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A new paradigm of reliable 
sensing with field‑deployed 
electrochemical sensors integrating 
data redundancy and source 
credibility
Ajanta Saha 1, Sotoudeh Sedaghat 2,3, Sarath Gopalakrishnan 1, Jose Waimin 2, 
Aiganym Yermembetova 2, Nicholas Glassmaker 3, Charilaos Mousoulis 1, Ali Shakouri 1, 
Alexander Wei 2,3,4, Rahim Rahimi 2 & Muhammad A. Alam 1*

For a continuous healthcare or environmental monitoring system, it is essential to reliably sense the 
analyte concentration reported by electrochemical sensors. However, environmental perturbation, 
sensor drift, and power‑constraint make reliable sensing with wearable and implantable sensors 
difficult. While most studies focus on improving sensor stability and precision by increasing the 
system’s complexity and cost, we aim to address this challenge using low‑cost sensors. To obtain the 
desired accuracy from low‑cost sensors, we borrow two fundamental concepts from communication 
theory and computer science. First, inspired by reliable data transmission over a noisy communication 
channel by incorporating redundancy, we propose to measure the same quantity (i.e., analyte 
concentration) with multiple sensors. Second, we estimate the true signal by aggregating the output 
of the sensors based on their credibility, a technique originally developed for “truth discovery” in 
social sensing applications. We use the Maximum Likelihood Estimation to estimate the true signal 
and the credibility index of the sensors over time. Using the estimated signal, we develop an on‑the‑
fly drift‑correction method to make unreliable sensors reliable by correcting any systematic drifts 
during operation. Our approach can determine solution pH within 0.09 pH for more than three months 
by detecting and correcting the gradual drift of pH sensors as a function of gamma‑ray irradiation. In 
the field study, we validate our method by measuring nitrate levels in an agricultural field onsite over 
22 days within 0.06 mM of a high‑precision laboratory‑based sensor. We theoretically demonstrate 
and numerically validate that our approach can estimate the true signal even when the majority 
(~ 80%) of the sensors are unreliable. Moreover, by restricting wireless transmission to high‑credible 
sensors, we achieve near‑perfect information transfer at a fraction of the energy cost. The high‑
precision sensing with low‑cost sensors at reduced transmission cost will pave the way for pervasive 
in‑field sensing with electrochemical sensors. The approach is general and can improve the accuracy of 
any field‑deployed sensors undergoing drift and degradation during operation.

Reliable sensing with integrated sensors is a prerequisite for continuous monitoring and automatic control 
systems. Wearable and implantable electrochemical sensors that measure analyte concentrations onsite have 
potential applications in a variety of systems, e.g., personalized  healthcare1,2, smart  agriculture3, wastewater 
 management4, chemical, and biological process  monitoring5, etc. Despite vast opportunities, wearable and 
implantable electrochemical sensors have not yet attained accuracy levels comparable to those used in the 
laboratory  setting6,7. This is because the sensors in field applications face unique challenges absent in laboratory 
conditions (see Fig. 1a), such as:
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• Uncontrolled environment: Controlled environment decreases noise and variability, and thus increases the 
data reliability of the sensors used in the laboratory. In contrast, relatively small sample volume and rapidly 
varying temperature, humidity, and target concentration increase noise and decrease data reliability of the 
sensors used in the  field8.

• Time-dependent Degradation: Water ingress, biofouling, radiation exposure, etc., change the physical and 
chemical properties of the  sensor9,10. As a result, sensor performance degrades over time when exposed to 
the natural environment.

• Challenge of calibration: Laboratory sensors are frequently calibrated against ground truth signals to correct 
unwanted drift or  bias11. Frequent calibration is impossible once the sensor is deployed in the field.

• Power constraint: Wired power sources cannot be used for continuous data acquisition and transmission of 
wearable and implantable sensors. Batteries have a limited power budget and energy harvesters cannot sup-
ply power on-demand.

The aforementioned factors adversely affect the accuracy of measurement in the field. To increase the accuracy 
of measurement, most studies focus on tailoring sensing materials, devices, or systems to make them robust 
against environmental perturbations and natural  degradation7,12,13. However, the increased complexity and cost 
make these sensors unsuited for field applications. In this paper, we offer a complementary sensing paradigm 
that achieves high-precision measurement by using multiple low-cost sensors that measure the same analyte 
concentration, in a manner analogous to true signal extraction over a noisy communication channel by introduc-
ing redundancy in  information14, see Fig. 1b. Although the use of multiple sensors to achieve high accuracy has 
been shown in previous works, most of them aggregate sensors’ output based on distance or density of data 
 readings15,16. Subsequently, reputation-based data aggregation has been applied to multiple sensors system, where 
the reputation matrix is defined by the density or distance of data readings of the  sensors17,18. In these approaches, 
if a sensor reading deviates from the rest of the group, it is regarded as faulty or an outlier, and excluded during 
aggregation. Distance or density-based fault detection is effective when faults are rare and significantly different 
from the normal  instances19,20. However, it fails when the signal drifts gradually, unreliable readings lie within 
normal instances, or the majority of the sensors are unreliable. Our aim is to estimate the true signal in presence 
of both random faults and gradual drift even if the majority of the sensors are unreliable.

To aggregate multiple sensors’ output, we use the concept of truth discovery previously applied in social/
crowd/swarm sensing  applications21,22. In social sensing or crowd sensing problems, often conflicting information 
is reported by different sources. To discover the truth from this conflicting information, additional information, 
such as source credibility, reputation, wisdom, or confidence is  considered23–25. Since the credibility of the sources 
is not usually known a priori, truth and source credibility are estimated in a coupled way. Truth is estimated 
by credibility-weighted voting of the sources whereas the credibility of a source is measured by how often or 
confidently it gives the true information.

