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Identification 
of cuproptosis‑related long 
noncoding RNA signature 
for predicting prognosis 
and immunotherapy response 
in bladder cancer
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Fanfan Yu 3, Zitong Chen 1 & Xiaoqing Xi 1*

Bladder cancer (BC) is the most common malignant tumour of the urinary system and one of the 
leading causes of cancer-related death. Cuproptosis is a novel form of programmed cell death, and its 
mechanism in tumours remains unclear. This study aimed to establish the prognostic signatures of 
cuproptosis-related lncRNAs and determine their clinical prognostic value. RNA sequencing data from 
The Cancer Genome Atlas were used to detect the expression levels of cuproptosis-related genes in 
BC. Cuproptosis-related lncRNAs linked to survival were identified using co-expression and univariate 
Cox regression. Furthermore, consensus cluster analysis divided the lncRNAs into two subtypes. 
Subsequently, we established a signature model consisting of seven cuproptosis-related lncRNAs 
(AC073534.2, AC021321.1, HYI-AS1, PPP1R26-AS1, AC010328.1, AC012568.1 and MIR4435-2Hg) 
using least absolute shrinkage and selection operator regression. Survival analysis based on risk score 
showed that the overall survival and progression-free survival of patients in the high-risk group were 
worse than those in the low-risk group. Multivariate Cox analysis demonstrated the independent 
prognostic potential of this signature model for patients with BC. Moreover, age and clinical stage 
were also significantly correlated with prognosis. The constructed nomogram plots revealed 
good predictive power for the prognosis of patients with BC and were validated using calibration 
plots. Additionally, enrichment analysis, Single sample gene set enrichment analysis and immune 
infiltration abundance analysis revealed significant differences in immune infiltration between the 
two risk groups, with high levels of immune cell subset infiltrations observed in the high-risk group 
accompanied by various immune pathway activation. Moreover, almost all the immune checkpoint 
genes showed high expression levels in the high-risk group. Moreover, TIDE analysis suggested that 
the high-risk group was more responsive to immunotherapy. Finally, eight drugs with low IC50 values 
were screened, which may prove to be beneficial for patients in the high-risk group.

Bladder cancer (BC) is one of the most common malignant tumours of the urinary system, with high morbidity 
and mortality rates worldwide. The proportion of male patients with BC is higher than that of females, wherein 
men with BC have the fourth highest incidence and eighth highest mortality rate among all cancers1. BC can be 
divided into two types: non-muscular invasion BC (NMIBC) and muscular invasion BC (MIBC), based on the 
presence ofmuscular invasion2. With the emergence of targeted therapy and immunotherapy, patients with BC 
requiringneoadjuvant therapy have more combinatorial options based on traditional surgical approaches3,4. The 
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combination of multiple treatment strategies prolongs patient survival to some extent; however, the prognosis 
remains poor and the overall recurrence and mortality rates for patients with BC remain high5. Therefore, the 
exploration of potentially effective prognostic biomarkers and molecular signatures is crucial for early diagnosis 
and clinical decision-making, and to aid in the further development of new therapies.

Recently, cuproptosis has been reported as a novel copper-dependent form of programmed cell death6. Cop-
per (Cu) causes lipid-acylated protein aggregation and subsequent iron–sulfur cluster protein loss by directly 
binding to the lipid-acylated component of the tricarboxylic acid (TCA) cycle. This leads to proteotoxic stress and 
ultimately cell death7. As an essential mineral, Cu participates in various biological processes, including energy 
metabolism and signal transduction8. Current studies report that Cu levels are significantly altered in various 
malignant tumours, with higher levels in most tumours than normal tissues9–12. The dysregulation of Cu homeo-
stasis plays an important role in the development, progression and metastasis of cancer. Cu acts as a tumour 
promoter and stimulates cancer cell proliferation and tumour growth13. A significant correlation between clinical 
stage and Cu levels in colorectal cancer has been reported14. Additionally, Cu exposure is involved in the occur-
rence of prostate cancer and could be a potential risk factor for carcinogenesis15. Furthermore, Cu plays a specific 
role in cancer progression and resistance to oncology drugs, and Cu chelators are reported to have anti-tumour 
and anti-metastatic benefits16. Currently, some metal-binding compounds, including Cu, have shown broad 
prospects in targeted therapy for tumours17,18. Thus, targeting Cu could be a novel approach in cancer therapy19.

