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Artificial intelligence‑based 
iliofemoral deep venous 
thrombosis detection using 
a clinical approach
Jae Won Seo 1,4, Suyoung Park 2,4, Young Jae Kim 3, Jung Han Hwang 2, Sung Hyun Yu 2, 
Jeong Ho Kim 2* & Kwang Gi Kim 1,3*

Early diagnosis of deep venous thrombosis is essential for reducing complications, such as recurrent 
pulmonary embolism and venous thromboembolism. There are numerous studies on enhancing 
efficiency of computer‑aided diagnosis, but clinical diagnostic approaches have never been 
considered. In this study, we evaluated the performance of an artificial intelligence (AI) algorithm in 
the detection of iliofemoral deep venous thrombosis on computed tomography angiography of the 
lower extremities to investigate the effectiveness of using the clinical approach during the feature 
extraction process of the AI algorithm. To investigate the effectiveness of the proposed method, 
we created synthesized images to consider practical diagnostic procedures and applied them to the 
convolutional neural network‑based RetinaNet model. We compared and analyzed the performances 
based on the model’s backbone and data. The performance of the model was as follows: ResNet50: 
sensitivity = 0.843 (± 0.037), false positives per image = 0.608 (± 0.139); ResNet152 backbone: 
sensitivity = 0.839 (± 0.031), false positives per image = 0.503 (± 0.079). The results demonstrated the 
effectiveness of the suggested method in using computed tomography angiography of the lower 
extremities, and improving the reporting efficiency of the critical iliofemoral deep venous thrombosis 
cases.

Deep venous thrombosis (DVT) most commonly develops in the lower extremities and can cause complications 
that raise mortality and decrease the quality of  life1. The treatment and long-term prognosis of lower-extremity 
DVT depend on an accurate and timely  diagnosis2. However, owing to the absence of a radiologist on duty, 
diagnosis might be delayed. Because the clinical symptoms and signs have low specificity for the diagnosis of 
DVT, imaging workup is necessary to confirm or exclude the  diagnosis3.

Owing to intra- and inter-observer variability, medical imaging analysis is typically performed manually; it 
places a burden on the radiologist and increasing the risk of misdiagnosis. Because of the drawbacks of manual 
analysis, convolutional neural network (CNN)-based artificial intelligence (AI) algorithms have been used in 
the medical imaging field as a computer-aided diagnosis (CAD) system  tool4. Moreover, some studies proposed 
AI techniques to improve the diagnostic performance by fusing the clinical information or practical diagnostic 
procedures, and demonstrated the benefit of aggregated clinical  approaches5–7.

Imaging modalities for DVT diagnosis include ultrasonography (US), computed tomography angiography of 
the bilateral lower extremities (LECTA), magnetic resonance imaging (MRI), and catheter venography. To over-
come the limitations of the DVT manual analysis, studies have been conducted using various imaging modalities 
and have shown the potential and efficiency of an AI-based CAD system for DVT  diagnosis8–12. Among the image 
modalities, LECTA was found to be more advantageous—it provided more objective images than US; it is easily 
accessible and frequently used to provide information about extravascular tissues in the bilateral lower extremi-
ties and abdominopelvic region. In the clinical setting, to accurately decide on DVT in LECTA, adjacent slices 
should be considered rather than one CT slice with the suspicious existence of the lesion. As preliminary studies, 
we conducted two kinds of DVT diagnosis based on CNN models in LECTA. The first study aimed to investigate 
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quantitative differences between with region of deep venous with and without DVT by classifying the region of 
deep vein. This formative study indicated that the CNN model can extract useful features that can distinguish 
the region containing DVT from other  regions12. However, the result of the study did not include information 
about localization of the DVT in LECTA. The next study explored the possibility of applying CNN-based detec-
tion models for DVT detection which contains localization of the DVT in LECTA 10. This previous study did 
not consider the clinical diagnostic approach. Therefore, the current study aimed to the use of CNN models for 
improving diagnostic performance by dealing with the clinical process of detecting iliofemoral DVT on LECTA 
in AI algorithm. In this study, we demonstrated that the AI model extracted significant features for detecting DVT 
by applying clinical approach, as though clinical diagnosis to DVT considers the upper and lower image slices.