In this paper, we adapt this concept of crowd sensing to physical (e.g., electrochemical) sensors. The gener-
alization is nontrivial, because the output of a physical sensor varies both in time and magnitude, while classical 
social sensing involves binary (true/false) or a few discrete options (multiple choice). We estimate the true signal 
and credibility index of an individual sensor using the maximum likelihood estimation (MLE)  approach23. Since 
wearable and implantable sensors give continuous output in time, we know how a sensor has performed in the 
past, and how its credibility has changed over time. We augment the historical credibility information to the 
current estimation to reliably measure the true signal even when the majority of sensors become unreliable (see 
Fig. 1b). Moreover, using the estimated signals by MLE, we develop an on-the-fly drift correction of unreliable 
sensors to make them reliable again in field application. We validate our “MLE with drift correction” approach to 
estimate the true signal and sensor’s credibility with multiple synthetic and real sensor datasets. We theoretically 
and experimentally validate that historical credibility helps MLE to estimate the true signal when the majority of 
the sensors are unreliable. Moreover, credibility information allows us to significantly reduce the transmission 
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Figure 1.  (a) Deviation of sensor’s output from the true signal due to several challenges in the field application. 
(b) Schematic of our proposed approach where true signal and sensors’ credibility are estimated using the 
output and the historical credibility of multiple (reliable and unreliable) sensors.
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cost and improve the information yield by suppressing the transmission from unreliable sensors in the wireless 
sensor network.

Maximum likelihood estimation
Maximum likelihood estimation (MLE) is a statistical approach to determine target parameters based on 
observed data. Wang et al. used such an approach for obtaining truth and source credibility in social sensing 
 applications23. We adapt this approach for reliable signal estimation from a continuous data stream of electro-
chemical sensors in field applications. In our case, observed data is the output of multiple sensors, and target 
parameters are the true signal and the credibility index of each sensor. We divide the continuous output of the 
sensors into small time windows and MLE assigns high credibility index to a sensor that frequently agrees with 
the majority at a given time window. Again, it estimates the true signal of that window based on the outputs of the 
sensors that are assigned high credibility indices. To estimate the true signal and credibility indices in subsequent 
time windows, we use the average credibility of previous time windows i.e., the historical credibility of the sensors 
as initialization. Therefore, the true signal and credibility of a time window are estimated based on not only the 
instantaneous majority but also the historical performance of the sensors. In the Methods section, we describe 
the MLE framework and integration of historical credibility into MLE, and theoretically show how historical 
credibility enables true signal estimation even when the majority of the sensors in the network become unreliable.

Results
In this section, we first validate our MLE based approach to estimate the true signal and credibility of the sensors 
with synthetic and experimental sensor datasets. Then we show how the estimated signal by MLE can be used for 
on-the-fly drift correction of unreliable sensors in the field application. Finally, we propose a data transmission 
technique based on credibility information to reduce transmission energy of wireless sensor networks.

Dynamic credibility and estimated signal. To validate the MLE approach for the reliable sensing appli-
cation, we perform experiments on diverse datasets, including synthetic and real sensors. Since our target appli-
cation is electrochemical sensors, so the synthetic data are generated using analytical equations of Nernst-based 
ion-selective electrode (ISE). Incidentally, these sensors dominate the electrochemical sensor  market26. During 
operation, ISE generates a voltage signal that depends on target ion concentration in the analyte, environmental 
condition, (e.g., temperature) and calibration parameters (e.g., physical and chemical properties of the sensor)26. 
Figure 2a shows generated voltage signal of 10 ISEs as the analyte concentration is varied in discrete steps. Dur-
ing operation, the calibration parameters of the sensors may change gradually due to water ingress, biofouling, 
interference with other ions, etc. As a result, these sensors produce unreliable voltage  readings9,27. To show their 
effects on voltage signals, we simulate some practical changes in the calibration parameters of unreliable sensors 
while keeping them constant for reliable sensors. For example, in the time 480 s–740 s, sensors  S1–S3 are sensitive 
to concentration change but their voltages are shifted by a constant amount due to changes in physical proper-
ties. Within the same time-window,  S4 loses sensitivity abruptly and hence gives a constant voltage reading at the 
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Figure 2.  A synthetic dataset. (a) The output voltage of the sensors are generated using Nernst  equation26. 
Unreliable voltage reading is simulated by changing calibration parameters (e.g., thickness, chemical properties) 
of the sensors during operation and introducing random  fluctuations28. Estimated signal by MLE follows the 
true signal. (b) Each sensor’s change of credibility with time. MLE assigns low credibility index to a sensor when 
a sensor gives unreliable voltage reading and reassign high credibility index when the signal is restored. (c) 
Error distribution between estimated and true signal shows error is close to zero in most instances and RMSE is 
5.22 mV.
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end. Sensors may show delayed response with the concentration change due to the coating of the biofouling layer 
which we simulate using  S8–S10 during time 300 s–480 s. Other than intrinsic degradation of sensors, extrinsic 
effects such as power supply or hardware failure, uncontrolled environment, and surrounding perturbation can 
introduce random fault/fluctuation in the output  signal28. We consider the effect of random fluctuations in the 
voltage signal of  S8–S10 in the time period 0 s–160 s. A detailed description of synthetic data generation and fault 
injection is given in the supplementary information section S1.