Long non-coding RNAs (lncRNAs) are a class of non-protein coding RNAs (ncRNAs) having a length of 
more than 200 nucleotides, which perform various biological functions in eukaryotes, involving mRNA stability, 
transcriptional regulation and translation20. Numerous studies have reported that lncRNAs are closely related to 
tumorigenesis, metastasis and tumour immunity21–23. Additionally, it is a key regulatory factor in the develop-
ment and progression of BC and can be used as a potential biomarker and therapeutic target24. Recently, it has 
been reported that the overexpression of lncRNA SOX2OT is associated with poor prognosis in BC. SOX2OT 
knockdown inhibited tumour growth and reduced metastasis in vivo25. Furthermore, lncRNA CASC9 has been 
reported as a carcinogenic lncRNA that activates the Wnt/β-catenin signalling pathway via the ceRNA mecha-
nism, thereby playing an oncogenic role in BC26. Another study showed that lncRNA-LET reversed gemcitabine 
chemoresistance in BC, with reduced lncRNA-LET levels predicting poor prognosis in patients with BC27. Addi-
tionally, lncRNAs also regulate the PD-1/PD-L1 pathway of tumour cells and participate in immune response 
and immunotherapy28. The prognostic profile of lncRNAs has been widely reported in BC owing to their key 
role in tumours29,30. However, the role of cuproptosis-related lncRNAs in the prognosis and tumour immune 
microenvironment of BC remains unexplored.

Therefore, this study explores the role of cuproptosis-related lncRNAs in BC, which can contribute to the 
calcification of the potential association between cuproptosis and lncRNAs with immunotherapy. Public data-
bases were used to mine lncRNAs overexpressed by cuproptosis genes to study the prognosis and immunological 
significance of cuproptosis-related lncRNAs. Subsequently, a prognostic feature of cuproptosis-related lncRNAs 
was established to predict survival in patients with BC, which provides novel ideas for exploring new molecular 
prognostic markers and potential therapeutic targets for BC.

Materials and methods
Data collection.  RNA-seq data and relevant clinical information were obtained from The Cancer Genome 
Atlas database (TCGA, GDC (cancer.gov)) on 17 April 2022, which contained 19 normal control samples and 
412 BC samples. The FPKM value matrix for RNA-SEQ data provided on the official website was used for sub-
sequent analysis. Mutation data of patients with BC were downloaded from TCGA database in MAF format. A 
total of 19 cuproptosis genes were extracted from published literature7 and are detailed in Table S1.

Screening for co‑expressed lncRNAs of cuproptosis‑related genes.  Limma software package in 
R software (version 4.1.1, r-project.org) was used to extract the expression levels of 19 cuproptosis genes from 
TCGA dataset31. The expressions of tumour tissue and normal tissues were visualised using the pheatmap pack-
age to label genes with P values < 0.05. Firstly, the limma package was used to screen for lncRNAs that were 
significantly associated with cuproptosis-related genes, with the filtering criteria of correlation coefficient set 
at |Pearson R|> 0.4 and P < 0.001. Following this, dplyr, GGalluvial and GGplot2 packages were used to plot 
Sankey maps of cuproptosis and its associated lncRNAs. Additionally, univariate Cox regression analysis was 
performed using the survival package to select prognosis-related lncRNAs (P < 0.01) and forest maps were gen-
erated. Finally, the differential expression of lncRNAs related to prognosis was visualized using pheatmap. Fur-
thermore, Reshape2 and GGPUBR packages were used to draw heatmaps and boxplots.

Consensus cluster analysis and immunological correlation.  To explore the molecular signatures 
of cuproptosis-related lncRNAs with prognostic value in BC, ConsensusClusterPlus and limma package were 
used32. BC samples were classified into two different subtypes and survival differences among different subtypes 
were analysed. Additionally, Pheatmap package was used to plot a heatmap of the different clusters in correla-
tion with clinicopathological features. Furthermore, the expression of immune checkpoint genes was compared 
across subtypes along with the correlation of immune checkpoint molecules with cuproptosis-related lncRNAs.

Establishment and validation of signature model.  We randomly divided the TCGA cohort into the 
training group and the test group in a 1:1 ratio and assessed the degree of difference in clinicopathological fea-
tures between the two groups. The least absolute shrinkage and selection operator (LASSO) algorithm was used 
to perform regression analysis on the training group. The penalty parameter (λ) of the least criteria ten-fold 
cross-validation was used to select the model, and seven genes and their coefficients were determined to estab-
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lish cuproptosis-related lncRNA signature models. Based on the normalized expression of each lncRNA (Expr) 
and its regression coefficient (Coef) risk score was calculated as follows: Risk Score = 

∑
n

i
Expri × Coefi . Accord-

ing to the median risk score, TCGA cohort was classified into low-risk and high-risk groups. Kaplan–Meier 
curves were plotted using the survival package to compare survival differences between the low- and high-risk 
groups, and heatmaps were used to demonstrate expression differences of cuproptosis-related lncRNAs between 
the low- and high-risk groups. Moreover, the accuracy of the prognostic model was validated using a test cohort 
and an independent GEO dataset (GSE31684)33.

