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A matched‑filter technique 
with an objective threshold
Shiro Hirano 1*, Hironori Kawakata 1 & Issei Doi 2

We propose an objective threshold determination method for detecting outliers from the empirical 
distribution of cross‑correlation coefficients among seismic waveforms. This method is aimed at 
detecting seismic signals from continuous waveform records. In our framework, detectability is 
automatically determined from Akaike’s Information Criterion (AIC). We applied the method of 
seismic signal detection to continuous records collected over two years. The results show that the 
maximum value of network cross‑correlation coefficients sampled from each constant interval can 
be approximated by the theory of extreme value statistics, which provides a parametric probability 
density function of maxima. By using the function, outliers can be considered with a reasonable 
criterion.

A matched-filter (MF) analysis, a technique for quantifying the similarity between continuous and template 
waveforms using the cross-correlation coefficient (CC), is efficient in detecting weak seismic signals embedded in 
continuous waveform  records1. Many types of seismic events have been detected automatically using MF analysis: 
non-volcanic tremors and low-frequency  earthquakes2–4, seismic  swarms5,6, foreshocks, and  aftershocks7–10. In 
general MF analyses, waveforms are regarded as seismic signals when the CC between a template and continu-
ous waveform exceeds a threshold value. The threshold value has occasionally been defined as a  constant9,10 or 
not  specified7. However, given the possibility of relatively high CC values randomly occurring for microtrem-
ors, the threshold should be determined depending on the empirical frequency distributions of CC. In other 
previous studies, the threshold value was defined as a constant factor multiplied by the standard deviation ( σ)3,4 
or the median absolute deviation (MAD)2. Under this strategy, we can estimate the possibility of a false posi-
tive if a probability density function (PDF) of the CC is known. Thus, the characteristics of the PDF should be 
investigated both theoretically and experimentally. Because event detection is a type of outlier detection, careful 
attention should be given to the tails of the frequency distribution of CC; do they follow the Gaussian, expo-
nential, or power-law? In some  cases2–4, the Gaussian distribution has been assumed, and the possibility of false 
positives was calculated under this assumption. However, to plot a Gaussian curve overlapping the histogram 
of CC in a linear scale is insufficient because their tails are invisibly small compared to the peak, and a plot in 
a semi-log scale is required. In this manner, only Aso et al.4 showed that the tails follow the Gaussian. In this 
study, we first derive a normal distribution that the CC between random microtremor and random template 
waveform may follow and investigate the effect of a band-pass filter, which provides a reference for determining 
a realistic CC distribution. In this context, we reveal a statistical background and nature of the conventional 
MF analysis. Next, we consider a distribution that the maximum value of CC in every constant interval follows 
for robust outlier detection using non-random continuous waveform records. The distribution of maxima in 
every constant interval is given by the extreme value  theory11. Subsequently, we demonstrate that the tails of CC 
values are well modelled by the extreme value distribution rather than the normal distribution through a case 
study of 2-years continuous records and multiple templates of foreshocks before an M5.4 crustal earthquake in 
Japan. Such modelling was also  done12 for long-term waveform data recorded by ocean-bottom seismometers. 
However,  they12 considered the top 5% of CC values significant seismic signals even though the values obeyed the 
extreme value distribution. We have to note that almost all CC values are due to background noises rather than 
rare seismic signals, and significant signals should be outliers deviating from the background distribution due 
to the noise. Given the extreme value distribution, we develop a reasonable method for detecting outliers based 
on Akaike’s Information Criterion (AIC). Moreover, we provide a case study of event detection. We focus on a 
specific foreshock activity and should conduct more verification with various data sets. However, the method 
proposed in this study would be applicable in principle for other seismic phenomena and regions where CC 
between a template and continuous long-term waveforms are available. In summary, the aims of this study are as 
follows: (1) to clarify the theoretical background and limitation of a conventional MF analysis with a subjective 
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threshold, and (2) to propose a new method to determine an objective threshold based on theories of the extreme 
value statistics and Akaike’s information criterion.