MLE takes the voltage signal of reliable and unreliable sensors as inputs and calculates the estimated true 
signal and each sensor’s change of credibility index with time. Figure 2b validates that the MLE detects all types of 
unreliability caused by gradual degradation or random fluctuations, and assigns low credibility to the unreliable 
sensor at that time instance. In this approach, the change in the reliability of the sensors is reflected instantly in 
the corresponding credibility index. During true signal estimation, unreliable sensors get lower weights, hence 
the estimated signal follows the reliable sensors’ signal as shown in Fig. 2a. Figure 2c shows the error distribu-
tion between the estimated signal and ground truth signal. The error is close to zero most of the time and the 
RMSE of the estimated signal compared to the true signal is 5.22 mV. For Nernst-based sensors, a 60 mV voltage 
difference corresponds to about 1 order of magnitude change in analyte concentration. Therefore, the estimated 
concentration by MLE is within 0.09 orders of magnitude of the true concentration.

On the fly drift correction. During field operation, a sensor’s signal may drift from the nominal level for 
various reasons. However, as long as the sensors are nominally sensitive to concentration change of analyte, they 
are considered reliable. Simple drift correction can provide useful readings from drifted sensors. Such drift or 
bias correction is done frequently using ground truth signals (as a part of the calibration process) in the labora-
tory which ensures high precision  measurement11. Since in the field application, ground truths are not readily 
available, the estimated signals by MLE can be used as a proxy of the ground truth for drift correction. When 
most of the sensors are reliable, we have shown with synthetic dataset that the estimated signal by MLE repre-
sents the ground truth. Therefore, whenever a sensor drifts, we use the estimated signal as reference to correct 
the drift of the sensor to make it “reliable” once again. For the drift correction of an unreliable sensor, first, we 
calculate the error signal between the sensor’s output and the estimated signal by MLE in each time window. 
Next, we calculate the mean value of the error signal for that time window and shift the output of the drifted sen-
sor by this mean error value, thereby correcting for the drift. The pseudocode of true signal and credibility esti-
mation with drift correction is provided in the supplementary information section S2.

We will now evaluate the performance of MLE algorithm without and with drift correction on three real 
sensor datasets –

• Gradual drift due to exposure to gamma-ray irradiation: One emerging application for electrochemical sensors 
is monitoring of analytes in bioreactors, which are typically sterilized by gamma (γ)-irradiation5. However, 
when ISEs are exposed to γ-irradiation during in-situ monitoring, their chemical properties are  altered29, 
resulting in a change in voltage drift  behavior30. We use MLE to estimate the analyte concentration accurately 
even if sensor’s voltage drifts gradually as a function of γ-irradiation. For that, we monitor the response of 
four γ-irradiated pH sensors stored for more than three months in buffer solution (Fig. 3f). To quantify the 
gradual signal drift, we periodically measure voltage of the sensors with respect to commercial Ag/AgCl 
reference electrode in pH5–pH9 (2 min in each solution). The details about pH sensor fabrication and 
characterization process can be found in  Ref30. Figure 3a shows systematic divergence of individual voltage 
readings from the initial calibration curve (i.e., ground truth) with time. We assume that the ground truth 
voltage of subsequent measurements is the same as the first measurement since we make sure that pH values 
of solutions are exactly same at each measurement. Therefore, the ground truth should be constant across all 
measurements if there is no voltage drift of the sensors. Since the MLE algorithm does not use any ground 
truth supervision to estimate the true signal and credibility of the sensors, it cannot recover the true signal if 
all the sensors diverge from each other and the ground truth. Therefore, the estimated signal by MLE shows 
a deviation from the true signal and low credibility is assigned to majority of the sensors (Fig. 3b). Although 
MLE cannot recover the true signal in this case, our drift correction algorithm corrects the small divergences 
at each step which leads MLE to the correct estimation afterward.

  Figure 3a shows that after being exposed to gamma-ray irradiation, sensors still respond correctly to the 
change of pH, only that their voltage level shifts gradually over time, which can be corrected by the drift cor-
rection algorithm. As a result, after drift correction, all the sensors contribute toward a reliable estimation, and 
MLE correctly assigns high credibility to the sensors as shown in Fig. 3d. Figure 3c shows that the estimated 
signal by MLE more precisely follows the ground-truth signal after drift correction with negligible error at 
the most time instances (see error distribution in Fig. 3e). Without drift correction, RMSE of the estimated 
signal was 14.22 mV; the RMSE is reduced to 5.74 mV after drift correction. It implies that, even without 
any recalibration, “MLE with drift correction” can estimate the pH of the solution within 0.09 pH for more 
than three months after these Nernst-based pH sensors are exposed to γ-irradiation.

• Random faults in the controlled experiments: For continuous monitoring of nitrate concentration in the 
agricultural field, we developed implantable, low-cost Nernst-based nitrate ISEs by using a roll-to-roll pro-
cess. The nitrate sensor fabrication details can be found in  Ref26,31. Before field deployment, the sensors are 
characterized by controlled laboratory experiments where the voltage signal of each sensor is recorded with 
respect to the commercial Ag/AgCl reference electrode by varying the nitrate concentration of the solution 
in discrete steps (Fig. 4a). The response of a commercial nitrate sensor is recorded as a ground-truth signal. 
Some low-cost sensors (e.g.,  S7–S10) failed to follow the true signal due to sensor failure or external electrical 
noise during the experiment. We denote the faults as “random faults” and detect them using MLE. Figure 4b 
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Figure 3.  Gradual voltage drift of pH sensors as a function of gamma (γ)-irradiation. (a) Recorded voltage 
of four pH sensors for more than 3 months after being exposed to γ-irradiation (25–45 kGy) at day  030. Due 
to divergence of individual voltage readings estimated signal by MLE deviates from ground truth at later days 
and (b) MLE assigns low credibility to majority of the sensors. After drift correction, (c) estimated signal by 
MLE follows the ground truth signal more precisely and (d) high credibility is assigned to each sensor. (e) Error 
distribution between estimated (after drift correction) and true signal shows error is negligible in most instances 
with RMSE 5.74 mV. (f) γ-irradiated pH sensors stored in buffer solution.
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Figure 4.  Random faults due to electrical noise and failure of sensors. (a) Recorded voltage readings of 10 
roll-to-roll printed nitrate sensors in controlled experiment where random faults in  S7–S10 are observed due 
to manufacturing defects or electrical noise. Estimated signal by MLE follows the true signal. (b) MLE assigns 
low credibility index to  S7–S10 when they fail to follow the true signal. (c) Estimated signal by “MLE with drift 
correction” along with ground truth signal. (d) Drift correction corrects the bias of  S7 and  S9 thereby they get 
high credibility index after drift correction. (e) Error distribution between estimated (after drift correction) 
and true signal shows error is close to zero most of the time instances. (f) Experimental setup of laboratory 
characterization of the Nitrate sensors.
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shows MLE correctly assigns low credibility to the faulty sensors  S7-S10. As a result, the estimated signal closely 
follows the ground-truth signal (Fig. 4a) and RMSE of the estimated signal compared to the ground-truth 
signal is 5.26 mV.

