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Efficient cross‑validation traversals 
in feature subset selection
Ludwig Lausser 1,2,3, Robin Szekely 1,3, Florian Schmid 1, Markus Maucher 1 & Hans A. Kestler 1*

Sparse and robust classification models have the potential for revealing common predictive 
patterns that not only allow for categorizing objects into classes but also for generating mechanistic 
hypotheses. Identifying a small and informative subset of features is their main ingredient. However, 
the exponential search space of feature subsets and the heuristic nature of selection algorithms limit 
the coverage of these analyses, even for low-dimensional datasets. We present methods for reducing 
the computational complexity of feature selection criteria allowing for higher efficiency and coverage 
of screenings. We achieve this by reducing the preparation costs of high-dimensional subsets O(nm2) 
to those of one-dimensional ones O(m2) . Our methods are based on a tight interaction between a 
parallelizable cross-validation traversal strategy and distance-based classification algorithms and 
can be used with any product distance or kernel. We evaluate the traversal strategy exemplarily in 
exhaustive feature subset selection experiments (perfect coverage). Its runtime, fitness landscape, 
and predictive performance are analyzed on publicly available datasets. Even in low-dimensional 
settings, we achieve approximately a 15-fold increase in exhaustively generating distance matrices for 
feature combinations bringing a new level of evaluations into reach.

Feature subset selection (FSS) is one of the primary ingredients for constructing sparse and robust classification 
and clustering algorithms1,2. It facilitates the identification of critical components and the rejection of distracting 
measurements3. It is, therefore, not only a countermeasure for the curse of dimensionality4 but also a valuable 
tool for increasing interpretability5. The second one is mandatory in the scientific context, where findings on the 
background of a subject of interest are required for hypothesis generation. An example might be the analysis of 
molecular profiles in medical applications, where identifying a predictive subset of features (e.g., molecular con-
centrations) leads to new hypotheses on the causes or mechanisms of a disease or even reveals new drug targets6–8.

The requirements for FSS in the setting described above are quite different from those of other application 
fields. Samples are typically rare due to ethical or financial reasons. Datasets are, therefore, of a low cardinal-
ity ( m → 0 ). Often only a few dozens of samples are available, and analyses must be supplemented by foreign 
entities9–11. Although feature profiles can, in general, be very high-dimensional ( n ≫ m ), the identification of 
informative feature subsets is also of interest for low-dimensional settings ( n → 0 ). For example, one might 
screen preselected panels of molecular profiles for feature subsets relevant to a specific type of disease12–16.

However, most FSS algorithms are not designed for in-depth analysis of a high dimensional feature space 
( n ≫ m ), due to its exponential increase with dimensionality1. They are therefore not designed for high coverage 
of this feature space and utilize heuristic or stochastic strategies that only evaluate a small fraction of all possible 
feature combinations17. Here, optimal feature subset selection can not be guaranteed. Higher or perfect coverage 
is in the range only for low dimensions ( n → 0 ) due to the lower number of features.

Rapid FSS criteria have an excellent potential for improving the coverage of these screening procedures as 
they allow for evaluating more feature combinations than slower ones. They, therefore, provide a more detailed 
outline of the feature space and a deeper insight into the influence of individual features. Nevertheless, this 
acceleration can come at a price as fast FSS criteria often neglect important robustness aspects, often validated in 
re- or subsampling experiments5,18–20. Alternatively, improved runtime or time complexity can also be achieved 
by using specialized data structures, which come at the price of an increased space complexity21,22. A suitable 
tradeoff between both resources is required23. However, most of these data structures are designed for screening 
large data collections ( n ≪ m ) and lose their benefit in high dimensions ( n ≫ m)22. Examples can be k-d trees24, 
VP trees25, or BK trees26.

FSS algorithms are typically categorized according to their interaction with the overall classification model27,28. 
One of these categories, filter methods, operate without knowledge of the classifiers29. They are independent pre-
processing units and often optimize autonomous criteria (e.g., correlation to class label30). Other FSS algorithms 
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interact with the optimization process of the classification algorithm. Wrapper methods search for feature com-
binations that optimize the performance measure (e.g., accuracy) for evaluating the trained classifier31. They 
are based on suboptimal search strategies, such as the sequential forward selection32 or backward elimination33. 
FSS algorithms can also be embedded in a classification model’s training process to access the classifier’s inher-
ent properties. In this case, the learning procedure is designed to construct a sparse classification model that 
evaluates only a small subset of features. Methods of this type are frequently used for training tree- or ensemble-
classifiers34,35. For example, more complex or hybrid types of interactions can be found in the context of multi-
class classifier systems9,10. FSS algorithms can also be linked to external domain knowledge to guide the selection 
process8,36,37.

Although most FSS strategies are suboptimal due to their heuristic or stochastic nature, some approaches exist 
that are guaranteed to find a globally optimal combination. Nevertheless, the corresponding objective functions 
have to fulfill some theoretical properties that are rarely applicable. Prominent examples of these FSS methods are 
based on branch and bound algorithms38, dynamic programming4, or greedy strategies21. For the general case, it 
has been shown that there exists no sequential non-exhaustive feature subset selection procedure that is optimal39.

This work presents an efficient data structure for dimensionality-invariant feature subset evaluation. That is, 
the costs for evaluating high-dimensional feature subsets O (nm2) are reduced to those of one-dimensional ones 
O (m2) . Furthermore, we utilize this data structure for fast and efficient algorithms for re- or subsampling-based 
selection criteria. Both techniques can be coupled to any heuristic or stochastic FSS-strategy that operates on 
a Hasse diagram.

