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Predicting an unstable tear film 
through artificial intelligence
Fredrik Fineide 1,2,3,4*, Andrea Marheim Storås 3,4, Xiangjun Chen 1,7,8,9, 
Morten S. Magnø 1,7,10,11,12, Anis Yazidi 4,6,10, Michael A. Riegler 3,5 & 
Tor Paaske Utheim 1,2,4,8,10,13,14,15,16,17,18,19,20,21

Dry eye disease is one of the most common ophthalmological complaints and is defined by a loss of 
tear film homeostasis. Establishing a diagnosis can be time-consuming, resource demanding and 
unpleasant for the patient. In this pilot study, we retrospectively included clinical data from 431 
patients with dry eye disease examined in the Norwegian Dry Eye Clinic to evaluate how artificial 
intelligence algorithms perform on clinical data related to dry eye disease. The data was processed and 
subjected to numerous machine learning classification algorithms with the aim to predict decreased 
tear film break-up time. Moreover, feature selection techniques (information gain and information 
gain ratio) were applied to determine which clinical factors contribute most to an unstable tear film. 
The applied machine learning algorithms outperformed baseline classifications performed with ZeroR 
according to included evaluation metrics. Clinical features such as ocular surface staining, meibomian 
gland expressibility and dropout, blink frequency, osmolarity, meibum quality and symptom score 
were recognized as important predictors for tear film instability. We identify and discuss potential 
limitations and pitfalls.

The ocular tear film consists of an inner mucoaqueous layer and an outer lipid  layer1. The outer lipid layer is 
hypothesized to be comprised of an inner amphipathic lipid layer and an outer nonpolar lipid  layer2. The tear 
film lipid layer acts as a hydrophobic barrier that reduces evaporation of the underlying aqueous component, 
protects the eye from damage by external agents and lubricates the ocular  surface1. The bulk of the tear film lipid 
layer is produced by modified sebaceous glands located in the upper and lower eyelids referred to as meibomian 
glands (MG)3.

Dry eye disease (DED) is defined as “a multifactorial disease of the ocular surface characterized by a loss of 
homeostasis of the tear film, and accompanied by ocular symptoms, in which tear film instability and hyperos-
molarity, ocular surface inflammation and damage, and neurosensory abnormalities play etiological roles”4. It is 
a multifactorial disease caused by loss of tear film homeostasis that affects 5–50% of the population, depending 
on the definition and population  studied4,5. The two main aetiologies are aqueous-deficient dry eye (ADDE) and 
evaporative dry eye (EDE)4. ADDE, caused by lacrimal failure, is often divided into Sjögren and non-Sjögren 
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lacrimal disease and accounts for approximately 10% of the DED  incidence6. Evaporative dry eye disease is about 
nine times more common than ADDE, and meibomian gland dysfunction (MGD) is the most common  cause4.

The diagnostic loop is often initiated with symptom screening through questionnaires such as the Dry Eye 
Questionnaire 5 (DEQ5) or the Ocular Surface Disease Index (OSDI), followed by clinical tests evaluating the 
quantity and quality of the tear  film7. Common clinical tests include the Schirmer test (ST), which quantifies tear 
production over 5 min, tear film break-up time (TBUT), ocular surface staining (OSS), MG expressibility (ME), 
meibum quality (MQ) and osmolarity. Further diagnostic work-up may include imaging techniques evaluating 
quality and quantity of the MGs. Meibography through non-contact infrared imaging has gained clinical and 
scientific momentum over the past  decade8.

Artificial intelligence (AI) has been defined as “the science and engineering of making intelligent machines”9. 
Machine learning (ML) is a subgroup of AI focused on the programming of computers enabling them to learn 
from data through experience and performance improvement over time without being explicitly  programmed10,11. 
ML algorithms learn from data through a process referred to as training. The resultant program is a ML model 
capable of making predictions on data similar to the data it was trained on. ML training methods are categorized 
based on the type of data used/available; the three main groups include supervised learning, unsupervised learn-
ing, and reinforcement learning. In supervised learning the model is trained on data in which the target value is 
known, referred to as labelled data. Typical supervised learning tasks include classification and regression. Fol-
lowing training, performance is evaluated by letting the model predict on a separate test set and comparing the 
predictions of the model to the actual labels. In unsupervised learning, models are constructed through training 
on unlabelled data and are mostly used for clustering and dimensionality reduction. Model performance can be 
based on e.g. human level performance or distance between cluster points, as the actual labels are  unknown12,13. 
Reinforcement learning, on the other hand, is based on continuous feedback to the learning system in form of 
penalties and/or rewards based on the actions of the  learner10. The system learns the best possible actions in 
each state of the system to get as much accumulated rewards as possible. Deep learning is another subfield of 
ML based on artificial neural networks with more than one hidden layer (deep neural networks). These neural 
networks are loosely based on their biological counterparts and their architecture typically consist of an input 
layer, several hidden layers and an output layer. Unlike most traditional ML algorithms, deep learning does not 
require extensive manual feature engineering. Both supervised and unsupervised approaches may be employed, 
and deep learning is often used for text and image recognition.