Methods
Data collection. The institutional review board of Gachon University Gil Medical Center (IRB Number: 
GAIRB2021-225) approved this study; the requirement of informed consent was waived for this study popula-
tions because of the study design’s retrospective nature. All experimental protocols were performed in accord-
ance with the relevant guidelines and regulations in compliance with the Declaration of Helsinki. The picture 
archiving and communication system database was searched for LECTA examinations conducted at Gil Medical 
Center between January 2013 and December 2020, and 583 consecutive LECTA examinations were identified. 
When a patient underwent multiple LECTA examination sessions, only the first LECTA scan session of the 
patient was considered for this study. Patients with motion or metallic artifacts were excluded. Additionally, 
cases without a detailed mention of the presence or absence of iliofemoral DVT in the radiologic report were 
excluded. Consequently, 380 LECTA examination sets were disqualified. Among them, 95 sets with iliofemoral 
DVT on the radiological report were grouped as the “DVT” group. Likewise, 95 LECTAs without iliofemoral 
DVT on the radiological report were systematically gathered and grouped as “no DVT” group (Fig. 1).

LECTA image acquisition. LECTA was performed using 128-slice scanners (Somatom Definition Flash 
and Somatom Definition Edge; Siemens Healthcare, Erlangen, Germany). The acquisition range was determined 
from the T12 vertebra to the lower end of the feet. Images were obtained 4 min after a 2 mL/kg of non-ionic 
contrast agent intravenous injection (Bonorex 350; Central Medical Service, Seoul, Republic of Korea). Axial 
images were obtained in digital imaging and communication in medicine (DICOM) format with a 5-mm slice 
thickness and 5-mm slice interval.

Data preprocessing. To enhance the contrast of the blood vessels from the background, the window width 
was set to 400 Hounsfield units (HU) and the window level to 140 HU. The region of interest (ROI) for the blood 
vessels was collected using the image set with the corresponding values in the DICOM image. The average size 
of the ROIs for the collected veins was 7.755 (± 2.594) × 7.801 (± 2.511) pixels, indicating that the veins occupied 
an insignificant proportion of the overall axial image size (512 × 512 pixels). Consequently, we set the data pixel 
spacing to the minimum value (0.695 mm). The pixel spacing range was 0.695–0.977 mm. For the same reason, 
randomly extracted patch images of 128 × 128 pixels of the areas surrounding the iliofemoral vein from the 
DICOM images limited the area of detection. A total of 6965 patch images (3706 and 3259 images from the DVT 
and no DVT groups, respectively) are generated from 190 of patients. We ran a five-fold cross-validation to assess 
the model’s performance. The folds were divided by the number of patients. For training the models, we used 
average 4179(± 183.458) patches from 114 patients as a train set and average 1471.2(± 184.671) patches from 

Figure 1.  Flowchart of data selection.
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38 patients as a validation set. A test set for performance assessment is composed of average 1314.8(± 109.523) 
patches generated from 38 patients.

To compare the performance of one slice image with that of the three slices data (one image, one upper image, 
and one lower image), we synthesized an image using three continuous LECTA images while considering the 
characteristics of clinical diagnosis (Fig. 2).

Deep learning based on convolutional neural networks. We chose the CNN-based RetinaNet model 
to detect iliofemoral DVT because it has the advantages of time efficiency and high accuracy based on its loss 
function and structure. RetinaNet is a deep learning-based one-stage detection model that uses a focal loss 
function, and has demonstrated strong performance in addressing the foreground–background class imbalance, 
which is the main drawback of one-stage object  detectors13. The RetinaNet has a feature pyramid network com-
bined with the ResNet  backbone14. The feature pyramid network has been applied and used in many detection 
models in medical imaging because it exhibits a high level of detection performance with minimal resource 
requirements for computation; it uses CNN to extract four different multiscale feature maps from one  image15–17. 
The RetinaNet uses a pyramidal structure to construct the multiscale feature maps that the ResNet backbone 
network extracts. The RetinaNet structure has two distinct subnetworks using a region-proposal-based network 
from the feature map extracted by each pyramid layer. One performs regression for localization to the bound-
ing box of the target object task, while the other performs object classification. Regarding time consumption, 
RetinaNet is a one-stage detector that accomplishes two tasks concurrently for high performance and efficiency.

The study was performed in Python 3.6.12 (Python Software Foundation, Wilmington, DE) using Keras 2.2.5 
frameworks (Keras Global Limited, London, United Kingdom) on an Ubuntu 14.04 operating system (London, 
United Kingdom) with two NVIDIA Tesla P100 graphics processing units (GPUs; NVIDIA Corporate, Santa 
Clara, CA) and 512 GB of random access memory. The hyper-parameters are manually set as follows: 16 batch 
size, 100 epochs and a 0.0001 learning rate. The hyper-parameters are set to 16 batch size, 100 epochs and 0.0001 
learning rate. We set the learning rate to decrease by a factor of 0.1 if the validation loss did not decrease for 15 
epochs.