Theory and method
Ideal frequency distribution of CC. In the following, without loss of generality, we regard velocity seis-
mograms as the data. The frequency distribution of CC between a continuous record and an arbitrary template 
waveform array of length d follows a normal distribution whose mean is zero and variance is d−1 if the continu-
ous record is a time series of independent and identically distributed (i.i.d.) random variable. Let d-dimension 
vectors u := (ui) and v := (vi) (i = 1, 2, . . . , d) be discretized and offset-eliminated waveform arrays of length 
d . Their CC is given as

where û and v̂  are normalized u and v , respectively, by their L2-norm. If v is extracted from a random wave-
form, the normalized vector v̂  is an isotropic random vector restricted on the ( d − 1)-dimensional unit sphere. 
Because Eq. (1) is a projection of v̂  along the û-direction, CC can be regarded as a velocity component along 
the û-direction of randomly hurtling particles with unit velocity 

(∣∣v̂
∣∣ ≡ 1

)
 . Therefore, the PDF of CC can be 

approximated by extending the Maxwell-Boltzmann distribution from 3-dimensional to d-dimensional space; 
see also Supplement A. In fact, the template and continuous waveform are filtered in MF analyses because seismic 
waveforms have high S/N ratios in some limited frequency bands. Linear band-passed filtering is equivalent to 
the convolution of a characteristic function and the continuous waveform. Therefore, v is not an i.i.d. random 
vector but necessarily has dependence among some neighbour samples (referred to as “coherence”) depending 
on the filter. Thus, we conducted numerical experiments; we calculated CC between an i.i.d. random waveform 
of length 108 and a random array of length d = 500 (Fig. 1). After ten experiments, we confirmed that CC follows 
the normal distribution N

(
0, d−1

)
 as expected above and in Supplement A. On the other hand, if we regard the 

waveforms as 100 Hz time-series and apply a band-pass filter of 5–30 Hz that is required in the next section, we 
find that the distribution is approximated as N

(
0, 1.8 d−1

)
 , as shown in Fig. 1, because narrowing the frequency 

band may increase the variance; ultimately, monochromatic signals yield high correlation frequently. Therefore, 
we can conclude that CC follows the normal distribution even after applying the band-pass filter if the continu-
ous waveform is random.

Frequency distribution of the maximum of CC. The assumption of i.i.d. in the previous subsection 
might not be valid in cases where multiple similar earthquake events frequently occur, radiating waveforms 
similar to the templates, or the microtremor repeats similar patterns. Indeed, power spectral densities of ambi-
ent noise imply that they have some  correlation13,14. In such cases, even accidentally, relatively high CC values 
appear around their local peaks because of the coherence. Hence, the frequency distribution of all CC values will 
be contaminated by the high values repeatedly, thus rendering the tail of the distribution wider and the inter-
pretation more difficult. To avoid this problem, outliers should be detected from the maximum value of CC in 
every M sample by assuming that the coherence of microtremors or seismic waveforms is lost within M samples. 
This assumption is valid because, generally, shorter-term correlation is stronger than longer-term correlation. 
After picking the maxima in every M-sample interval, we need a model to describe a PDF that the maxima fol-
low. The extreme value statistics provide the PDF and enable us to extrapolate an empirical distribution of the 
maxima and predict the possibility that the maxima will become extremely large. The extreme value statistics 
are often contrasted with the central limit theorem; the former and the latter describe the PDF of the maxima 
and the mean, respectively, of an i.i.d. random variable generated by any distribution. Theoretically, it has been 
shown that the frequency of the maxima of any distribution in every interval follows the Generalized Extreme 
Value (GEV)  distribution11,15, which has been employed to model possibilities of rare events, such as floods and 
economic crises. GEV has the following cumulative density function (CDF):

where x is a random variable, and µ′, σ ′, and k are the location parameter, scale parameter, and shape param-
eter, respectively. We have to note that sgn(k)

(
x − µ′ + σ ′/k

)
≥ 0 must be satisfied; otherwise, the PDF is zero 

therein. It may be possible to detect outliers by fitting the distribution of the maxima with GEV even if CC 
does not follow the normal distribution while their maxima follow GEV; see Supplement B for the maximum 
likelihood estimation (MLE) of the GEV parameters. In particular, if every interval contains sufficient data, the 
cumulative distribution converges to one of three specific cases depending on the shape of their tail: the Gumbel 
distribution, Fréchet distribution, or Weibull distribution. In the next section, we assume that the CDF of the 
Gumbel distribution, FG , can approximate them:

This is because of the following reasons: (1) as confirmed in the next section, the accumulated data distribu-
tion shows linear falloff in semi-log plots, which is a characteristic of the Gumbel distribution, and (2) as in 

(1)CC = û · v̂,

(2)FGEV
(
x | µ′, σ ′, k

)
= exp

(
−

(
1+ k

(x − µ′)

σ ′

)−1/k
)
,

(3)

FG
(
x | µ′, σ ′

)
: = lim

k→0
FGEV

(
x | µ′, σ ′, k

)

= exp

(
− exp

(
−
x − µ′

σ ′

))
.
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Supplement B, MLE of three parameters for GEV is technically challenging in some case. We focus on and plot 
1− FG in the following.

Method for event detection. Although the threshold for MF analyses has widely been assumed from 
the data histogram, we have no unified or objective algorithm to assume an appropriate threshold value. Here, 
we propose an algorithm for detecting outliers reasonably and objectively based on an information criterion. 
Akaike’s Information Criterion (AIC) provides the most likely number of parameters of a model PDF so that 
the Kullback–Leibler divergence (or relative entropy) between the model PDF and the true (but unknown) PDF 
is  minimized16. According to AIC, the number of parameters that minimizes AIC (= − 2 log-likelihood + 2 × 
number of parameters) is the most likely. The elimination of outliers for minimizing AIC has been developed in 
applied  statistics17–20 and implemented in  bioinformatics21, assuming that the outliers have exceptionally large 
values. In this context, “the number of parameters” is “the number of outliers + the number of parameters for a 
model PDF that data other than the outliers follow”. The  pioneers17–19,21 assumed that the random variable other 
than the outliers followed a normal distribution and calculated AIC; Marmolejo-Ramos et al.20 investigated the 
applicability of the method in non-Gaussian and skewed distribution cases. We assume the Gumbel distribution 
and calculate the difference in AIC when we increase the number of suspects, indicating whether the increment 
of the number is reasonable.

We sort N  data into the descending order ( x1 > x2 > · · · > xN  ) and assume that the leading s data 
( x1, x2, . . . , xs ) are outliers that do not follow the Gumbel distribution while the other N − s data are sampled 
from the same Gumbel distribution. Note that, unlike our notation,  Ueda18,19 sampled N data out of N + s data. 
Then, AIC with the s outliers is represented  as18–20

where f  is the assumed PDF the samples follow, and θ ′ is the maximum likelihood parameter. In the original 
method, f  has been assumed to be the normal  distribution18,19. However, the original method tends to be sensi-
tive and detect too many values as outliers if the true distribution is positively  skewed20. In our case, we assume 
that the true distribution is approximated by the Gumbel distribution, which has positive skewness. Therefore, 
instead of the normal distribution, f (xj | θ) = pG(xj | µ

′, σ ′) should be considered, where pG : = dFG
dx  is the 

PDF of the Gumbel distribution.
In the following, we do not directly calculate Eq. (4) that contains an uncalculatable huge number log (N − s)! 

for our case ( N ∼ 106 ). Instead, for sufficiently large N , the difference in AIC between the cases of s outliers and 
s + 1 outliers, 12dAICs , can be approximated as

Strictly, the maximum likelihood parameters based on all N data could differ from those estimated using N − s 
or N − s − 1 data. However, we assume that N ≫ s holds and the parameters do not change significantly after 
the elimination of s data; see also Supplement C on its effect. Because we focus on the right tail of pG and xi is in 
descending order, pG(xs) < pG(xs+1) holds, which results in

In other words, the difference in AIC is a monotonically increasing sequence. If dAICs < 0 holds, from the defini-
tion, we can reasonably regard that xs+1 is also an outlier rather than a sample from the Gumbel distribution. On 
the contrary, if dAICs > 0 holds, the monotonicity guarantees that the difference is always positive as s increases. 
Thus, all xi ( i > s ) are not outliers. Finally, our procedure schematically illustrated in Fig. 2 is as follows. We first 
obtain the MLE of the parameters µ′ and σ ′ , then calculate dAICs for s = 0, 1, 2, . . . . We stop the calculation when 
s reaches s0 , which makes dAICs positive for the first time, and finally conclude that x1, x2, . . . , xs0 are outliers.