The rest of this article is organized as follows: “Methods” section introduces two proposed techniques for 
improving the runtime complexity of FSS strategies for distance-based classification models. We exemplarily 
aggregate those techniques into a combined FSS strategy, utilizing a k-Nearest Neighbor Classifier (e-k-NN) 
(“The exhaustive k-NN approach (e-k-NN)” section). The first technique focuses on the fast enumeration of 
distance matrices. The structure of distance-based classifiers allows for a quick evaluation of feature signature 
sequences, enabling increased search space coverage (“Distance based FSS” section). Using efficient enumeration 
schemes and memoization techniques allows for dimensionality-invariant costs for each feature subset. Our FSS 
strategy can even be applied for exhaustive subset evaluations of all feature combinations (“Exhaustive enumera-
tion scheme” section). In this case, we cannot only identify the global optimum of a selection criterion but also 
reconstruct the exact fitness landscape of all feature combinations. Moreover, one can parallelize their generation 
into independent tasks (“Parallelization” section). The second technique addresses the relatively high runtime 
complexity of resampling experiments, which are required for the robust evaluation of feature combinations. We 
propose a fast evaluation technique for cross-validation experiments (CV) of the well-known k-Nearest Neighbor 
Classifiers (k-NN)40. The reduced complexity of these experiments extends the range and coverage of FSS strate-
gies (“Estimation of k-nearest neighbor cross-validation complexity” section). Furthermore, it also allows the 
formulation of a new bound on the cross-validation error of k-NNs (“Cross-validation error bound” section).

We evaluate both techniques and the final e-k-NN strategy in 10× 10 cross-validation experiments on publicly 
available datasets (“Experiments” section). Its runtime and performance are assessed in exhaustive screens with 
up to 1012 feature combinations (“Results” section). Finally, a discussion of the FSS strategy and the correspond-
ing results are given in “Discussion and conclusion” section.

Methods
We analyze FSS in classification41. A classifier is a function c : X → Y for predicting the class label y ∈ Y of a 
given object represented by a vector of features or measurements (x(1), . . . , x(n))T = x ∈ X . For simplicity we 
assume the feature space to be embedded in a n-dimensional real-valued space X ⊆ R

n . However, the findings 
presented in this manuscript also hold for heterogene data representations, where each x(i) has a different scale 
(e.g. qualitative or quantitative) or complex data type (e.g. tensors, graphs, strings, . . .).

A classifier is initially adapted via a set of labeled training examples T = {(xj , yj)}
m
j=1 and subsequently tested 

on an independent set of labeled validation examples V , T ∩V = ∅ . We will use the notion cT if the classifier 
c is trained on the training set T . The set of all available samples will be denoted by S = T ∪V.

FSS is an optional subprocess within the training of a classifier. Its task is the selection of a suitable feature 
combination from the set of 2n − 1 possible ones. Deselected features can no longer influence the prediction 
of the classifier. The underlying search space of a FSS problem is illustrated Hasse diagram as shown in Fig. 1. 
A selected feature set of size n̂ will be described by a sorted and repetition free index vector i = (i1, . . . , in̂)

T,

The corresponding reduced representation of a sample x ∈ R
n will be given by x(i) =

(
x(i1), . . . , x(in̂)

)T . The 
notation î = {ij}

n̂
j=1 will be used to denote the unordered set of indices.

The generalization ability of a classifier can be evaluated in a r × f  cross-validation (CV) experiment41, 
where r denotes the number of runs and f the number of folds. This subsampling experiment is a summary of 
r independent runs of a f-fold CV experiment. A single f-fold CV divides the overall set of samples S into f 
folds of approximately equal size. In an iterative procedure, each of the folds is used as a validation set while the 
remaining folds are used for training the classifier. The mean error rate over all folds and runs is afterwards used 
as an estimate of the classifier’s generalization error

(1)i ∈ I = {i ∈ N
n̂≤n | ik−1 < ik , 1 ≤ ik ≤ n}.

(2)R̂cv(S ) =
1

r|S |

r∑

i=1

f
∑

j=1

∑

(x,y)∈Vij

I[
cTij

(x)�=y
].
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A special case is the 1× |S | CV which is also called leave-one-out cross-validation (LO). Here, each sample 
is evaluated separately. The symbol R̂lo is used to denote the corresponding error estimate.

The exhaustive k‑NN approach (e‑k‑NN).  In the following, we propose two techniques for improving 
the runtime complexity of distance-based feature selection criteria. The first one is an efficient memoization and 
enumeration scheme for the calculation of distance matrices (“Distance based FSS” and “Exhaustive enumera-
tion scheme” sections). The corresponding sequence of feature sets can be split into an arbitrary number of junks 
allowing an easy parallelization with individual workload for each compute note (“Parallelization” section). The 
second one is a fast evaluation technique for CV experiments based on k-NNs (“Nearest neighbor classification” 
and “Estimation of k-nearest neighbor cross-validation complexity” sections). It implies a new error bound for 
the CV error of k-NNs (“Cross-validation error bound” section).

We demonstrate the performance of these techniques in exhaustive FSS experiments. That is, the chosen 
selection criterion is evaluated for each of the 2n − 1 feature subsets. In this case, the selection strategy is free 
from subsampling effects as induced by stochastic or heuristic strategies. It is the only selection strategy that is 
guaranteed to find a global optimum solution for any type of objective42,43. As a selection criterion, the minimal 
r × f  CV error of a k-NN was chosen

Note that the evaluation of i is performed on the training set of a classifier, where Ti = {(x(i), y) | (x, y) ∈ T } 
denotes the training set’s restriction to the measurements in i . The selection process is therefore based on an 
internal CV. We finally evaluated this overall strategy as exhaustively feature selecting k-NN classifiers (e-k-NN) 
in (“Results” section.