  Since  S8 and  S10 fail randomly as shown in Fig. 4a, MLE marks them as unreliable even after drift correction, 
which is shown in dynamic credibility index of Fig. 4d. On the other hand, the constant shifts of  S7 and  S9 
can be corrected in this method, and they are assigned high credibility after drift correction. Finally, Fig. 4c 
shows that the estimated signal after drift correction closely follows the ground truth signal with RMSE 
3.51 mV. In other words, “MLE with drift correction” can estimate the concentration within 0.06 orders of 
magnitude of true concentration.

• In-situ nitrate concentration measurement in the agricultural field: Finally, we apply the MLE approach for high 
accuracy measurement of nitrate concentration in an agricultural field with multiple low-cost nitrate sensors. 
The experimental setup of field deployment is described in the supplementary information section S3 and 
shown in Fig. 5a. In the field, sensors undergo additional challenges, e.g., interference of secondary ions, bio-
fouling, natural variation of temperature between day and night, etc., which makes it challenging to achieve 
reliable sensing in field application. Figure 5b shows calculated concentrations from voltage readings of four 
nitrate sensors in the field solution. Ground truth points are measured by a laboratory-based high-precision 
nitrate  sensor32. Different types of faults are observed, for example,  S1 slowly drifts with time,  S2 becomes more 
sensitive to surrounding temperature after a few days, and the output level of  S4 shifts after 13 days. Figure 5b 
shows the estimated signal by MLE follows the trend of ground truth upto 12–13 days. After that, MLE gives 
random values at some time instances. We also see from Fig. 5c that although  S2 becomes unreliable at later 
days, MLE fails to assign low credibility to  S2. MLE fails to estimate the true signal and the sensor credibility 
in this period because after 12–13 days only  S3 remains reliable, the other three sensors (i.e.,  S1,  S2, and  S4) 
become partially or fully unreliable. Without ground truth supervision, MLE cannot recover the true signal if 
a minimum number of sensors are not reliable. However, through drift correction, we correct the drift of the 
unreliable sensors ahead of time using the MLE signal, so that we can later ensure the minimum number of 
reliable sensors required for MLE to function appropriately.

  Drift correction helps to get much more interpretable results with field-deployed nitrate sensors (see 
Fig. 5d,e). Drift corrections keep more sensors nominally reliable over time. As a result, MLE can correctly 
detect  S2 and  S4 as unreliable sensors and accordingly assign low credibility to these sensors. Estimated signal 
also closely follows the trend of ground truth even after 12–13 days. We obtain RMSE between estimated 
signal and interpolated ground truth-signal to be 0.06 mM over the period of 22 days. We know of no other 
report in the literature that continues to provide a reliable signal in the field after such a long-term operation.

Data transmission based on credibility. Wearable and implantable sensors are usually powered by bat-
tery or by natural energy harvesters. Signal transmission is the primary source of the energy cost of a sensor 
(local signal processing costs are orders of magnitude  lower34). To reduce the power consumption of data acqui-
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Figure 5.  (a) Schematic (upper) and experimental (lower) setup of field measurement. (b) Nitrate 
concentration of an agricultural field is measured continuously with four low-cost nitrate ISEs over a period 
of 22 days. Part of the voltage readings are adapted from Ref 8,33. Different faults are observed- slow drift over 
time  (S1), increasing sensitivity to temperature with time  (S2), sudden jump in output  (S4). If we do not correct 
drifts, three sensors become unreliable after 12–13 days and MLE fails to estimate correct concentration and 
credibility. (c) MLE assigns high credibility to  S2 although it is not reliable at later days. Again,  S3 is assigned 
low credibility at certain times although it is reliable. (d) Drift correction corrects the drift ahead of time, so 
that drift-corrected estimated signal follows the ground truth more accurately. (e) After drift correction, MLE 
correctly assigns lower credibility to  S2 and  S4.
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sition and transmission, different strategies are taken. One common strategy is to operate the sensors at a low 
duty cycle, i.e., sensors send data in long time  intervals35. However, sensor may miss some important events 
during the long interval. To overcome this shortcoming, event-based data transmission is proposed in previous 
 works36,37. In classical event-based transmission, when a data point differs from the previous event by more than 
a predefined threshold, the data point is detected as an event and  transmitted36. However, in this approach, any 
random faults or gradual shift of unreliable sensors can be detected as an “event” and the unreliable data point 
can be sent to the receiver. This spurious transmission not only reduces information yield but also increases the 
transmission cost. We propose to integrate the credibility information provided by MLE with the event-based 
data transmission technique to eliminate unnecessary data transmission from unreliable sensors.