Prognostic value of risk signature.  Univariate and multivariate Cox regression were used to analyse 
the prognostic value of risk scores and clinicopathological parameters and independent risk prognostic fac-
tors. Time-dependent receiver operating signature (ROC) curves and area under curve (AUC) values for 1-, 
3- and 5-year survival were used to assess the predictive power of prognostic signatures. A nomogram plot was 
constructed based on the multivariate Cox regression analysis. Moreover, the consistency index and calibration 
curve were used to evaluate the consistency of the risk profile model using the sample information. The relation-
ship between each clinicopathological parameter and risk score was evaluated based on the clinical information 
of patients in TCGA cohort, including age, sex, tissue grade and clinical stage. Furthermore, survival differences 
among different risk groups stratified by clinicopathological parameters were explored in our regression model.

Enrichment analysis of risk prognostic signature.  Patients in TCGA cohort were divided into two 
subgroups based on the median risk score. The ‘limma’ R package was run to screen for differential genes 
between the low-risk and high-risk groups according to the following criteria: |log 2 FC|≥ 1.5 and FDR < 0.05. 
The ‘clusterProfiler’ package was then applied for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis and visualization34,35.

Tumour immune microenvironment of risk prognostic signature.  Based on the enrichment 
results, we evaluated immune cell infiltration in TCGA dataset using seven algorithms, namely XCELL, TIMER, 
QUANTISEQ, MCPCOUNTER, EPIC, Cibersort-ABS and CIBERSORT. Spearman correlation analysis was 
used to explore the correlation between immune cell subsets and risk scores. The ESTIMATE algorithm was 
then used to calculate the immunity scores, including immunity, stromal and ESTIMATE scores for the different 
risk groups. The ‘GSVA’ package was used to perform ssGSEA, which calculated the score of infiltrating immune 
cells and assessed the activation of immune-related pathways36. The immune cell and pathway scores in the 
low- and high-risk groups were presented via a boxplot. Additionally, we compared the expression of immune 
checkpoint-related genes in different risk groups.

Immunotherapy for prognosis signatures.  TIDE analysis was used to predict the potential efficacy of 
immunotherapy in different risk subgroups. The ‘pRRophetic’ package was then used to predict the sensitivity 
of patients with BC in the high- and low-risk groups to various oncology drugs, which was expressed as a semi-
maximum inhibitory concentration (IC50)37.

Real‑time PCR.  We collected bladder cancer and adjacent tissues from the Second Affiliated Hospital 
of Nanchang University from September 2021 to February 2022. RT-PCR was performed using Green qPCR 
Super Mix (Transgen, AQ601, Beijing) with fluorescent quantitative Real-Time PCR System (Applied Bio-
systems, 7900H, USA) according to the instructions. We normalized the relative lncRNA expression levels to 
B-actin, respectively. The sequences of primers (5′–3′) in this study were listed as follows: MIR4435-2HG, for-
ward primer: GCC​AGG​ACA​CAG​CCA​TCT​AAAGC, reverse primer: TTC​CTC​AGC​ATG​GTG​TGG​TTC​ATT​
C; PPP1R26-AS1, forward primer: CGT​GAA​GGG​CTT​TAG​GAA​GGA​GAA​C, reverse primer: TCC​ACC​ACC​
ACC​AGA​CCA​AGG; B-actin, forward primer: CAC​CAT​TGG​CAA​TGA​GCG​GTTC, reverse primer: AGG​TCT​
TTG​CGG​ATG​TCC​ACGT.

Ethics statements.  All methods were carried out in accordance with relevant guidelines and regulations. 
All experimental protocols were approved by the Ethics Committee of the Second Affiliate Hospital of Nan-
chang University (No. Review [2021] No. (115)), China. All of the human tissues used in the present study were 
obtained with written informed consent from all subjects and their legal guardians.

Statistical analysis.  We utilized the Wilcox rank-sum test for comparing mRNA and lncRNA expression 
levels between the two groups, and the Chi-square test was used to compare categorical variables. Kaplan–Meier 
and log-rank analyses were used to compare overall survival (OS) between different groups. Univariate and 
multivariate Cox regression was used to determine the independent prognostic value of risk models. The cor-
relations among subtypes, clinicopathological features, risk score, immune checkpoint expression and immune 
infiltration level were examined using Pearson’s correlation test. All statistical analyses were performed using R 
software (version 4.1.1). P < 0.05 were considered statistically significant.