Distance based FSS.  The optimization criterion given in Eq. (3) can be seen as a distance based FSS cri-
terion. That is, the assessment of a feature subset is based on pairwise distances d(., .) measured on the training 
samples, where

These measurements are summarized in a distance matrix D:

Index i will be used to indicate the selected feature subset.
In the following, we assume that this distance measure is decomposable. That is, it can be seen as sum of the 

feature-wise (one dimensional) distances:

(3)argmin
i∈I

R̂cv(Ti).

(4)d : X ×X → R
+
0

(5)Di :=
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∑

i∈î

D(i) .

∅
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Figure 1.   FSS search space: The figure provides the FSS search space I for n = 4 features. It comprises 2n − 1 
non-empty feature subsets (gray nodes) from which one has to be selected. The empty set ∅ (black node) is 
typically omitted. The feature subsets are organized row-wise according to their feature set size n̂ . The FSS search 
space is shown in form of a Hasse diagram. That is two nodes are connected via an edge if both of them can be 
translated into the other by adding or removing a feature.
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Distance measures that fulfill this criterion are for instance the (potentiated) Minkowski metrices or product 
distances of type d(., .) =

∑

i∈î di(., .) , which evaluate each feature by a separate distance44 or kernel45. We will 
utilize a variant of the Euclidean distance (no square root) as a canonical example

A standard implementation for calculating this distance matrix in an |î| dimensional space can be done in 
time O (m2|î|).

As a distance-based FSS algorithm has to calculate a distance matrix for each feature subset evaluation a 
reduction of this computational complexity is desirable and extends the coverage of the search space of feature 
subsets I . For a decomposable distance the complexity can be improved by memorizing distance matrices. For 
example, if the distance matrices Di′ and Di′′ are known (e.g. from previous evaluations), where î′ ∩ î′′ = ∅ and 
î′ ∪ î′′ = î , the distance matrix Di can be calculated via a single matrix addition Di′ +Di′′ . This reduces the 
computational complexity to O (m2).

Especially FFS algorithms that modify existing distance matrices by adding or removing individual features 
can benefit from this effect by memorizing all n feature-wise distance matrices D(i) . In this case, each modifica-
tion can be seen as a single matrix addition (or subtraction). This holds for all search algorithms that directly 
operate on the structure of the Hasse diagram. The memorization requires once an additional time and space 
complexity of O (nm2) . For a large number of evaluations e ≫ n we get a time complexity of

against the naive time complexity of O (enm2).

Exhaustive enumeration scheme.  Remarkably, this reduction can be achieved by exhaustive search 
algorithms, if the feature signatures are processed in lexicographical order46. The computational complexity is 
than reduced to O (2nm2).

Definition 1  Let i = (i1, . . . , ik)
T and j = (j1, . . . , jl)

T denote sorted and repetition free index vectors i, j ∈ I . 
The index vector i is said to be lexicographically smaller than j denoted by i ⊏ j if and only if

where m = min (k, l) . Vector i is called parent of j , if i ⊏ j and k = l − 1.
Assuming that all feature-wise distance matrices D(i) are already memorized for all n one-dimensional sub-

spaces i ∈ {1, . . . , n} , the distance matrices for any multi dimensional index vector i = (i1, . . . , ik)
T , can be 

calculated by a single matrix addition:

Here i′ denotes the parent of i . Structuring the set of all possible feature combinations according to the 
parental relationship leads to the construction of a search tree (Fig. 2A). Here it can be observed that at most 
n additional parental nodes have to be memorized (Fig. 2B). Overall at most 2n matrices are required, which 
corresponds to a space complexity of O (nm2).

Parallelization.  In order to facilitate parallelization, the procedure described above can be modified to start 
at an arbitrary index vector i (Fig. 2C). Memorizing the distance matrices for the sequence of parental index vec-
tors of i and the feature-wise matrices allows calculating the remaining distance matrices Dj , i ⊏ j as mentioned 
before. In this way, the complete sequence of all feature signatures can be split into partial sequences of arbitrary 
length and can afterwards be processed in parallel. The length of the partial sequences might be chosen in order 
to optimize the load balancing of the available compute cores47. For each parallel call, a copy of the feature-wise 
and cumulative distance matrices are required.

The starting points for the partial sequences can be addressed directly without enumerating predecessor 
signatures. An example is given in Table 1. A feature signature i can be identified and reconstructed from its 
position id in the lexicographical order and the total number of features n. The corresponding mapping will be 
called fsig (id, n) = fsig (id, n, 1) in the following

where (j1, . . . , jl) = fsig (id − 1, i + 1, n) . The recursive formula fsig (id, i, n) will stepwise elongate the partial signa-
ture until all required feature indices are incorporated. In this context variable i can be seen as the index of the ith 
feature. It is initialized with i = 1 . Starting with the first element, fsig will traverse stage-wise through the search 
tree of the enumeration scheme. The current position of the feature signature is filled with i, if id ∈

[
2, 2n−i

]
 . If 

(7)d22(xs , xt) =

n∑

i=1

(

x(i)s − x
(i)
t

)2
.

(8)O (em2 + nm2) = O (em2)

(9)k < l : ∀s ≤ k : is = js or

(10)∃t < m : ∀s ≤ t : is = js ∧ it+1 < jt+1,

(11)Di = Di′ +D(ik) .

