To the best of our knowledge, this retrospective study is the first to propose a simple prognostic model (mionl-
MEWS) combining metastatic cancer, MEWS, lac, NLR, INR, and osmolarity level for the prediction of 28-day 
mortality in critically ill patients with internal validation. Based on the AUROC and PR-AUC values, the pre-
dictive efficacy of the mionl-MEWS for 28-day mortality in critically ill patients was superior to that of the 
traditional MEWS, NLR, RDW, lac, or osmolarity alone. Hence, the mionl-MEWS could be used to assist with 
clinical decision-making in the management of ICU patients.

Considering the likelihood of long in-hospital stays and high medical resource consumption, early identifica-
tion of mortality risk using prognostic scoring systems is important for timely and effective management and 
intervention in critically ill patients in the ICU. In addition, patterns of ICU admissions have changed due to 
advances in the treatment of solid malignancies with immunotherapy and targeted therapies. For example, the 
proportion of patients with metastatic diseases increased from 48.6% in 2007–2008 to 60.2% in 2017–2018 in 
France18. Although many scoring systems for critical illness have been proposed to translate the complexity of 
patients’ conditions into a single measure based on quantitative survival probabilities in current clinical practice, 
the drawbacks and flaws of these individual systems cannot be ignored. For instance, some assessment tools 
require many blood tests and/or scoring items, which can be time-consuming and lead to delayed interventions 
and/or a high financial burden for patients. Thus, fast, convenient, and inexpensive evaluation tools are needed 
in clinical practice.

Figure 9.   Nomogram for the mionl-MEWS model. On the nomogram, an individual patient’s predicted 
mortality risk according to the mionl-MEWS model is located on each variable axis, and a line is drawn upward 
to determine the corresponding score for each variable state. The sum of these numbers indicates the total score, 
and a line is drawn to the probability axis to determine the likelihood of 28-day mortality (INR international 
normalized ratio, Lac lactate, MEWS Modified Early Warning Score, NLR neutrophil-to-lymphocyte ratio).
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Our study retrospectively collected variables that could predict the 28-day mortality in critically ill patients. 
These variables, such as the MEWS, lac, NLR, INR, etc., were chosen from the literature and used in previous 
ICU risk assessment models. In our study, we demonstrated that compared with survivors, nonsurvivors tended 
to be older; male; have a higher incidence of metastatic cancer, coagulopathy, and vasopressor drug use within 
48 h; have a lower BMI; and have higher MEWS, RDW, NLR, lac, INR, and osmolarity values, indicating that 
these factors might serve as potential prognostic markers in critically ill patients. Next, we investigated the factors 
that independently predicted 28-day mortality in critically ill patients. Our initial multivariate logistic regression 
analysis also showed that age, metastatic cancer, coagulopathy, MEWS, lac concentration, NLR, RDW, INR, and 
osmolarity level were independent predictors for 28-day mortality. Unfortunately, multicollinearity was detected 
among age, RDW, and osmolarity level. However, a series of studies have demonstrated that RDW has predictive 
value for mortality in patients with heart failure, septic shock, acute respiratory distress syndrome, etc.14,19,20. In 
addition, age ≥ 80 years was shown to be associated with higher ICU and hospital death compared with younger 
ages21. In our study, RDW and age also showed a correlation with the mortality of critically ill patients (OR 1.512; 
95% CI 1.377–1.660; OR 1.038; 95% CI 1.036–1.041, p < 0.001, respectively). Nevertheless, in a previous cohort 
study of 8089 individuals analyzing the effect of age and RDW, the age-dependency of RDW seemed to be a 
universal biological feature22. Therefore, we removed age and RDW from our model to avoid multicollinearity 
in subsequent modeling.

Among the three underlying disease variables, metastatic cancer was previously shown to be an important 
predictor of a high 30-day mortality in the ICU23 along with mechanical ventilation and vasopressor use24. 
In the present study, the OR value for metastatic cancer as a predictor of 28-day mortality was 2.791 (95% CI 
2.474–3.150; p < 0.001), which is similar to that reported by Barth et al. for the outcome of patients with meta-
static lung cancer admitted to the ICU (OR 4.22 [1.4–12.4]; p = 0.008)24. Therefore, tumor metastasis should be 
considered in the decision-making process in the ICU. Coagulopathy also is a common cause for a poor prognosis 
in critically ill patients in the ICU, and its severity has been shown to predict hospital mortality standardized 
by INR25. Therefore, we only selected INR for inclusion in the final model analysis. Finally, vasopressors are 
commonly administered to ICU patients with hypotension to raise patients’ blood pressure26. Decision-making 
regarding the timing of vasopressor initiation as well as balancing the risks and benefits of vasopressor use 
remains challenging. In the dataset used in our study, the proportion of patients who required treatment with 
a vasopressor within 48 h was significantly higher in the nonsurvivor group than in the survivor group (27.8% 
vs. 17.52% p < 0.001). Interestingly, vasopressor use was not found to be an influencing factor in our multiple 
regression analysis though. In a cohort study regarding the mortality of septic shock patients, only a weak cor-
relation between the timing of vasopressor initiation and hospital mortality was found (adjusted OR 1.02, 95% CI 
1.01–1.03, p < 0.001)27. These results also indirectly corroborate the finding in the present study that the timing 
of vasopressor initiation might not be associated with 28-day mortality in the ICU.