Results
Screening of cuproptosis‑related LncRNAs.  The flow chart of the study design is presented in Fig. 1. 
Transcriptomic data from 412 BC tissues and 19 normal control tissues revealed that four genes were upregu-
lated and five genes were downregulated in tumour tissues (Fig. 2A). Then, heatmaps aided in the visualisation of 
their expression (Fig. 2B). Based on the expression of 19 cuproptosis genes, the expression levels of cuproptosis-
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related lncRNAs were extracted. The filtering conditions were set as correlation coefficients > 0.4 and P < 0.001. 
Finally, 762 co-expressed lncRNAs were obtained (Fig. 2C), which are detailed in Table S2. Then, univariate cox 
regression analysis was performed on these lncRNAs, and 27 cuproptosis-related lncRNAs were identified to be 
significantly correlated with prognosis, which was visualized using heatmap (Fig. 2D,E). Finally, we verified the 
differential expression of MIR4435-2Hg and PPP1R26-AS1 in bladder cancer and adjacent paired tissues. The 
results showed that MIR4435-2Hg and PPP1R26-AS1 were highly expressed in bladder cancer tissues (Fig. 2F). 
The experimental results were consistent with the TCGA dataset.

Consensus clustering analysis.  To explore the association between lncRNAs and different subtypes of 
BC, we grouped 412 patients with BC using consensus clustering. Increasing the clustering variable (k) from 2 
to 10, the samples were divided into two well-distinguishable groups (Fig. 3A). The OS of the two clusters was 
significantly different, with Cluster 1 having a worse prognosis (P = 0.015, Fig. 3B) than Cluster 2. The heatmap 
presented the differential expression of cuproptosis-related lncRNAs between Cluster 1 and Cluster 2, and the 
clinicopathological signatures of the two subgroups such as gender, age, pathological TMN status and tumour 
grade were compared. The clinical stage and pathological T status of the two Clusters differed in the heatmap, 
and the grouping of consistent clusters was closely related to clinicopathological features (Fig. 3C). Next, we 
detected the differential expressions of immune checkpoint genes (PD-1, PD-L1, CTLA-4 and TIM-3) in the 
two clusters. The expression levels of PD-1, PD-L1, CTLA-4 and TIM-3 were higher in Cluster 1 than that in 
Cluster 2 (Fig. 3D–G). The expression of cuproptosis-related lncRNA was significantly correlated with immune 
checkpoint (Fig. 3H,I). These results suggest that cuproptosis-related lncRNAs could be involved in the immu-
notherapy of BC.

Construction of risk signature model in TCGA cohort.  A cohort of 406 patients with BC having com-
plete survival-related and clinical information in TCGA was randomly divided into a training and a test group in 
a 1:1 ratio, and no significant bias was observed for each parameter of the clinicopathological signatures in both 
groups. A risk signature model consisting of seven lncRNAs was constructed based on LASSO regression analy-
sis for the training group (Fig. 4A,B). The risk score was calculated as follows: Risk Score = (− 0.057* AC073534.2 
exp.) + (− 0.244* AC021321.1 exp.) + (− 0.325* HYI-AS1 exp.) + (0.320* AC010328.1 exp.) + (0.060* AC012568.1 
exp.) + (− 0.268* PPP1R26-AS1 exp.) + (0.391* MIR4435-2HG exp.). The heatmap of the correlation between 
cuproptosis-related genes and lncRNAs is shown in Fig. 4C. Furthermore, TCGA cohort was divided into low- 
and high-risk groups based on the median risk score (Fig. 4D,G). The survival status of patients differed by risk, 
with patients in the high-risk group having a higher mortality rate and shorter survival time than those in the 
low-risk group (Fig. 4E,H). Additionally, the Kaplan–Meier curves of both groups showed that the OS of the 
high-risk group was worse compared to the low-risk group. Progression-free survival for the overall cohort also 
suggested a worse prognosis for the high-risk group than the low-risk group (Fig. 4F,I,J). We also used GEO 
dataset (GSE31684) to validate the prognostic ability of the risk model (Fig. 6A–C). The heatmap showed that 
the expression of cuproptosis-related lncRNAs was different between the low- and high-risk groups. The expres-
sion of four lncRNAs (AC073534.2, AC021321.1, HYI-AS1 and PPP1R26-AS1) in the low-risk group was higher 
than that in the high-risk group, while the other three lncRNAs (AC010328.1, AC012568.1 and MIR4435-2HG) 
had higher expression levels in the high-risk group (Fig. 4K–L).