(12)fsig (id, i, n) =







∅ if id ≤ 1
fsig (id − 2n−i , i + 1, n) if id ≥ 2n−i + 1
(i, j1, . . . , jl) otherwise

,
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Figure 2.   Enumeration scheme for all feature combinations. (A) shows the tree, structuring all index vectors 
for n = 4 features according to the parent relationship. Filled circle numbers give the sequence of evaluation, 
numbers in parentheses show the chosen feature numbers. (B) and (C) give examples for the in-place update of 
the cumulative distance matrices. The memorized cumulative and feature-wise distance matrices are shown. The 
arrows indicate the distance matrices that are utilized for calculating the cumulative distance matrix with index 
id. The lookup structure consists of at most 2n distance matrices. The example of panel B starts the updates from 
the beginning of the sequence ( id = 2 ). The example of panel C is started by an arbitrarily chosen feature set 
index ( id = 11).
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id > 2n−i , the search is continued with feature index i := i + 1 and a diminished id := id − 2n−i . If the current 
position is filled, a recursive call of fsig fills the next position of the signature. This screen takes place on the 
next stage of the search tree. As we operate on sorted and repetition free index vectors, the next possible feature 
index is i := i + 1.

The position id of a signature i can also be calculated directly, if the total number of features n is known. The 
corresponding function will be denoted as

Here we assume that |∅| = 0 , i0 = 0 and i, p ∈ N.

Nearest neighbor classification.  In the following, we concentrate on Nearest Neighbor Classifiers (k-
NN)40 as a conceptually simple example for a distance-based classifier. The k-NNs are prototype-based classifiers 
that utilize all available training samples as prototypes ( P = T ). They predict the class of a new unseen query 
point v ∈ R

n by a majority vote on the class labels of the k nearest neighbors in P

Here, NNk(v,P ) denotes the k neighborhood of v in P,

and rkDv the rank function over pairwise distances d(., .) between v and the members of P

The k-NN is therefore parameterized by the chosen neighborhood size k and the chosen distance measure d.
The computational complexity of applying k-NN corresponds to the complexity of finding k times the mini-

mum distance between the training samples and the query sample O (k|î||T |) . The factor |î| can again be 
removed, if the k-NN is embedded in an exhaustive FSS experiment.

Estimation of k‑nearest neighbor cross‑validation complexity.  The computational costs for a r × f  
CV evaluation of the k-NN can be reduced by memorizing different aspects of the global data set S of all avail-
able samples. The number of distance calculations

(13)fid(i, n) = 1+
�

1≤p≤|i|



1+
�

ip−1<i<ip

2(n−i)



.

(14)c(v) = argmax
y∈Y

∣
∣
{
(x, y) ∈ NNk(v,P )

}∣
∣.

(15)NNk(v,P ) =
{

(x, y) ∈ P | rkDv

(
d(v, x)

)
≤ k

}

(16)Dv =
{
d(v, x) | (x, y) ∈ P

}
.

Table 1.   Direct mapping of signature indices id and feature signatures i . The table lists an example for n = 4 
features according to the proposed enumeration scheme. The id of a feature signature i can be calculated 
directly via the function call fid(i, n) . The feature signature of an id is given by i = fsig (id, i = 1, n = 4).

Index id Feature signature i

1 ∅

2 (1)T

3 (1, 2)T

4 (1, 2, 3)T

5 (1, 2, 3, 4)T

6 (1, 2, 4)T

7 (1, 3)T

8 (1, 3, 4)T

9 (1, 4)T

10 (2)T

11 (2, 3)T

12 (2, 3, 4)T

13 (2, 4)T

14 (3)T

15 (3, 4)T

16 (4)T

id = fid(i, n). i = fsig (id, i = 1, n = 4)
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can be reduced to |S |2 by precalculating the global distance matrix. Here, Tst and Vst denote the training and 
test sets of a single experiment. We assume that |S | is dividable by f.

The number of distance comparisons can be reduced via a related strategy (Fig. 3). For a given test sample 
v ∈ Vst , it is likely that there is an overlap between its k nearest neighbors in the current training set Tst and the 
k nearest neighbors among the samples in S . The second one will be called global nearest neighbors in the follow-
ing. If one of the global nearest neighbors is included in the current training set the corresponding search ( |Tst | 
distance comparisons) can be replaced by a single lookup. If the current k nearest neighbors correspond to the 
k global nearest neighbors the prediction of v is equal for the current training/test split and LO. The occurrence 
of a successful lookup lu is distributed according to a hypergeometric distribution lu ∼ HG(k, |S | − 1, |T |) . 
In expectation

nearest neighbors can be found for each test sample.
For the |V | validation samples in each of the r × f  in each folds, the following number unsuccessful lookups 

is expected

This reduces the number of required distance comparisons to at least

In contrast to the distance calculations, the lookup table for the distance comparisons must be calculated 
explicitly. The costs for this lookup table are approximately given by k|S |2 distance comparisons. The overall 
time complexity of a single k-nearest neighbor experiment summarizes then to

The space complexity of the additional lookup structure is O
(
k|S |

)
.

Cross‑validation error bound.  Runtime optimisation via lookups can also be used to compute lower and 
upper bounds on the cross-validation error R̂cv of k-NN. This bound depends on the classifier’s leave-one-out 
error and the number of folds f.