Performance assessment. The performance assessment was conducted using the test data from 38 cases 
that were not used as the training sets from each fold. The intersection over union (IOU) refers to an evalua-
tion index based on the overlap between the two areas. In this study, the two areas stand for the ground truth 
(GT), which is the ROI labeled by radiologists, and the prediction area derived from the models. The IOU value 
threshold was set at 0.1. The bounding box that the model predicted was treated as a true positive (TP) if the 
IOU value calculated from the two areas was found to be greater than or equal to 0.1. If the value was found to 
be less than 0.1, the predicted box was considered a false positive (FP). A false negative (FN) was declared if the 
model’s GT prediction area was absent.

The sensitivity (Sn and recall), FPs per image (FPPI), and precision were calculated using the model’s evalu-
ation indicators. The average precision (AP) refers to the area under the precision-recall curve. The following 
equations define them:

Sn =
TP

TP + FN

FPPI =
FP

the number of images

Precision =
TP

TP + FP

Figure 2.  The process of generating synthesized three-slice data. (a) An original raw image; (b) An image-
uniformed pixel spacing and set to a window width of 140 Hounsfield units (HU) and window level of 400 HU; 
(c) A synthesized image; and (d) A patch unit image.
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Results
Table 1 displays the average results of the performance indicators (Sn, FPPI, precision, and mAP) from test 
data of each fold according to the number of slices (synthesized three slices and only one slice) and backbones 
(ResNet50 and ResNet152) based on the 0.1 IOU value threshold and 0.1 confidence threshold. The model-based 
ResNet152’s backbone performances using the three suggested synthesized slices yielded 0.839 (± 0.031) Sn, 
0.503 (± 0.079) FPPI, 0.650 (± 0.038) precision, and 0.806 (± 0.034) mAP. In the model based on the ResNet50 
backbone using the same proposed data, the performances approached 0.843 (± 0.037) Sn, 0.608 (± 0.139) FPPI, 
0.610 (± 0.061) precision, and 0.807 (± 0.040) mAP. For the Sn and mAP values, the model with three slices based 
on the ResNet50 backbone approached 0.843 (± 0.037) and 0.807 (± 0.040) as the highest scores (Table 2). How-
ever, based on the ResNet152 backbone, the model with one slice performed the best with 0.456 (± 0.093) FPPI 
and 0.670 (± 0.047) precision values (Table 3, Fig. 4). Figure 3 shows the free response operating characteristic 
(FROC) curves based on the Sn and FPPI values of each model result.

Discussion
To detect iliofemoral DVT in LECTA, this study used deep learning-based AI techniques. To further reflect 
information about the periphery based on the z-axis of the lesion, we produced data by synthesizing three suc-
cessive images centered on the lesion. To verify the validity of the three generated slices of the synthesized data, 
we compared their performance with the data that only included the slice identified as having a lesion. Accord-
ing to Table 2, the two models that used the suggested synthesized data performed better in terms of Sn and 
mAP values. However, the models based on one-slice data outperformed those based on three-slices data. By 
adding axis-z-based peripheral information to one image, despite an increase in FP cases, the detection rate for 
veins was higher. Additionally, because the location of the veins in the muscle and bone are relatively similar, we 
inferred that the ResNet152-based model fitted with more parameters performed better in all indicators based 
on the depth of the proposed models.

mAP =
AP

the number of classes

Table 1.  The performance results from each model. CI confidence interval, Sn sensitivity, FPPI false positive 
per image, mAP mean average precision. *Highest values of comparison parameters.

Models Sn (95% CI) FPPI (95% CI) Precision (95% CI) mAP (95% CI)

3 slices

ResNet152 0.839 (0.808–0.870) 0.503 (0.424–0.582) 0.650 (0.612–0.688) 0.806(0.772–0.841)

ResNet50 0.843* (0.806–0.880) 0.608 (0.469–0.747) 0.610 (0.549–0.671) 0.807* (0.767–0.847)

1 slice

ResNet152 0.826 (0.799–0.853) 0.456* (0.363–0.549) 0.670* (0.623–0.717) 0.802 (0.773–0.830)

ResNet50 0.819 (0.788–0.850) 0.483 (0.414–0.552) 0.654 (0.621–0.687) 0.784 (0.749–0.819)

Table 2.  Comparison of performance according to data. CI confidence interval, Sn sensitivity, FPPI false 
positive per image, mAP mean average precision. *Highest values of comparison parameters.