The proposed data transmission approach has two parts: updating of credibility index and detecting of signal 
events. The schematic of data transmission approach is shown in Fig. 6a. For the update of the credibility index, 
we collect the signals of all sensors for a time window and estimate the credibility of the sensors by MLE. Based on 
this credibility, we select the most reliable sensor which will monitor the events until the next credibility update. 
Rest of the sensors remain inactive i.e., do not observe events. For detecting signal events, an event detection 
threshold is defined as suggested  in36. The most reliable sensor detects an event if the data point differs from 
the last transmitted data point by more than the threshold value. When an event is detected, all the sensors start 
collecting data for a time window and send data to the MLE block where we run MLE to update the sensors’ 
credibility, estimate true signal of that time window, and correct drift of unreliable sensors using the MLE signal. 
If the sensor that has detected event is most reliable sensor based on updated credibility, then estimated signal by 
MLE is transmitted to the receiver. If the sensor is no longer the most reliable sensor of the group, then no data 
is transmitted. In this way, if the most reliable sensor becomes unreliable during the period of event detection 
and detects a false event, then no data will be transmitted. Based on updated credibility, the most reliable sensor 
will take over event detection and others will become inactive. Pseudocode of the data transmission algorithm is 
provided in the supplementary information section S4. We obtain the transmitted data from sensors’ signal using 
the algorithm and recover the signal by interpolating the transmitted data. Information yield is defined by the 
RMSE between true signal and recovered signal, where reduced RMSE implies enhanced information yield. We 
compare the results with classical event-based transmission, where all sensors observe events and whenever a 
sensor detects an event, it can send data regardless of its  credibility36.

The comparison between classical event-based data transmission approach and our proposed approach in 
terms of number of data transmitted and RMSE is summarized in Table 1 for three real sensor datasets (in Figs. 3, 
4, 5). The event detection threshold used for each dataset is reported in the supplementary information Table S1. 
For gradual drift of γ-irradiated sensors, the use of credibility information does not reduce the data transmis-
sion significantly because here the unreliable sensors are slowly drifting with time, so they are not detecting and 
sending false events (Fig. 3a). However, the RMSE is reduced by ~ 2 × when the estimated signal by MLE is sent. 
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Figure 6.  (a) Schematic of credibility-based data transmission framework. Comparison of (b) RMSE and (c) 
data transmission (relative to data transmission when all sensors are reliable), in classical 36 and credibility based 
data transmission approach. Fraction of unreliable sensors is varied in real sensor dataset keeping total sensor 
fixed at 10. When all sensors regardless of credibility are allowed to send data, RMSE and data transmission 
increase significantly even with a few unreliable sensors in the network. Whereas these quantities are reduced 
significantly by sending data based on the algorithm proposed in this paper.

Table 1.  Comparison between  classical36 and credibility-based data transmission approach in terms of no data 
sent and RMSE (between recovered and true signal) for three real sensor datasets. 

Real sensor datasets

No of data sent RMSE

Classical Credibility based Classical Credibility based

Gradual drift 5023 4105 17.19 mV 10.24 mV

Random faults 2055 790 49.54 mV 3.87 mV

Field 964 584 1504 mM 0.067 mM
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For the second dataset (Fig. 4a), unreliable sensors failed randomly which are detected as events in classical 
event-based technique, and so data transmission increases significantly if we allow them to send the false events. 
Credibility based approach reduces the data transmission and improves the information yield (reduces RMSE) 
significantly by sending only the reliable data. For the field data, we achieve ~ 2 × reduction in data transmission 
and a significant reduction in RMSE using our approach.

Finally, we evaluate the effect of the fraction of unreliable sensors on RMSE and the data transmission by 
increasing the number of unreliable sensors while keeping the total number of sensors fixed in the network. We 
use the measured voltages from our roll-to-roll manufactured, low-cost nitrate sensors in the laboratory settings 
for the analysis. The response of a commercial nitrate sensor is recorded as the ground truth signal. The sensors 
that follow the signal of the commercial nitrate sensor are regarded as reliable sensors, and others that show 
random faults or gradual drift are regarded as unreliable ones. The datasets used for the analysis is given in the 
Supplementary information Fig. S1. Figure 6b and c show the comparison of RMSE and the data transmission 
between our approach vs. the classical event-based approach, while fraction of unreliable sensors is increased 
keeping total number of sensors fixed at 10. Here, the mean of RMSE and data transmission (along with cor-
responding standard deviations) are reported for 5 different runs. As expected, when all the sensors are cred-
ible, the RMSE and the data transmission rates are the same whether we use credibility information or not. In 
the classical approach, since all sensors are allowed to transmit data regardless of their credibility indices, RMSE 
and data transmission increase rapidly even with relatively few unreliable sensors in the network. Since 60 mV 
voltage difference corresponds to 1 order magnitude difference in concentration, the estimated concentration is 
off by ~ 0.7 orders of magnitude with only one unreliable sensor. Data transmission and RMSE increase because 
unreliable sensors detect false events and send incorrect data. When we allow only the most credible sensor to 
monitor an event and send reliable data, we can keep the RMSE small, and thereby estimate the concentration 
accurately even when 90% of sensors become unreliable. We can simultaneously reduce the data transmission 
by two-thirds compared to classical event detection method (which by itself reduces data transmission by an 
order magnitude compared to continuous transmission of the data). Only at fraction of unreliable sensor = 0.7, 
we observe comparatively large RMSE because the algorithm fails to detect some true events.