Let R̂cv = R̂cv(S ) and R̂lo = R̂lo(S ) denote the risk estimate of a f-fold cross-validation and a leave-one-out 
cross-validation respectively. Given a random split of an f-fold cross-validation, the global k nearest neighbors 
of any data point are also included in the current training set T with probability
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Figure 3.   Fast cross validation of a k-NN: The figure shows the relationship of a leave-one-out cross validation 
(LOOCV) and a f-fold cross validation ( f = 10 , 10-fold CV) for the example of a 1-NN classifier. A dataset of 
twenty samples is analysed (circles). The center panel at the bottom shows the resulting neighborhood graph of 
the LOOCV. Each sample is connected with its global nearest neighbor (sample → neighbor). The other panels 
show the individual classification experiments of the 10-fold CV. For each experiment, only the training samples 
and the current test sample are available. If the global nearest neighbor of the test sample is included in the 
training set, the search for the nearest neighbor can be replaced by a look up (green). Otherwise, the training set 
has to be screened (red).
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Examples are shown in Table 2.
With probability plo , CV and LO lead to the same classification of a data point (cf. Eq. 18). For those cases in 

which the global k nearest neighbor is not included in the training set, let Ru denote the (unknown) error rate 
of the resulting predictions. Now the expected CV error can be written as

where EF denotes the expectation value under the uniform distribution F of all possible splits into f folds. Since 
0 ≤ EF [Ru] ≤ 1,

This can be rewritten as

Experiments
Our experiments focus on three different aspects of the exhaustive FSS. Its runtime (“Runtime experiments” sec-
tion), fitness landscape (“Exhaustive screening experiments” section) and generalization ability (“Cross-validation 
experiments” section) are evaluated. In all experiments, the e-k-NN is validated for k ∈ {1, 3, 5, 7} . Real-world 
datasets were downloaded from the UCI machine learning repository48 (Table 3). Their number of samples lies 
in the range of m = [166; 2126] and their number of features in the range of n = [9; 22].

Runtime experiments.  Runtime experiments were performed on an Intel(R) Xeon(R) Platinum Proces-
sor 8168 with 2.7 GHz (100 cores with HT) and 96 GB RAM. The runtime of both the exhaustive enumeration 
scheme and the corresponding distance-based feature selection strategy (e-k-NN) is investigated in experiments 
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Table 2.   Examples for probability plo (in %) in dependence on the number of considered neighbors k and the 
dataset size |S | . The examples are based on 10-fold CV experiments.

k

|S|

50 60 70 80 90 100

1 91.8 91.5 91.3 91.1 91.0 90.9

3 77.0 76.3 75.8 75.4 75.1 74.9

5 64.1 63.2 62.5 62.1 61.7 61.4

7 52.8 51.9 51.3 50.8 50.5 50.2

Table 3.   datasets analyzed in 10× 10 CV experiments.

Nr. name Number of classes ( |Y|) Number of features (n) Number of samples (m)
Number of samples 
per cl. ( my)

d1 Heart failure49 2 12 299 203 + 96

d2 Wine50 3 13 178 59 + 71 + 48

d3 Statlog (Aust.)51 2 14 690 307 + 383

d4 Breast Cancer Coimbra52 2 9 116 52 + 64

d5 Parkinsons53 2 22 195 48 + 147

d6 Segmentation48 6 19 1980 6 × 330

d7 Cardiotocography54 3 21 2126 1655 + 295 + 176

d8 Accent recognition55 6 12 329 29 + 30 + 30 + 30 + 45 
+ 165



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21485  | https://doi.org/10.1038/s41598-022-25942-4

www.nature.com/scientificreports/

on artificial datasets with m ∈ {50, 100} samples and n ∈ {30, . . . , 40} features. Each sample x was drawn i.i.d 
from x ∼ U (0, 1)n . A maximal time limit of 14 days ( ≈ 1.21 · 109 ms) was used.

The exhaustive enumeration scheme is compared to a de novo calculation of all distance matrices. For the 
runtime evaluation of the e-k-NN a 10× 10 CV is used as an internal validation method. It is performed with 
and without the use of the lookup strategy (“Estimation of k-nearest neighbor cross-validation complexity” sec-
tion). All experiments are based on multi-core evaluations on p = 100 cores.

Exhaustive screening experiments.  The exhaustive FSS presented above provides a census on the CV 
accuracies achieved by k-NN over all feature combinations. The corresponding fitness landscape can be evalu-
ated and visualized in order to provide information on the influence of individual features and the potential 
success of FSS.

In an explorative analysis, we provide the (exact) distributions of accuracies for several real datasets (Table 3) 
in order to identify patterns that may hint at a success or failure FSS. The accuracies are organized in histograms 
according to their underlying signature size n̂.

Cross‑validation experiments.  The e-k-NN can be applied as a standalone classification algorithm, 
which itself can be evaluated in (outer) 10× 10 CV experiments. We utilized 8 UCI datasets (Table 3) to compare 
the accuracy of e-k-NN to the accuracy of various reference classifiers. The standard k-NN ( k ∈ {1, 3, 5, 7} ), sup-
port vector machines with the 2-norm (L2-SVM, cost=1) and 1-norm (L1-SVM, cost=1)56, classification trees34 
(CART), C4.5 decision trees57, learning vector quantization58 (LVQ) and nearest centroid classifiers59 (NCC) 
were chosen. Of note, L1-SVM, CART, and C4.5 are embedded feature subset selection classification algorithms. 
As the e-k-NN is trained 10× 10 on different training sets, its internal exhaustive FSS will return up to 100 fea-
ture signatures in these experiments. The mean number of features and their standard deviation will be reported.

Results
The following section provides the results of the three experimental setups.