Figure 1.   Overall flow chart of the study.
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Correlation of risk signature with clinicopathological parameters.  We first stratified BC samples 
by age, sex, clinical stage, pathological grade, T stage, N stage and M stage to evaluate the relationship between 
each clinicopathological parameter and risk score. The results showed that patients with BC having a high clini-
cal stage, high grade, lymph node metastasis and T3–4 stage had higher risk scores. Moreover, patients with 
Cluster 1 also had higher risk scores (Fig. 5A–E). Kaplan–Meier survival curves were then compared between 
the low- and high-risk groups in different clinicopathological stratifications, which revealed that the high-risk 
group had a worse prognosis than the low-risk group among patients with the following factors: stage III–IV, 

Figure 2.   Identification of cuproptosis-related lncRNAs in BC. (A) Differential expression of 19 cuprotosis 
genes between BC tissues and normal tissues. (B) The heatmap of 19 cuprotosis genes with color green for low-
expression and color red for high-expression. (C) Sankey relational plot for cuprotosis genes and cuproptosis-
related lncRNAs. (D) Forest plot of 27 cuproptosis-related lncRNAs identified to be significantly correlated 
with prognosis. (E) The heatmap of 27 cuproptosis-related lncRNAs associated with survival. (F) Expression 
of MIR4435-2Hg and PPP1R26-AS1 in 12 pair of bladder cancer and adjacent tissues. *P < 0.05, **P < 0.01, and 
***P < 0.001.
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high-grade, N0, T3–4, male and age > 60 (Fig. 5F–K). Thus, the suggested risk signatures have the potential to 
predict the prognosis of patients with different clinicopathological stratification. Notably, high-risk patients were 
significantly correlated with stage, T stage, N stage and pathological grade.

Prognostic value of risk signature.  Time-dependent ROC was used to assess the predictive performance 
of risk signature models and to evaluate the AUC. The AUC of the training group showed that the 1-, 3- and 
5-survival rates were 0.627, 0.648 and 0.726, respectively, while that of the test group was 0.637, 0.624 and 0.624, 
respectively (Fig.  6D,E). And that the AUC of GSE154261 cohort from GEO indicated that the constructed 
model was reliable and robust for prognostic prediction (Fig. 6F). Furthermore, the AUC of risk score, age and 
clinical stage on the 3-year ROC curve of the risk model were 0.632, 0.669 and 0.637, respectively, indicating 
their major predictive power (Fig. 6G). Forest plots based on univariate and multivariate Cox regression analysis 
showed that risk score was an independent predictor of poor survival. Additionally, age and clinical stage were 

Figure 3.   Consensus clustering analysis of 27 cuproptosis-related lncRNAs. (A) BC patients were divided into 
2 groups by consensus clustering. (B) Kaplan–Meier curves of overall survival (OS) between the two clusters. 
(C) Heatmap and the clinicopathological features of two clusters, including gender, age, T, M, N status and 
pathological grade. (D–G) Differential expression of immune checkpoint genes (PD-1, PD-L1, CTLA-4 and 
TIM-3) in the two clusters. (H,I) The correlation of immune checkpoint genes (PD-L1 and TIM-3) with 27 
cuproptosis-related lncRNAs linked to survival. *P < 0.05, **P < 0.01, and ***P < 0.001.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21386  | https://doi.org/10.1038/s41598-022-25998-2

www.nature.com/scientificreports/

also considered to be independent prognostic parameters associated with poor OS (Fig. 6H,I). Based on the 
above results, we constructed a nomogram to predict the 1-, 3- and 5-year survival rates of patients with BC. 
Moreover, the predicted results for one patient are reported here (Fig. 6J). The calibration curve also demon-
strated that the prediction of 1-, 3- and 5-year survival rates by the nomogram is in good agreement with the 
actual rates observed (Fig. 6K). These findings thus indicate that the risk signature model established has a good 
predictive ability for the prognosis of patients with BC.

Figure 4.   Construction of prognostic signature for cuproptosis-related lncRNAs. (A) The tenfold cross-
validation for variable selection in LASSO regression for the training group cohort. (B) 7 lncRNAs and their 
coefficients were determined by LASSO algorithm. (C) The heatmap of the correlation between cuproptosis 
gene and lncRNAs. (D,G) BC patients in train and test cohort divided into low-risk and high-risk subgroups 
according to the median risk score. (E,H) The survival status of each patient with different risk in train and test 
cohort. (F,I) Kaplan–Meier curves of OS in different risk groups of train and test cohort. (J) Progression free 
survival for the overall sets between high-risk group and low-risk group (K,L) The heatmap of 7 cuproptosis-
related lncRNAs with different risk subgroups in train and test cohort.
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Principal component analysis (PCA) and tumour mutation burden.  We used PCA to compare 
the differential expression distribution between the low- and high-risk groups of the risk model, including the 
entire gene expression profile, cuproptosis genes, cuproptosis-related lncRNAs and the lncRNA profile of the 
risk model. PCA results revealed that the risk model grouping could well distinguish between low- and high-
risk groups, with obvious aggregation signatures (Fig. 7A–D). Then, somatic mutations in the low- and high-risk 
groups were analysed, and a waterfall plot containing the top 15 genes with high mutation frequency was drawn 
(Fig. 7E,F). There was no significant difference in tumour mutation burden (TMB) between the two groups 
(Fig. 7G). According to the TMB score, each BC sample could be divided into high- and low-mutation groups. 
Survival analysis showed that the low-mutation group had a lower survival rate than the high-mutation group. 
Additionally, the low-mutation + high-risk group had the worst prognosis (Fig. 7H,I).