Discussion
Integration of historical credibility leads MLE to more informative answer. For time-invariant 
ground-truth data related to typical social sensing applications, MLE estimates the credibility of a source based 
on the whole dataset and uses the credibility to estimate the truth  correctly23. However, for continuous time-series 
data discussed in this paper, we need to estimate the signal window-wise using current or small-time interval 
data. In that case, the performance within a single time window is not sufficient to determine the sensor’s cred-
ibility, especially if the time window is relatively small. As a result, if all sensors are assumed to be equally reliable 
during initialization at each time window, the MLE technique is reduced to simple majority voting. Majority 
voting is useful when most of the sensors are reliable. However, it fails to estimate the true signal correctly when 
majority are unreliable. We use the historical credibility information for initialization of current time window 
to bias the estimation towards the sensors that showed higher credibility in the past. If reliable ones are few in 
number, this leads to more accurate estimation compared to the MLE with the assumption of equal credibility of 
all sensors. We validate the effect of historical credibility with the nitrate sensor dataset that showed gradual drift 
and random faults during laboratory measurement (shown in the supplementary information Fig. S1). Figure 7a 
shows the RMSE of estimated signal compared to ground truth signal measured by commercial nitrate sensor 
while fraction of unreliable sensors is increased, but keeping total number of sensors fixed at 10. When frac-
tion of unreliable sensors is less than 0.5 i.e., reliable sensors are majority, the RMSE is comparable whether we 
assume that all sensors are equally reliable (red circles) or use the historical credibility information (blue circles). 
However, when majority is unreliable, RMSE increases exponentially when there is no memory of historical per-
formance. The use of the historical credibility reduces the RMSE significantly when fraction of unreliable sensors 
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Figure 7.  (a) Effect of historical credibility information in initialization at each time window- RMSE between 
estimated signal by MLE and true signal denotes when historical credibility information is used for initialization 
of MLE, RMSE decreases significantly for fraction of unreliable sensor greater than 0.5 (number of unreliable 
sensor, U and total sensor, M = 10). (b) RMSE using historical credibility vs. fraction of unreliable sensors for 
total number of sensors, M = 4–10. (c) Credibility threshold limit (CTL) is obtained by fitting RMSE datapoints 
with Eq. (1). We can obtain CTL close to the upper limit using historical credibility with MLE.
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is greater than 0.5. Figure 7a shows that even when 90% of sensors are unreliable, the analyte concentration can 
be estimated within 0.2 orders of magnitude by using historical credibility information.

Integration of historical credibility increases credibility threshold limit of MLE. Since MLE 
algorithm does not use any ground-truth supervision for estimating the true signal and the credibility of the 
sensors, it cannot recover the true signal if all the sensors simultaneously become unreliable. Few sensors must 
be reliable to recover the true signal. The maximum fraction of unreliable sensors with which MLE can still cor-
rectly detect the true signal and determine the sensor’s credibility defines the credibility threshold limit (CTL) 
of MLE. When the fraction of unreliable sensor is greater than CTL, RMSE increases significantly. The CTL of 
the simple majority voting algorithm is 0.5, whereas in the Methods section, we theoretically show by integrat-
ing the historical credibility, MLE can achieve CTL greater than 0.5. To numerically calculate the CTL of the 
group of sensors used in Fig. 7a, we fit the RMSE data points obtained by using historical credibility to MLE 
approach (blue circles) with Eq. (1),

where u = U/M is the fraction of unreliable sensors in the sensor group with total number of sensors M and 
number of unreliable sensors U . The values of C , u0 and CTL are obtained from the fitted line. According to 
Eq. (1), the RMSE increases exponentially with u > CTL . Following this, we calculate CTLs by fitting RMSE 
versus u datapoints by varying the total number of sensors in the group. Figure 7b shows the fitted lines for 
total number of sensors, M = 4–10. Figure 7c plots the CTLs as a function of 1/M (triangles). CTL is plotted as a 
function of 1/M to show the asymptotic value of CTL when M is very large. CTL can be expressed as a function 
of total number of sensors, M as follows,

where α is the asymptotic value of CTL ( M → ∞ ) which varies between 0.5 and 1. For majority voting, α = 0.5 
which says that the maximum fraction of unreliable sensors is 0.5 for reliable signal extraction. If only one reliable 
sensor can extract the reliable signal, then α = 1 which is theoretical upper limit of α . By fitting the numerical 
CTL points with Eq. (2), we obtain α = 0.86 (see Fig. 7c). Therefore, using historical credibility, we obtain α close 
to the upper limit. In other words, we can estimate the true signal even when more than 80% of sensors become 
unreliable. The value of α depends on the signal quality of the sensors. If majority of the sensors are unreliable 
from the beginning or become unreliable at the same time, then historical credibility cannot help the MLE 
algorithm to estimate the correct signal. Again, if malicious attackers modify the highly reliable sensor reading 
in a planned way, then our approach will not be able to detect it. If the sensors become unreliable naturally at 
different times, as is the case for most field-deployed sensors, then the proposed MLE approach will give high 
credibility to the reliable majorities at the beginning. The high historical credibility of reliable sensors will help 
MLE to follow them even if majority becomes unreliable at later times.

Conclusion
We have developed a novel approach to obtain reliable data from low-cost electrochemical sensors in the field 
application using data redundancy and sensors’ credibility based on MLE. With multiple synthetic and real 
sensor datasets, we have demonstrated that we can detect the unreliable sensors and estimate the true signal 
even when some of the sensors become unreliable either due to gradual degradation or random faults. We have 
developed an on-the-fly drift correction method to correct the drift or bias of the sensors during operation. 
Once corrected, these sensors become reliable once again. Using the γ-irradiated  pH sensor dataset, we show 
that we can measure the pH of the solution within 0.09 pH for more than three months without any external 
recalibration. The approach has also been applied for measuring nitrate concentration of an agricultural field 
onsite with multiple low-cost nitrate sensors within 0.06 mM of high-precision laboratory-based sensors over 
a period of 22 days. We propose an algorithm to integrate credibility information into the classical event-based 
data transmission approach. Using real sensor datasets, we have shown that the algorithm can reduce data 
transmission and concentration estimation error significantly by suppressing unnecessary data transmission 
from unreliable sensors. Finally, we theoretically show that MLE can estimate the true signal and credibility of 
the sensors correctly by using the historical credibility of the sensors even if more than half of the sensors are 
unreliable. Indeed, we achieve CTL greater than 0.8 for a real sensor dataset consisting of unreliable sensors 
with random faults or gradual drift.