Runtime.  The results of the runtime experiments are shown in Figs. 4 and 5. They are based on a paralleliza-
tion of 100 cores. Figure 4 provides the results of the exhaustive distance calculations. For m = 50 samples the 
(standard) de novo calculation achieved the enumeration for n = 40 in 9d, 21h, 9min. The proposed traversal 
strategy required 15h 8min. For m = 100 samples the de novo calculation was only able to handle a dimension-
ality of n = 38 in the given time limit (9d, 17h, 35min). The traversal strategy was able to handle n = 40 in 2d, 
20h, 58min.

The evaluation of the e-k-NN strategy is given in Fig. 5. In this experiment, the enumeration of the distance 
matrices is coupled to the workload of a 10× 10 CV. The e-k-NN was applied with and without the use of its 
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Figure 4.   Runtime of exhaustive distance calculations. The figure summarizes runtime experiments on artificial 
datasets with n ∈ {30, . . . , 40} features (100 cores). In each experiment, the distance matrices of all 2n − 1 feature 
combinations are generated. A maximal runtime limit of 14 days ( ≈ 1.21 · 109 ms) was used. A comparison of 
a de novo calculation (lower-red triangle) and the proposed traversal strategy (upper-blue triangle) on datasets 
with m ∈ {50, 100} samples is given.
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internal lookup strategy. As the artificial datasets were explicitly designed to provide no class information the 
gained speedup can be seen as a baseline for the speedup in real experiments. It lies at most by 4.13 for m = 50 
and 3.96 for m = 100.

As expected the runtime increases for higher values of k in all settings. For m = 50 samples the lookup strategy 
allowed for gaining all results in the chosen time limit. For k = 1 the calculations for n = 40 features required 2d, 
10h, 49 min; for k = 7 12d, 18h 44 min were spent. Without the lookup strategy n = 40 was only achieved for 
k = 1 (8d, 3h, 6 min). For k ∈ {3, 5} at most n = 39 were analyzed. For k = 7 the maximum number of features 
was n = 38 (12d, 15h, 13 min).

For m = 100 samples and the use of the lookup strategy n = 40 features were only accomplished for k = 1 
(8d, 19h, 24 min). Up to n = 39 features were analyzed for k ∈ {3, 5} . Only n = 38 features were analyzed for 
k = 7 (8d, 14h, 46 min). Without the lookup strategy the runtime again increased leading to n = 39 features for 
k = 1 (12d, 21h, 7 min) down to n = 36 for k = 7 (8d, 9h, 20 min).
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Figure 5.   Runtime experiments with e-k-NN. The figure shows the runtime of experiments with e-k-NN 
( k ∈ {1, 3, 5, 7} , 100 cores) on artificial datasets with m ∈ {50, 100} samples. Each feature combination was 
evaluated in a 10× 10 CV experiment. A maximal runtime limit of 14 days ( ≈ 1.21 · 109 ms) was used. The 
runtime of e-k-NN with and without lookups (upper-blue/lower-red triangle) on artificial datasets with varying 
dimensionality n ∈ {30, . . . , 40} is shown.
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Fitness landscape.  In our explorative analysis, we recorded the (internal) CV accuracy of each feature 
combination. A summary for k = 1 is given in Fig. 6. An overview of the remaining experiments ( k ∈ {3, 5, 7} ) 
is given in the supplementary information. All figures organize the accuracies according to the feature set sizes 
(x-axis), where each column provides a histogram of the feature combinations of size n̂.

For each dataset, the leftmost histogram shows the accuracies achieved by the n individual features ( ̂n = 1 ). 
It characterizes the performance of the features as univariate standalone markers. Over all datasets, standalone 
markers achieved accuracies in the range of [14.2%; 87.2%] . For the individual datasets, the largest range of 
[14.4%; 64.5%] was observed for d6 (k = 7) . The smallest one of [31.8%; 37.6%] was found for d1 (k = 1) . For all 
experiments the multivariate feature combinations ( ̂n > 1 ) achieve better maximal accuracies than the univariate 
ones. In general, the quantity increases already for small feature set sizes.

Higher ranges of accuracies are observed for multivariate feature combinations. While the ranges initially 
increase for smaller n̂ they decrease for n̂ → n . This might be caused by the underlying number of combinations (
n
n̂

)

 , which is maximal for n̂ = n/2 . Another reason might be the overlap of the corresponding feature signa-

tures. While feature signatures can be constructed from distinct features for smaller n̂ , they inevitably overlap 
for larger n̂ resulting in similar distance information.

The rightmost histogram (single bar) provides the accuracy gained by the full set of features ( ̂n = n ). For 
each experiment, feature subsets exist that outperform the full set. This can be observed for 10.0% to 100.0% of 
the feature set sizes (mean: 84.0% ). Feature subsets leading to the highest accuracies utilize 14.3% to 91.7% of 
all features with a mean value of 48.2% . The number of feature combinations with better or equal accuracies 
than the full set of features might be seen as an indicator for a successful feature selection in terms of improved 
accuracy or reduced feature set sizes. In our experiments, these numbers range from 95.4% ( d1 ) to 0.2% ( d8 ). 
Feature subsets with higher accuracies occur more frequently for datasets d1 − d5 [35.2%; 95.4%]. For datasets 
d6 − d7 the accuracy of the full feature set can be achieved by [15.5%; 39.3%] of all feature subsets. Here, the 
influence of uninformative features can be absorbed in most cases. The lowest number of better or equal feature 
combinations was observed for dataset d8 [0.15%;0.6%]. Here, the full set of features is required for achieving 
the optimal accuracy. The corresponding fitness landscape is not in favor of feature selection.

It is interesting to see that especially the multivariate feature combinations tend to form multimodal distribu-
tions (according to accuracy) indicating the existence of multiple quality classes of feature combinations. These 
classes are mainly determined by the presence or absence of specific feature combinations, which dominate the 
influences of the corresponding signature. For larger feature set sizes the different subpopulations are likely to 
be absorbed by the overall central tendency.