Functional enrichment of cuproptosis‑related lncRNAs.  We performed GO and KEGG enrichment 
analyses to distinguish biological differences among different risk groups. GO results showed that cuproptosis-
related lncRNAs were associated with signal transduction and cellular composition and involved in multiple 
immune-related molecular functions and pathways, mainly humoral immune response, cytokine receptor bind-
ing and cytokine activation (Fig. 8A,B). KEGG pathway analysis showed that cuproptosis-related lncRNAs were 
highly correlated with the PI3K−Akt signalling pathway and were enriched in immune-related pathways such as 
cytokine receptor interaction and viral protein and cytokine–cytokine receptor interaction (Fig. 8C,D).

Tumour immune microenvironment for risk signature.  Based on GO and KEGG enrichment results, 
we explored the relationship of the risk model with immunology. Seven algorithms were used to evaluate the 
abundance of immune cell infiltrates in the TCGA cohort. The immune cell bubble plot showed that more 
immune cells were associated with patients in the high-risk group than in the low-risk group (Fig. 9A). Fur-
thermore, the higher the risk score of the sample, the stronger the correlation with most immune cells. MCP-

Figure 5.   Correlation of risk signature with clinicopathological parameters. Risk score of patients with different 
clinicopathological stratification including (A) stage, (B) grade, (C) T and (D) N. (E) Risk score of patients 
between cluster 1 and 2. Kaplan–Meier survival curves of low-risk and high-risk groups among BC patients with 
(F) stage III–IV, (G) high-grade, (H) T3–4, (I) N0, (J) male and (K) age > 60.
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Figure 6.   Prognostic value of risk signature. (A) BC patients in GSE31684 cohort divided into low-risk and 
high-risk subgroups according to the median risk score. (B) The survival status of each patient with different 
risk in GSE31684 cohort. (C) Kaplan–Meier curves of OS in different risk groups of GSE31684 cohort. (D–F) 
ROC curves of 1-year, 3-year, and 5-year survival rate for the risk signature in train, test and GSE31684 cohort. 
(G) ROC curves of risk score and clinicopathologic features on the 3-year. (H) Univariate Cox regression 
for risk score and the clinicopathological features. (I) Multivariate Cox regression for risk score and the 
clinicopathological features. (J) Nomogram for predicting 1-year, 3-year and 5-year survival rates of BC patients. 
(K) The calibration curves validate the consistency between the actual outcome and the predicted result for 
1-year, 3-year and 5-year survival rates.
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COUNTER analysis of the correlation results between risk score and immune cell subsets are shown in Fig. 9B. 
The enrichment of immune cell subsets was further quantified using ssGSEA, wherein the high-risk group had 
high levels of infiltration in all immune cell subsets compared with the low-risk group (Fig. 9C). Additionally, 
the immune scores of high-risk patients were significantly higher than those of the low-risk group, including the 
StromalScore, ImmuneScore and ESTIMATEScore values (Fig. 9D–F).

Next, we explored the association of risk scores with the activation of immune pathways. Furthermore, the 
boxplot of ssGSEA showed significant differences in most immune pathways between the two risk subgroups 
except for type II interferon response (Fig. 10A). The high-risk group accompanied the activation of various 
immune pathways, and the heatmap of immune pathways showed that the high-risk group was closely associ-
ated with common immune pathways (Fig. 10B). Furthermore, on comparing the immune checkpoint activation 

Figure 7.   Principal Component Analysis and Tumor Mutation Burden. (A–D) 3D scatterplot of sample 
distribution between the low-risk and high-risk BC patients based on the entire gene expression profile, 
cuproptosis genes, cuproptosis-related lncRNAs, and the lncRNA profile of risk signature, respectively. (E,F) 
Waterfall diagram containing the top 15 genes with high mutation frequency in the low-risk and high-risk 
groups. (G) Tumor mutation burden for two groups. (H) Kaplan–Meier curves of OS for patients in high and 
low TMB subgroups. (I) Kaplan–Meier curve of OS for patients classified by TMB and risk signature.
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between the different risk groups, a majority of the immune checkpoint-related genes were highly expressed in the 
high-risk group (Fig. 10C). Several common immune checkpoints showed higher activity in the high-risk group, 
including PD-1, PD-L1, PD-L2, CTLA-4, TIM-3, NKB1, LAG3, TIGIT, LGALS9 and VTCN1 (Fig. 10D–M). 
These results suggest that patients with BC in the high-risk group have a more active immune function and could 
be more sensitive to immunotherapy.