Performance 3—slices 1—slice

Sn (95% CI) 0.841* (0.839–0.843) 0.823 (0.819–0.826)

FPPI (95% CI) 0.556 (0.503–0.608) 0.470* (0.456–0.483)

Precision (95% CI) 0.630 (0.610–0.650) 0.662* (0.654–0.670)

mAP (95% CI) 0.807* (0.806–0.807) 0.793 (0.784–0.802)

Table 3.  Comparison of performance according to models. CI confidence interval, Sn sensitivity, FPPI false 
positive per image, mAP mean average precision. *Highest values of comparison parameters.

Performance ResNet152 ResNet50

Sn (95% CI) 0.833* (0.826–0.839) 0.831 (0.819–0.843)

FPPI (95% CI) 0.480* (0.456–0.503) 0.546 (0.483–0.608)

Precision (95% CI) 0.660* (0.650–0.670) 0.632 (0.610–0.654)

mAP (95% CI) 0.804* (0.802–0.806) 0.796 (0.784–0.807)
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Figure 3.  Free response operating characteristic curves of results from the models using proposed three slice 
data and one slice data based on ResNet152 and ResNet50 backbones, respectively.

Figure 4.  The example of results-image patches from model’s each backbone (ResNet50 and ResNet152) and 
each used data (3 slices and one slice). The red rectangle box means true positive result from the model. The 
green rectangle box is the ground truth, and the yellow rectangle box indicates a false positive result from the 
model.
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Figure 4 shows the images of the detection result for each backbone based on the type of data used. As shown 
by the Sn and FPPI values for each model shown in Table 1, the results of using three slice images in the patch 
image of the same region showed that the number of TP and FP were higher than that of the model using one 
slice image.

Figure 5 shows examples of the FP case. As shown in Fig. 5a, most FP cases occurred in areas with similar 
DVT shapes and pixel intensities. Because of the relatively small area of the generated patch unit that was 
compared with the entire image, it lacked the peripheral information to confirm the site of analysis as venous. 
Therefore, we assume that this small area patch led the model to mispredict the DVT for objects with a similar 
shape. Figure 5b shows a case of successful localization and unsuccessful classification. By creating patch unit 
images of the region around the iliofemoral veins, we collected data from various backgrounds. The generated 
image has a background similar to the shape and position of muscles and bones, particularly in the thigh range, 
which comprises most input data. This aids the model’s ability to locate the objects. However, the number of 
cases used in this experiment was insufficient to extract the features of various types of DVT and healthy veins.

Conclusions
The CNN-based models outperformed the one-slice images in detecting iliofemoral DVT on LECTA using the 
proposed synthesized images. From the results, we demonstrated AI, reflecting the practical process, enables 
a more accurate diagnosis of DVT detection for LECTA. Our work allows the radiologists to achieve a more 
accurate diagnosis by utilizing this proposed AI algorithm which presents a location with a probability of the 
existence of DVT. The radiologists can primarily confirm the locations suggested by the AI model in CT volume 
data, comprised of numerous slices images. It can lead to improving the reading efficiency of radiologists and 
reducing the burden on them.

A few research is considered future works. First, it is essential to extend the detection ranges to the infrap-
opliteal vein for investigating DVT. This research is limited to the iliofemoral vein; hence, the infrapopliteal deep 
vein was excluded from this study because of its minimal diameter and inconstant location. The infrapopliteal 
DVT, particularly in high-risk patients, has clinical and diagnostic value because it can spread to the iliofemoral 
 vein18. Therefore, it could be possible to increase the DVT detection rate of physicians by developing an AI model 
with more broaden detection range than this limited range. Second, the result from the proposed AI model 
should be compared with the diagnosis given by a radiologist to demonstrate the practical advantages of the 
model. This study attempted to prove the positive aspects of the proposed method by comparing and analyzing 
the results by applying the method to different AI algorithms for the effect of the proposed algorithm on the AI 
model. Hence, the research explores the benefit of this AI model for clinical diagnosis as a CAD system.

Data availability
The LECTA data used to support the findings of this study are available upon request from the corresponding 
authors.

Received: 2 August 2022; Accepted: 6 December 2022

Figure 5.  The example of false positive cases image patches from the ResNet50 backbone-based mode with 
three slices data. The green rectangle box indicates the ground truth, and the yellow rectangle box indicates FP 
results. (a) represents the cases of the wrong detection and (b) represents the cases of success for localization but 
failure to classification.
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