Cross‑validation results.  The results of the CV experiments are summarized in Table 4. Here, the classifi-
cation accuracies in external 10× 10 CV experiments and the number of necessary features for e-k-NN leading 
to maximal accuracies are depicted.

In total, 7 out of 8 datasets obtained higher accuracies using e-k-NN instead of k-NN. Here, in 7 of 8 cases 
e-1-NN outperformed 1-NN, in 6 of 8 experiments e-3-NN led to higher accuracies than 3-NN, for 6 of 8 datasets 
e-5-NN outperformed 5-NN and in 7 of 8 cases e-7-NN achieved a better performance than 7-NN. The predic-
tive performance of k-NN can be improved by up to 28.8% using e-k-NN. On average, an improvement of up to 
11.2% (e-5-NN) in accuracies can be observed.

The variants of e-k-NN selected [14.4%; 88.3%] (average: 42.8% ) of all features. The lowest feature numbers 
were needed by d3 while outperforming the traditional k-NN by at least 15.2% . d8 required the largest feature set, 
leading to a decline in accuracy by at least 0.4% compared to k-NN.

For 5 out of 8 datasets, the overall highest accuracies were achieved by a variant of e-k-NN. The standard k-NN 
performed best for 1 out of 8 datasets. In 1 out of 8 cases the L2-SVM and C4.5 outperformed the other classi-
fiers, respectively. Over all 8 datasets, the L1-SVM, CART, LVQ and NCC never achieved the best performance.

Discussion and conclusion
The design of a suitable feature subset is one of the major tasks in training a classification model with a high 
impact on its final predictive performance. Adapted to the same task a classification model might be highly 
predictive or non-predictive if based on different feature representations of a data collection. This effect is not 
only of interest for modelling purposes but also in a broader scientific context, where informative features might 
reveal new hypotheses. The second one extends the traditional scope of feature subset selection from higher-
dimensional settings to lower-dimensional ones.

In both scenarios, high coverage of all feature combinations would be desirable for detecting optimal solu-
tions, characterizing their neighborhoods, identifying potential alternatives and finally for outlining the landscape 
of the underlying search space. However, this aim becomes more and more unrealistic for higher dimensions 
due to the exponential nature of the exponential growth of the number of feature combinations. Here, additional 
evaluations can enlarge the exploration of the search space. Those aims can be supported by fast evaluation crite-
ria as they allow for higher coverage in the same amount of time. Nevertheless, these evaluation criteria should 
also be robust to counteract the effects of overfitting. Time-consuming re- or subsampling experiments might 
be required to ensure this property. Complexity reduction should therefore focus on this aspect.

In this work, we address this scenario by proposing two techniques for efficient cross-validation traversals that 
improve the runtime of distance-based feature subset selection and even extend the range of exhaustive feature 
subset evaluations. Both are accompanied by theoretical findings on their computational complexity and error 
bounds. The first one, a traversal strategy, reduces the computational complexity of multivariate distance calcula-
tions to the complexity of univariate ones. Dimensionality therefore no longer affects the generation of distance 
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Figure 6.   Fitness landscapes. The figure shows the fitness landscapes of e-k-NN, k = 1 , for datasets d1 − d8 . 
The figures for k ∈ {3, 5, 7} can be found in the supplementary information. A fitness landscape provides the 
accuracies of all analyzed feature combinations. They are organized in histograms for the individual feature 
set sizes n̂ (column-wise). The height of a histogram is normalized by the mode of the corresponding set. 
The underlying polygon combines the minimal and the maximal accuracies achieved for n̂ . For each feature 
combination, the mode is shown in black within the single histograms. The median of each combination is 
depicted in green.
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matrices, if feature selection experiments are performed incrementally as for example in forward-selection or 
backward-elimination wrappers. We show the potential of these traversals in exhaustive feature selection experi-
ments, which comprise an exponential number of distance evaluations. For these enumerations, we provide an 
optimal walkthrough that not only allows the use of univariate distance calculations for each feature signature 
but also the use of arbitrary splits for load-balanced parallelization. In our experiments, the dimensionality-
invariant techniques allowed for the evaluation of 240 − 1 marker combinations. This number is independent of 
the dimensionality of the feature subsets. It is clearly out of range for de novo calculations, which become even 
more complex for higher dimensions.

The second approach addresses the computational complexity of cross-validation experiments of distance-
based classifiers. This type of experiment is mainly designed for simulations of independent training and test runs 
and therefore assumes a de novo calculation of classification models and predictions. Nevertheless, memoiza-
tion techniques might be used to improve training and evaluation time. For the k-Nearest Neighbor classifier, 
memoization can be applied twice. First, the repetitive calculation of distances between training and test samples 
can be replaced by providing a global distance matrix as lookup structure. Second, the global k nearest neighbors 
extracted from this matrix are likely to correspond to the local k nearest neighbors of an individual experiment, 
which allows for a probabilistic retrieval.

The memoization of k nearest neighbors reveals an inherent relation of the leave-one-out (global structure) 
and other cross-validations (local structures), which can not only be applied for runtime improvement but also 
for error estimation. We provide a theoretical error bound on the general cross-validation error based on the 
error of the leave-one-out. It might be used for replacing standard cross-validation by leave-one-out experiments 
if upper bounds are sufficient.