Among the indexes, MEWS was developed as a practical tool that can rapidly and effectively estimate clinical 
death risk using only five simple and basic physiological parameters without increasing the economic burden, 
since these parameters can be acquired from patient’s electronic medical records automatically. In a previous 
observational study, Moon et al. found that the introduction of MEWS charts significantly reduced the number 
of in-hospital cardiac arrest calls (2% vs. 3%; p = 0.004) and in-hospital mortality rates (42% vs. 52%; p = 0.05)28. 
In addition, in a study predicting the 28-day mortality rate of ICU patients with severe septic shock, the MEWS 
was associated with the 28-day mortality rate (OR 1.462; 95% CI 1.122–1.905; p = 0.005)29, which was consistent 
with the finding in our study (OR 1.250; 95% CI 1.232–1.269; p < 0.001). However, another study found that the 
MEWS had limited ability to estimate sudden disease aggravation in patients, such as the occurrence of cardiac 
shock30. Therefore, the predictive value of the MEWS alone for the mortality rate in critically ill patients required 
further investigation.

Sepsis is well-recognized major health problem in the ICU globally. One study found that the proportion of 
ICU patients with ICU-acquired sepsis was 24.4% and that the mortality of hospitalized sepsis patients was very 
high at 25–30%31. Whether patients had sepsis was an important factor affecting the mortality of ICU patients. 
NLR, as an immune-related biomarker, was shown to serve as a convenient prognostic marker in sepsis patients. 
In their study predicting 28-day mortality in sepsis patients, Liu et al. reported that the NLR was associated with 
the 28-day mortality rate (OR 1.340; 95% CI 1.253–1.434; p < 0.001)32. However, in the present study, the OR 
value for the NLR was only 1.045 (95% CI 1.038–1.053; p < 0.001). This consistency might be due to differences 
in the study populations, as Liu et al. only selected patients with sepsis, and the present population was based on 
all ICU patients, not only those with sepsis. Previously, the lac concentration has been associated with mortality 
in different groups of critically ill patients, such as those with cardiogenic, hypovolemic, or septic shock. Relative 
hyperlactatemia (1.36–2.00 mmol/L) within the first 24 h of ICU admission was reported to be an independent 
predictor for in-hospital and ICU mortality in critically ill patients16. In addition, osmolarity with a threshold of 
300 mmol/L was shown to be associated with increased mortality in critically ill patients with cardiac, cerebral, 
vascular, or gastrointestinal diagnoses at admission33, and these findings are consistent with those of our study 
(OR 1.669; 95% CI 1.517–1.836; p < 0.001).

Due to the complexity and heterogeneity in disease among critically ill patients, combination of different 
indexes can more accurately reflect the prognosis of ICU patients than any single index34. Thus, we included 
metastatic cancer, MEWS, lac concentration, NLR, INR, and osmolarity level in our model to predict 28-day 
mortality. Using the ROC curves to evaluate the 28-day mortality of critically ill patients, a higher AUROC values 
in the development cohort (0.717) and the validation cohort (0.908) were found upon combination of these six 
parameters as a composite index compared with each parameter separately. Notably, the mionl-MEWS had the 
greatest AUROC value, superior to those of the MEWS, RDW, osmolarity, NLR, and lac alone, indicating that 
the mionl-MEWS can provide a more comprehensive reflection of each patient’s condition from six dimensions, 
including metastatic cancer for the distribution characteristics of ICU patients, MEWS for patients’ general 
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condition, lac concentration for microcirculation, NLR for sepsis, INR for coagulopathy, and osmolarity for the 
internal environment.

Furthermore, we used the Brier score to assess the accuracy of our developed model. Among the evaluated 
indexes, the mionl-MEWS had the smallest Brier score in the development cohort and the third lowest score in 
the validation cohort, indicating that the mionl-MEWS offered good accuracy for prediction at an individual 
level. Additionally, we calculated the H/L C-statistic to assess consistent agreement between the observed ICU 
mortality and the actual ICU mortality. The mionl-MEWS showed adequate calibration, suggesting the assign-
ment of the correct probability at all levels of predicted risk. Finally, the mionl-MEWS model provided stable 
evaluation with excellent calibration in the validation group (AUROC: 0.908 and PR-AUC: 0.907).

Our study has some strengths. First, to our knowledge, this study is the first to demonstrate enhanced prog-
nostic ability for 28-day mortality in ICU patients via the combination of metastatic cancer, MEWS, lac concen-
tration, NLR, INR, and osmolarity level. Second, the sample size in our study was relatively large, which reduced 
selection bias. Furthermore, we applied different probability models to evaluate the mionl-MEWS model in order 
to ensure the scientific nature and credibility of the results. Third, the parameters included in the mionl-MEWS 
model are objective and easily accessible among laboratory parameters that are widely available to clinicians. 
Fourth, the constructed nomogram makes 28-day mortality prediction easy and rapid in clinical practice.

Nevertheless, it is important to recognize the limitations of our study. Our data were collected retrospectively 
from the MIMIC-III database, and because this was a single-center retrospective study, it might be difficult to 
extend the findings to other hospitals. External validation in cohorts from other countries is needed to generalize 
our findings. Additionally, due to incomplete data collection and inaccurate data elements from the MIMIC-III 
database, the potential for bias cannot be excluded.

Conclusion
In the present study, we developed a prediction model, the mionl-MEWS, for the 28-day mortality of critically 
ill patients admitted to the ICU, demonstrated internal validation, and ensured the included clinical variables 
can be easily obtained in resource-limited settings. Our results showed that the mionl-MEWS offered higher 
predictive value for the 28-day mortality of critically ill patients compared with other scoring variables and/or 
systems. However, additional research is required to demonstrated whether the mionl-MEWS can be applied 
widely and extensively.

Data availability
All relevant data are freely available to any scientist wishing to use them for noncommercial purposes, after 
users first complete a mandatory training, without breaching participant confidentiality. The datasets generated 
and/or analyzed during the current study are available in the StataData1 repository, https://​github.​com/​WX271/​
Stata​Data1.
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