Case study
Data. We considered a foreshock sequence of an M5.4 earthquake: origin time = 2011-06-30 08:16:37.06 
(Japan Standard Time); epicenter = 35.188◦ N, 137.955◦ E; depth = 4.3 km. According to the JMA catalog, 
27 small foreshocks were recorded within 13 h before the mainshock (Table S.1); their epicenters are within 
1 km from the epicenter of the mainshock and surrounded by four Hi-net observation stations within 10 km 
(Fig. 3), which may enable us to investigate the seismicity precisely. Thus, for each station and component, the 
27 template waveforms were extracted from 0.5 s before each arrival of the P-wave, and their length was 5 s (= 
500 samples), such that the significant part of the S-wave and its coda is included. To search for events similar to 
these foreshocks, a criterion for outlier detection based on the empirical distribution of CC is required. We thus 
calculated the Network Cross-correlation Coefficient (NCC) among template waveforms due to the 27 events 
and 2-year continuous waveforms between 2009-06-29 and 2011-06-28 before the activation of the foreshocks. 
NCC is the averaged value of CC obtained in each station and component after shifting CC by lags between 
the origin time and arrival time of P-wave1. Even after averaging, maxima of NCC should follow GEV because 
maxima generated by an arbitrary distribution follow  GEV11,15. In our case, we stack 12 CC time series based 
on three components of the four stations and obtain 27 histograms of NCC in total. Before the calculation, we 

(4)
1

2
AICs = −

N∑

j=s+1

log f (xj | θ
′)− log (N − s)! + s,

(5)
1

2
dAICs : =

1

2
(AICs+1 − AICs)

∼ log pG
(
xs+1 | µ

′, σ ′
)
+ log (N − s)+ 1.

(6)
1

2
dAICs <

1

2
dAICs+1.
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Table 1.  Detected events by the proposed algorithm.

ID Date Time Similar to

A 2011-05-04 19:17:00 05, 06

B 2011-06-26 11:57:47 01, 02, 04, 14, 18, 27

C 2011-06-26 12:57:45 01, 02, 04, 18, 23, 27

D 2011-06-27 07:24:14 01, 02, 04, 18, 20, 23, 27

Figure 1.  Frequency distribution of CC in a numerical experiment. CC between a raw random noise and a 
random template follows the normal distribution N

(
0, d−1

)
 , whereas CC between a filtered random noise and 

the random template follows N
(
0, 1.8 d−1

)
.

Figure 2.  Schematic illustration for estimating s0 = 4 , where s0 is the number of outliers out of N = 104 . (a) 
Cumulative number of raw data (blue steps), estimated Gumbel distribution (gray broken line), and cumulative 
number of data after elimination of x1, . . . , xs0 (green steps). (b) Dependence of AIC on the number of outlier 
candidates, s . (c) Dependence of dAICs := AICs+1 − AICs on s , where the definition is exemplified for s = 6 . 
Even though the blue step due to x5 is above the gray line in (a), x5 is not regarded as an outlier because the step 
becomes closer to the gray line after the elimination.
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applied a band-pass filter to focus on the frequency band, in which waveforms due to foreshocks show high 
S/N ratios. Although Doi &  Kawakata9 applied a band-pass filter of 15–40 Hz, we applied a filter of 5–30 Hz 
depending on the spectra of template waveforms; some automatic and objective determination methods of the 
band should be developed in the future. Hi-net waveforms include signals for checking the state of health of the 
observation  instruments22. Thus, we eliminated 15-s daily data between 09:00:00.00 and 09:00:15.00 to ensure 
that the signals did not affect CC.