Our experiments did not only allow the comparison of runtimes but also the exploration of exhaustive feature 
selection experiments. Although typically omitted due to their exponential computational complexity exhaustive 
feature selection experiments have some interesting theoretical properties. In contrast to (standard) heuristic or 
stochastic feature selection strategies, exhaustive feature selection -per definition- does not suffer from subsam-
pling effects. Global optimal solutions can not be missed. It therefore allows to provide a direct relation between 
the chosen optimization criterion and the analyzed data. Although other optimization techniques also allow to 
provide (global) optimal solutions for specific criteria, the exhaustive one is the only general purpose optimiza-
tion technique with this property. It is therefore of interest for a wider range of applications.

Exhaustive feature selection achieves this property by conducting a census on all feature combinations. The 
corresponding data can afterwards be used for providing a fitness landscape, which outlines feature interactions 
and their influence on a classifier’s performance. For the k Nearest Neighbor classifier, we observed a beneficial 
influence of predictive standalone markers. They are a major ingredient of the top-scoring features combinations. 
The more features a signature reassembles the higher gets its similarity to the full signature. This not only affects 
the similarity of the corresponding distance matrices but also the similarity of the induced accuracies. As the k 
Nearest Neighbor classifier is unable to conduct (internal) feature-wise decisions its performance is influenced by 

Table 4.   Results of the 10× 10 CV experiments. The table reports the achieved accuracies and in the number 
of selected features (mean ± stdev. in %). k-NN denotes conventional CV simulation, e-k-NN refers to 
exhaustive FSS. The highest mean accuracy per dataset is printed in bold.

Classifier

Datasets

d1 d2 d3 d4 d5 d6 d7 d8

Achieved accuracy in % (mn. ± std.)

e-1-NN 83.7±1.4 90.5±1.9 84.9±0.5 71.4±2.2 86.0±1.7 97.0±0.2 92.0±0.4 80.7±1.1

e-3-NN 83.9±0.9 93.3±1.1 85.9±0.4 76.6±2.8 84.6±1.8 96.8±0.1 91.5±0.3 80.1±1.0

e-5-NN 84.8±0.5 93.0±1.6 85.0±0.9 78.6±2.1 84.6±1.3 96.7±0.1 91.1±0.2 80.6±1.4

e-7-NN 85.1±0.4 91.0±1.5 84.9±0.8 79.0±1.2 88.1±1.7 96.3±0.2 90.7±0.4 78.1±1.2

1-NN 54.8±1.5 76.6±0.8 65.8±0.5 59.9±2.6 84.4±1.3 96.5±0.1 90.2±0.1 81.7±0.9

3-NN 59.5±1.7 72.4±1.4 67.3±0.5 52.6±2.9 85.0±0.9 95.3±0.3 90.5±0.2 81.2±1.1

5-NN 62.7±1.0 70.8±1.9 68.6±0.4 52.5±1.7 85.0±1.2 94.3±0.2 89.7±0.3 81.0±0.7

7-NN 64.2±0.8 70.6±2.3 69.7±0.5 51.6±2.1 83.9±1.0 93.5±0.2 89.4±0.3 81.3±1.1

L1-SVM 54.7±3.8 83.5±3.5 76.7±1.3 58.9±2.9 68.2±5.3 81.2±2.7 80.5±2.9 70.7±1.8

L2-SVM 82.5± 0.5 95.8±1.0 85.2±0.2 74.3±1.1 86.5±0.8 96.3±0.1 89.8±0.2 75.5±1.1

CART​ 81.3±1.6 88.3±0.9 85.6±0.9 66.9±1.9 86.6±1.4 91.9±0.2 86.5±0.1 66.0±1.6

C4.5 81.7±1.5 92.4±1.6 83.9±0.7 73.3±3.5 84.6±1.9 96.8±0.2 93.0±0.4 66.3±1.9

LVQ 57.9±2.3 69.8±2.8 64.8±0.9 46.0±4.3 77.6±2.6 73.5±1.0 80.0±1.0 57.7±3.1

NCC 50.1±0.5 72.5±0.6 65.0±0.2 49.2±1.0 72.1±0.5 72.0±0.2 63.8±0.1 45.4±0.7

Number of selected features in % (mn. ± std.)

e-1-NN 32.8±1.9 46.8±1.8 14.4±1.4 48.4±1.9 34.2±3.4 32.2±1.4 44.2±1.5 86.8±1.8

e-3-NN 38.8±2.5 45.4±2.1 26.5±1.1 59.7±1.7 28.9±3.1 33.8±1.1 36.1±1.9 88.2±1.8

e-5-NN 29.8±2.8 46.5±3.0 27.5±0.5 58.6±1.7 28.8±2.0 32.3±0.8 37.1±6.1 86.2±0.7

e-7-NN 30.3±2.9 46.3±2.7 26.0±0.8 48.8±1.2 21.2±2.6 32.1±1.3 40.0±6.6 80.7±1.9
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all components of the underlying feature signature. Although we observe synergistic effects especially for smaller 
feature signatures, larger ones are likely to be overshadowed by uninformative components leading to a decline 
of accuracy. Individual features can only dominate the performance of the overall classifier if they outperformed 
the remaining features in scale. This effect might be different for other types of classifiers. Therefore, our future 
work will focus on the generation of fitness landscapes for other classification models, e.g., the L2-SVM and NCC. 
While our scheme can be transferred to other distance-based classifiers, exhaustive screens might not as easily 
be conducted for other types of models. Other acceleration techniques will be required for these model classes.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information file. Artificial data was generated by random sampling from a uniform distribution (see “Runtime 
experiments” section). The real-world data that was analysed is publicly available from the UCI machine learning 
repository https://​archi​ve.​ics.​uci.​edu.
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