Our MLE-based approach is scalable and results are explainable. The approach does not require expensive 
sensors and large data transmission, and yet shows robustness when most sensors have random faults and 
gradual drift; all these make the approach suitable for a variety of field applications. However, as we do not 
use any ground truth and physical supervision, but rather rely on historical credibility, this approach will not 
be able to estimate the true signal if all the reliable sensors fail at the same time or are modified in a planned 
way. In this situation, periodic supervision from a high-precision sensor or another secondary variable can be 
helpful to detect and correct such faults. We will explore this topic in our future research. Although this paper 
focused on electrochemical sensors, this is a general algorithm that can be used to estimate data reliability of any 
data source for applications in analytical modeling, statistical inference, and prediction from machine learning 
algorithms.

(1)RMSE = C× exp

(

u− CTL

u0

)

(2)CTL =
αM− 1

M
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Methods
Inputs and outputs. MLE takes reliable and unreliable signals from the sensors as inputs and calculates the 
estimated signal and the credibility of the sensors as outputs. Since a sensor’s signal is a continuous streaming 
data, we split the input signal in finite sized time windows and then use a sliding window to keep the memory 
of previous performance. Let us assume that SC ∈ R

M×N is the input matrix at a time window, where M is the 
number of sensors and N is the window size. Since sensors’ readings can take continuous value, we divide the 
entire range of sensors’ readings of a time window into K discrete levels and quantize each reading to the near-
est level. The output of MLE for a time window is estimated signal at each time index, O ∈ R

N and credibility 
indices of the sensors, t ∈ R

M . We solve the problem with Expectation Maximization algorithm as suggested by 
Wang et al.23. Pseudocode of the true signal and credibility estimation is provided in supplementary information 
section S2 and window size, overlap size, and quantization levels used in the analysis of synthetic and real sensor 
datasets (in Figs. 2, 3, 4, 5) are reported in the supplementary information Table S2. We also show the impact of 
varying window size, N and quantization levels, K on the quality of estimated signal from MLE in the supple-
mentary information Fig. S2 where small N and K are desired to reduce computational complexity.

True signal and credibility estimation. Keeping in consistent with the notations  of23, we assume that Si 
represents ith sensor and Cj represents jth time index in the input matrix, SC . SiCj = k denotes Si measures Cj ’s 
value to be k , where k = 1, 2, . . . ., K . Similarly, SiCj = k means it measures the value other than k . ski  is the prob-
ability that Si measures a value to be k (i.e., ski = P

(

SiCj = k
)

 ) and ski  is the probability to measure other than k 
(i.e., ski = P

(

SiCj �= k
)

 ). Moreover, tki  is credibility of sensor Si which is defined as the probability that Cj ’s value 
is k given that SiCj = k (i.e., tki = P

(

Cj = k|SiCj = k
)

).
Furthermore, aTk,i and aFk,i are defined as the probability that Si measures a value to be k and other than k 

respectively when it is indeed k , i.e.,

Since sensors will always measure one or another value, aTk,i + aFk,i = 1 . Finally, dk is the prior probability that 
signal value at any time is k. Applying Bayes theorem to Eq. (3),

Therefore, aTk,i is proportional to sensors credibility tki .The estimation parameter of MLE is θk =
(

aTk,i, dk

)

 , for 
i = 1, 2, . . . ,M and k = 1, 2, . . . ., K . A latent variable Z is defined for the estimated true value at each time index. 
For a given input matrix X = SC , estimation parameter, θ and latent variable, Z , the likelihood function is given 
by,

where SiCk
j = 1 when Si measures Cj ’s value to be k (i.e., SiCj = k ) and 0 otherwise. Similarly, SiCk

j = 1 when 
SiCj  = k and 0 otherwise. zkj = 1 when Cj ’s value is k and zkj = 0 otherwise. We want to find maximum likelihood 
estimation (MLE) of θ for which expected log-likelihood function, EZ|X,θ[log L(θ : X, Z)] is optimized. After one 
iteration estimation parameters are updated by,

where SJki  are the time indices when Si measures the value to be k . Zk

(

j
)

 is the probability that Cj ’s value to be k 
conditioned upon the input matrix X and current estimated parameter θ:

where

(3)

aTk,i = P
(

SiCj = k|Cj = k
)

aFk,i =
∑

k�=k

P
(

SiCj = k|Cj = k
)

(4)aTk,i =
tki × ski
dk

(5)L(θ : X, Z) = P(X, Z|θ) =
N
∏

j=1

{

K
∑

k=1

[

M
∏

i=1

(aTk,i)
SiC

k
j × (aFk,i)

SiC
k
j × dk × zkj

]}

(6)aTk,i =

∑

j∈SJki
Zk

(

j
)

∑N
j=1 Zk

(

j
)

(7)dk =

∑N
j=1 Zk

(

j
)

N

(8)Zk

(

j
)

= P
(

zj = k|Xj, θ
)

=
Ak

(

j
)

× dk
∑K

k=1 Ak

(

j
)

× dk

(9)Ak

(

j
)

= P
(

Xj, θ|zj = k
)

=

M
∏

i=1

(aTk,i)
SiC

k
j × (aFk,i)

SiC
k
j



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3101  | https://doi.org/10.1038/s41598-022-25920-w

www.nature.com/scientificreports/

We iteratively update θ using Eqs. (6)–(9) until the difference of θ between two consecutive iterations reaches 
the minimum. We define the minimum update point as the converging point. After convergence, we estimate 
the true value from the optimized Zk

(

j
)

 . Estimated value Oj at a time index j is the value of k for which Zk

(

j
)

 is 
maximum. We get the credibility index ti of sensor Si for a time window by averaging tki  which is calculated from 
optimized aTk,i using Eq. (4), over k = 1, 2, . . . ., K.