Result: histogram of NCC. All histograms of NCC are shown in Fig. 4. The histograms were normalized 
by their standard deviation, meaning they should be well approximated by the standard normal distribution 
plotted by the gray parabola in the semi-log plot if NCC follows a normal distribution. However, the tails of 
the NCC histograms appear to be linear in the semi-log plot and significantly different from the theoretical 
distribution discussed in the previous section. The difference between the theoretical model and the empirical 
data is over a hundredfold at 7σ and ten thousandfold at 8σ . This fact strongly implies that the observed micro-

Figure 3.  Distribution of observation points (triangles) and foreshock hypocentres (white circles) prior to an 
M5.4 mainshock in Nagano, Japan. Waveforms observed at N.MWDH (green), N.MNYH (blue), N.MMOH 
(yellow), and N.SOJH (red) stations were analyzed in this study. See Table S.1 for detail of the 27 events within 1 
km from the epicenter shown in the darkest circle.

Figure 4.  Empirical distribution of NCC between 2-year continuous records and 27 template waveforms 
(blue). The abscissa is normalized by the standard deviation. The vertical red bar indicates that the empirical 
distribution is several orders larger than the normal distribution (gray) at 8σ.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:22090  | https://doi.org/10.1038/s41598-022-25839-2

www.nature.com/scientificreports/

tremor is significantly far from the i.i.d. assumed in the ideal case and has non-negligible coherence. Weekly 
statistics of NCC histograms (Fig. 5) show that the standard deviation is higher than the case of the random 
waveform ( σ =

√
1.8 d−1 , where d = 500× 12 in this case), which implies that the microtremor is somehow 

biased. Therefore, the possibility of false positives may be severely underestimated if we set the threshold value 
as 8σ4,8 and implicitly assume that the histogram follows a normal distribution. When the continuous waveform 
has coherence, relatively larger CC values tend to appear near their peaks because waveforms u(t) and v(t ± δt) 
with sufficiently small δt are also similar if u(t) and v(t) are quite similar waveforms. This means that we cannot 
count numbers of similar waveforms on the basis of Fig. 4 because higher CC values contain almost the same 
waveform (e.g., v(t) and v(t ± δt) ). Hence, to eliminate such waveforms within the short term, we should refer 
to the distribution of the maxima of NCC that is less sensitive to coherence.

Figure 5 also shows that characteristics of histograms, such as the standard deviation and kurtosis, fluctuated 
immediately after the week, including those on March 11, 2011, the day the M9.0 Tohoku earthquake occurred. 
However, the two years were not separated in our analysis because a sufficient amount of data is required to 
investigate the tails of histograms.

Result: cumulative distribution of max. of NCC. We attempted to detect seismic events that possibly 
occurred in the two years using the proposal in the “Theory and method” section after fitting the cumulative 
number of the maxima of NCC at every minute between 2009-06-29 and 2011-06-28. In total, we could select 
21 outliers according to Fig. 6, which shows the cumulative number of calculated NCC, the estimated Gumbel 
distribution 1− FG

(
x | µ′, σ ′

)
 , and detected outliers. However, we classified some of these outliers as the same 

event because they emerged within 1 s. Finally, we could detect four new events (i.e., all the 21 outliers were 
from multiple counts of the four uncataloged events), as shown in Table 1, which the JMA has not cataloged. As 
shown in Figs. S.1–S.4, the detected waveforms show amplitudes of a maximum 10–20% of the template wave-
forms and, therefore, have relatively low S/N ratios compared to the template. Our method provided the seismic 
signals without any prescribed threshold, even from such noisy data. The finding of the triplet similar events 3–4 
days before the mainshock in the foreshock region (IDs B–D in Table 1) may provide us with new insight for 
considering the preparation process of the mainshock.

Discussion
Compared to conventional thresholding methods, the most important advantage of our method is that the 
results are objective and reasonable; the result is less affected by arbitrariness in principle. We can suggest the 
possibility of false positives under the Gumbel distribution because the differences between the distribution 
and the cumulative number of data are almost less than tenfold (Fig. 6). The conventional method involves a 
trade-off between the number of detected events and false positives depending on the threshold value. In our 
method, however, the detection criterion is automatically determined depending only on the data quality. Thus, 
our method provides an objective reference of the threshold value. If we lower the threshold below the reference, 
newly picked CC values are probabilistically from the same trends as the background noise because our method 
picked only outliers, and the remaining CC values are regarded as those embedded in the PDF due to the noise. 
We have to note that the above discussion is just probabilistic, and CC values lower than the reference threshold 
may be meaningful in some cases. For example, as in Fig. 6, the CC based on the template No.01 suggested three 
outliers, and the fourth largest CC value was rejected. However, the fourth-largest value corresponds to the event 
ID = A (Table 1). Similarly, the rejected third-, fifth-, and sixth-largest CC for the template No.06 correspond to 
ID = C, B, and D, respectively; we can see how they are (or are not) similar to each other in Figs. S.1–S.4 (e.g., 
“A” in Fig. S.1 and “01” in Figs. S.2–S.4). In such a case, we may consider that the similarity among them is not 
significant in terms of the information criterion, even though the waveforms are not noise.