Immunotherapy for risk signature and prediction of potential drugs.  TIDE results indicated 
that the high-risk group could have better efficacy for immunotherapy (Fig. 11A), suggesting that appropriate 
checkpoint inhibitors for patients with BC having different risks can be selected. Then, by predicting potential 
treatments, we found that the IC50 of eight drugs (AP-24534, Bryostatin 1, DMOG, Doxorubicin, Gemcitabine, 
Mitomycin C, Rapamycin and ZSTK474) differed in the risk groups. The high-risk group was more sensitive to 
these potential therapeutic agents (Fig. 11B–I), and risk scores were significantly correlated with the IC50 of the 
drugs (Fig. 11J–Q). Thus, this risk signature can aid in personalised treatments.

Discussions
BC has serious effects on human health and life and is accompanied by high treatment costs1,38. Recently, many 
lncRNAs have been found to be involved in the occurrence, progression and metastasis of BC. lnc00892 has 
been reported to inhibit BC metastasis by suppressing nucleolin-mediated RhoA/RhoC mRNA stabilization39. 
Given the critical role of lncRNAs in BC, various similar phenotypic lncRNAs have been suggested as potential 
biomarkers to predict the prognosis of patients with BC40,41. However, the signatures and roles of cuproptosis-
related lncRNAs remain unexplored. In this study, we constructed a signature model of lncRNAs associated 
with cuproptosis.

Figure 8.   Functional enrichment of cuproptosis-related lncRNAs with risk signature. (A) Circos plot for GO 
enrichment. (B) Barplot for GO enrichment. (C) Circos plot for KEGG pathways. (D) Bubble graph for KEGG 
pathways.
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We identified 19 genes associated with cuproptosis from published literature. A total of 762 cuproptosis-
related lncRNAs were obtained using co-expression analysis, and 27 prognostic lncRNAs were identified using 
univariate Cox analysis. Consensus cluster analysis divided BC samples into two clusters, with Cluster 1 having 
a poorer prognosis than Cluster 2. The expression levels of immune checkpoints such as PD-1, PD-L1, CTLA-4 
and TIM-3 were also significantly higher in Cluster 1 and had a significant correlation with prognostic-related 
lncRNAs. Furthermore, consensus clustering suggested that Cluster 1 had a worse prognosis and could be 

Figure 9.   Tumor immune microenvironment for risk signature. (A) The immune cell bubble plot showing the 
abundance of immune cell infiltrates in seven algorithms. (B) The correlation results between risk score and 
immune cell subsets in MCPCOUNTER platform. (C) SsGSEA scores in 16 types of immune cells between the 
two risk subgroups. (D–F) The boxplots of StromalScore, ImmuneScore, and ESTIMATEScore in low–risk and 
high-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001.
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more sensitive to immunotherapy. LASSO regression was performed on prognosis-related lncRNAs, and seven 
lncRNAs significantly associated with OS (AC073534.2, AC021321.1, HYI-AS1, PPP1R26-AS1, AC010328.1, 
AC012568.1 and MIR4435-2HG) were identified to establish the cuproptosis-associated lncRNAs signature. 
PPP1R26-AS1 has been reported to be upregulated in breast cancer tissues and associated with shorter OS. More-
over, PPP1R26-AS1has been reported to be a specific biomarker for the identification of luminal B subtype42,43. In 
acute myeloid leukaemia, AC073534.2 has been associated with clinical prognosis, and risk models constructed 

Figure 10.   Immune-related pathways and immune checkpoints for risk signature. (A) SsGSEA scores for 
immune pathways between the two risk subgroups. ns represent not significant. (B) The heatmap of immune 
pathways between the two risk subgroups. (C) The comparison of immune checkpoint activation between the 
different risk groups. (D–M) Differential expression of common immune checkpoints (PD-1, PD-L1, PD-L2, 
CTLA-4, TIM-3, NKB1, LAG3, TIGIT, LGALS9, and VTCN1) between the low-risk and high-risk patients. 
*P < 0.05, **P < 0.01, ***P < 0.001.
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with several other prognostically relevant lncRNAs predict survival in patients with AML44. MIR4435-2HG 
acts as an oncogene and plays an important role in many cancers45. Expression of MIR4435-2HG is generally 
upregulated in gastric cancer, hepatocellular carcinoma, and ovarian cancer, and involved in biological functions 
through ceRNA network46–48. This study proposed for the first time that the AC021321.1, HYI-AS1, AC010328.1 
and AC012568.1 lncRNAs could be associated with the prognosis of BC. Although their roles in various can-
cer remain unknown, these newly identified lncRNAs contribute to a better understanding of the pathogenic 
mechanisms of BC, which needs further exploration.