Initialization. At each time window we start the optimization with θk =
(

aTk,i, dk

)

 initialized between 0 and 
1. Since we do not know the true signal level a priori, dk is assumed to be uniformly distributed over 
k = 1, 2, . . . ., K . At the very beginning we assume all sensors are reliable. Therefore, at the first time window we 
initialize aTk,i with random values greater than 0.5 for all sensors (i.e., aTk,i = 0.5+ δi for i = 1, 2, . . . ,M and 
k = 1, 2, . . . ., K , where δi is a random number between 0 and 0.5). For the subsequent time windows, we use the 
previous credibility information to initialize aTk,i such that,

where β is a parameter, 0 ≤ β ≤ 1 and ti,avg is Si sensor’s historical credibility calculated by averaging credibility ti of 
previous time windows. The choice of β decides how much importance we want to give to historical performance. 
We can set small β when majority of the sensors in a network is reliable. However, when most of the sensors in 
a network is unreliable, we should rely on a few most credible sensors rather than the majority. Large β should 
be chosen in such a case. We have used β = 1 for all our analyses. Only in Fig. 7a where we estimate the signal 
assuming equal credibility of all sensors (red circles), β = 0 was chosen.

Theoretical credibility threshold limit (CTL). CTL is 0.5 without historical credibility. We consider 
there are total M sensors in a group. Number of reliable sensors is R and unreliable sensors is U (i.e., R+ U = M ). 
If we assume all sensors are equally reliable without considering historical credibility, we initialize estimation pa-
rameter aTk,i , with random values greater than 0.5 ( β = 0 in Eq. 10). For concreteness, let us assume, aTk,i = 0.5+ δ 
for i = 1, 2, . . . ,M and k = 1, 2, . . . ., K , where δ is constant for all sensors and close to zero. We also assume dk 
is a uniformly distributed prior probability that signal value is k at any time.

Let us take the true value of Cj to be k . All the reliable sensors will measure Cj ’s value to be k and unreliable 
sensors will measure other than k . We can group together all values other than k and call it as k.

Using values of Eq. (11) into Eqs. (8)–(9) and applying Taylor series expansion for δ <  < 0.5,

Recall that R+ U = M , is the total number of sensors. If number of reliable sensors is larger than unreliable 
sensors ( RU > 1 i.e., UM < 0.5 ), from Eq. (12), Zk

(

j
)

> Zk

(

j
)

 . Since estimated value is the one for which Zk

(

j
)

 is 
the maximum, estimated value is the actual value k . Similarly, calculated credibility ti will be larger for reliable 
sensors than unreliable ones according to Eq. (4) and 6. Therefore reliable sensors will be assigned higher cred-
ibility than unreliable sensors. However, if number of reliable sensors is smaller than unreliable sensors ( RU < 1 
i.e., UM > 0.5 ), then Zk

(

j
)

< Zk

(

j
)

 . Therefore, estimated signal will be k whereas actual value is k . Also calculated 
credibility ti for reliable sensors will be smaller than unreliable sensors in this case.

This analysis shows theoretical CTL of MLE is 0.5 without historical credibility. That means, at least half of 
the total sensors must be reliable to estimate the true signal which is equivalent to majority voting ( α = 0.5 in 
Eq. 2). We also see from Fig. 7a that MLE fails to estimate the true signal and RMSE increases rapidly at UM = 0.5 
when historical credibility is not used (red circles).

CTL exceeds 0.5 with historical credibility. When we use historical credibility information for initialization of 
aTk,i ( β = 1 in Eq. 10), we give more weight to reliable sensors. For theoretical calculation, we assume the initiali-
zation of aTk,i is—aTk,i = 0.5+ δ,∀ i ∈ R (reliable sensors), and aTk,i = 0.5− δ,∀ i ∈ U (unreliable sensors). For the 
same problem mentioned above, we get from Eqs. (8)–(9),

From Eq. (13), we can see Zk

(

j
)

> Zk

(

j
)

 for both RU > 1(UM < 0.5 ) and RU < 1(UM > 0.5 ) conditions. Therefore, 
estimated value is true value k even if number of reliable sensors is less than unreliable sensors. This implies using 
historical credibility, CTL of MLE can achieve theoretical upper limit ( α = 1 in Eq. 2). Indeed, we numerically 

(10)aTk,i = β× ti,avg + (1− β)× (0.5+ δi)

(11)
SiCj = k,∀ i ∈ R

SiCj = k,∀ i ∈ U

(12)

Ak

(

j
)

= (0.5+ δ)R × (0.5− δ)U ≈ (0.5)M(1+ 2Rδ)(1− 2Uδ)

A
k

(

j
)
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(

j
)
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(

j
) =
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(

j
)
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j
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obtain CTL of a real sensor dataset greater than 0.8 using historical credibility (shown in Fig. 7c). In the theoreti-
cal analysis, we assume all the unreliable sensors agree at a single level (i.e., k ) which is a conservative assump-
tion. In practice all unreliable sensors may not agree at a single level which will also help to achieve higher CTL.

Data availability
All data are provided either in main manuscript or in supplementary information.
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