As many seismologists wish, the lower threshold reduces the possibility of false negatives. Therefore, one may 
calculate the threshold value by our method and consider lowering it depending on one’s aim. Only four events 
were detected in our analysis, which may mean that the hypocentre region had been quite inactive before the 
foreshock activity or our method is excessively strict at finding many uncataloged events. Nevertheless, even if 

Figure 5.  Temporal variation of the standard deviation and kurtosis of the empirical distribution of NCC.
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the latter is true, the detection of four uncataloged events shows that our method has a higher detection ability 
than JMA in that term, at least for similar seismic events.

It is noteworthy that our method is not completely free of arbitrariness. One concern is the length of intervals 
using which we selected the maxima. In our experiment, we selected an interval of 1 min (i.e., 6000 samples) 
considering computational time, but in principle, the interval can be, for example, 5 s (i.e., 500 samples). With 
longer lengths, the data distribution may converge to the GEV  theoretically11,15. Still, the temporal resolution 
will decrease because relatively more minor peaks of CC values will be neglected if a higher peak emerges in the 
same interval, which becomes likely for longer intervals. In contrast, with shorter lengths, convergence might 
not be achieved. Therefore, we should determine the interval length considering the balance between the above 
two. Another concern is daily  variation4 or long-term variation of CC as shown in Fig. 5. For precise analysis, 
the threshold should be determined in each short term (e.g., diurnal and nocturnal or seasonal distributions of 
CC). In such a case, our method can be applied to each term separately, although we ignored such variations for 
simplicity and because of the absence of an objective method to separate each term. For such short-term records, 
in general, the estimated parameters might have more errors due to the decrease in the sample size, which may 
limit the applicability of the proposed method. Therefore, quantifying the errors as in Supplement C is required 
for stable estimation of parameters depending on the short-term data.

Figure 6.  Cumulative distributions of normalized NCC (blue) and the Gumbel distribution with µ′ = 0 and 
σ ′ = 1 as the fitting curve (gray) for the 27 templates of Table S.1. Red steps indicate detected outliers in terms 
of the minimization of AIC. Seventeen cases accompanied by no outliers are plotted all together in the right 
bottom.
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Because our case study is limited, it remains unclear whether the Gumbel distribution can model the empiri-
cal distribution in general cases. Even in our results, the deviation of empirical distributions from the Gum-
bel distribution (Fig. 6) may imply that the Gumbel distribution is not necessarily the best model. A suitable 
approximation is possible using other limits of GEV: the Fréchet or Weibull distribution. In practice, the shape 
of the tail should be further investigated, considering these possibilities in each analysis. However, we face a 
technical problem in estimating three GEV parameters with outliers as in Supplement B, and the more suitable 
approximation remains for future work.

Conclusion
We developed an objective matched-filter technique based on AIC and the extreme value theory. We showed 
that the CC between any template and i.i.d. random waveform follows the normal distribution, which provides 
a reference for examining the deviation of data from the i.i.d. case. To reduce the possibility of a false positive, 
we considered the maximum of CC in each interval and found that the maxima follow the Gumbel distribution. 
Finally, using the distribution and AIC, we propose a reasonable method less sensitive to arbitrariness than a 
conventional thresholding method for detecting outlier seismic signals. Regardless of whether NCC follows the 
normal distribution, the proposed method can be applied to analyses of seismic event detection.

Data availability
We used continuous waveform records of the NIED high sensitivity seismograph network of Japan ( https:// doi. 
org/ 10. 17598/ NIED. 0003 ) and JMA unified earthquake catalog ( https:// www. hinet. bosai. go. jp/ REGS/ JMA/ 
jmali st. php? LANG= en ).
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