To assess the prognostic value of cuproptosis-associated lncRNA signatures in different risk subgroups, 
patients with BC were divided into high- and low-risk groups based on risk scores. The high-risk group had 
worse outcomes, and the risk score was an independent predictor of prognosis. The ROC curve also showed 
that the established lncRNA signatures had good prognostic value for BC. Kaplan–Meier analysis of different 
clinicopathological stratification showed that the feature model could predict the prognosis of patients with 
BC independently of the clinicopathological parameters. Moreover, the calibration curves confirmed a good 
agreement between the predicted and actual survival rates of the established nomogram for 1, 3 and 5 years. A 
comprehensive analysis of the established signature model revealed its accurate predictive ability for the prog-
nosis of patients with BC.

Furthermore, pathway enrichment analysis showed that cuproptosis-related lncRNAs were highly correlated 
with the PI3K−Akt signalling pathway. More than half of the patients with BC from the TCGA cohort had altered 
the PI3K pathway, and the suppression of PI3K expression inhibited the growth and migration of cancer cells. 
The combination of PI3K inhibitor and anti-PD-1 therapy improved the anti-tumour effect by improving the 

Figure 11.   Immunotherapy for risk signature and prediction of potential drugs. (A) TIDE score for predicting 
the response of immune checkpoint inhibition therapy in different risk groups. (B–I) IC50 of eight drugs (AP-
24534, Bryostatin 1, DMOG, Doxorubicin, Gemcitabine, Mitomycin C, Rapamycin and ZSTK474) differed for 
BC patients in different risk groups. (J–Q) The correlation of risk scores with IC50 of eight drugs.
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immune-stimulating tumour microenvironment49. Moreover, lncRNA ADAMTS9-AS1 promoted the invasion 
and migration of BC cells through the activation of the PI3K/AKT/mTOR signalling pathway50.

Notably, the cuproptosis-associated lncRNA signature model was strongly associated with tumour immune 
invasion. Immune cell bubble plots based on different platforms showed that patients in the high-risk group were 
associated with a higher abundance of immune cell infiltrates. ssGSEA further revealed that the high-risk group 
had significantly high levels of infiltration in all immune cell subsets. Except for type II interferon responses, there 
were significant differences in most immune pathways between the two risk subgroups, with the activation of 
numerous immune pathways in the high-risk group. The comparison of immune checkpoint activation between 
the different risk groups revealed that almost all immune checkpoint genes were highly activated in the high-risk 
group. Studies have reported that the expression level of immune checkpoint genes was highly correlated with the 
efficacy of immunotherapy51. Moreover, TIDE analysis suggested that the high-risk group was more responsive 
to immunotherapy, highlighting the fact that patients at a higher risk are more likely to benefit from immune 
checkpoint blockade immunotherapy. Currently, nivolumab and atezolizumab, as the representative PD-1 and 
PD-L1 inhibitors, respectively, have been proven to benefit patients with high-risk or metastatic BC52,53. Finally, 
we identified eight drugs that had better efficacy in the high-risk group for patients with BC. These findings could 
aid in drug screening and clinical treatment decisions.

Although we confirmed the validity of our feature model from multiple perspectives, there remain some 
limitations in our study. First, we used data obtained from an online database (TCGA). However, microarray 
data from other sources are biased, for example, Gene Expression Omnibus data lacks complete lncRNA infor-
mation. Therefore, it was difficult to conduct external validation using other clinical databases. Second, in vitro 
and in vivo experiments could not be conducted to further verify differences in molecular expression levels and 
biological functions. However, clinical samples and reliable clinical data sets for external validation are required 
in the future.

Conclusions
Cuproptosis-associated lncRNA feature models can predict survival in patients with BC and could have value 
as independent prognostic factors. Moreover, we systematically analysed the relationship between cuproptosis-
associated lncRNA signatures, TMB, tumour microenvironment and immune cell infiltration and predicted 
potential therapeutic drugs. To the best of our knowledge, this is the first study to elucidate potential cuproptosis-
related lncRNAs that could guide personalised treatments of patients with BC.

Data availability
All data in this study are available in online repositories. The name of the repository or datasets can be found in 
the article and the code for processing the data can be obtained from the corresponding author by reasonable 
request.
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