ML has gained great momentum in the field of medicine and  ophthalmology14. In its application in DED, 
ML has largely been used for image analysis from slit lamp  examinations15,  meibography16, and in vivo confocal 
 microscopy17, as well as a few studies concerning  osmolarity18, and proteomic  analysis19. Additionally, our group 
recently employed dimensionality reduction through principal components analysis to compare salivary and ocu-
lar lipids and lipidomic profiles in patients with Sjögren`s syndrome to healthy  controls20. There is no definitive 
test for DED, and patients must undergo several and occasionally unpleasant clinical examinations demanding 
a great deal of time and resources. Identifying superfluous clinical tests whose results can be predicted based on 
other findings might help to reduce the number of tests necessary, minimizing the impact of the examination 
upon the patient. With this in mind, tabulated clinical data from the Norwegian Dry Eye Clinic was analysed 
through supervised learning. The present project was undertaken to evaluate if well-known ML algorithms 
are capable of classifying patients according to TBUT based on tabulated clinical data in DED. Moreover, the 
project aimed to assess whether new important features might be identified, solidify known associations, and 
to identify limitations and pitfalls. Prior work has estimated TBUT from video frames using  ML21–23. There is to 
our knowledge no studies implementing ML algorithms on tabular clinical data of DED patients.

Methods
Participants. Clinical data from 432 patients was extracted from a comprehensive dataset collected between 
2017 and 2019 in the Norwegian Dry Eye Clinic in this retrospective study. The clinical data was transformed 
into datasets for use in this and future projects. Inclusion criteria were adult patients visiting the Norwegian Dry 
Eye Clinic within the project period, having a diagnosis of DED, and ability to provide informed consent. No 
specific exclusion criteria were formulated for inclusion of clinical data in the present project.

Written informed consent was obtained from all subjects and the study was approved by the Regional Medi-
cal Ethics Committee of South-East Norway (2017/389; approval date 18 April 2017), all performed procedures 
were in compliance with the Declaration of Helsinki.

Dry eye examinations. All clinical examinations were performed as previously described by experienced 
ophthalmologists specialised in  DED24. In brief, following completion of the OSDI questionnaire, ocular sur-
face tests were performed in the order: tear film osmolarity, TBUT (measured with fluorescein under slit lamp 
microscopy, average of three measurements used), OSS (assessed according to the Oxford grading  scheme25), 
corneal sensitivity (Cochet-Bonnet esthesiometer), ST (without anesthesia), ME and MQ. Blink frequency was 
counted prior to examinations while patients were conducting the OSDI questionnaire. Patients were diagnosed 
with DED if the OSDI was ≥ 13 and/or either TBUT < 10  s or OSS > 0. Meibographic images were acquired 
through the Keratograph 5 M (Oculus Optikgeräte GmbH, Wetzlar, Germany). Degree of meibomian gland 
dropout was graded subjectively according to the meibograde by Pult et al.26. Images were taken of both eyelids 
on both eyes if possible and results averaged to a composite score for each eye.

Data preparation. Patient characteristics, including demographic, clinical, and proteomic data were ini-
tially recorded in an Excel (Microsoft Corporation, 2018. Microsoft Excel, Available at: https:// office. micro soft. 
com/ excel) spreadsheet. A thorough review of the spreadsheet was performed, and relevant features selected. Fea-

https://office.microsoft.com/excel
https://office.microsoft.com/excel
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tures were converted to uniform numerical data of similar grading systems where necessary (e.g. to meiboscale 
by Pult et al.26, rather than percentage dropout) to ensure data homogeneity for a given feature, and blank cells 
reformatted to “999”. The .xlsx file was imported and converted to the .arff file format through Weka (Waikato 
Environment for Knowledge Analysis, University of Waikato, New Zealand)27. Clinical features included in the 
final analysis were age, age group 0–19, age group 20–39, age group 40–59, age group 60–79, age group 80–99, 
sex, OSDI, ST OD (right eye), ST OS (left eye), osmolarity OD, osmolarity OS, meibography OD, meibography 
OS, ME OD, ME OS, MQ OD, MQ OS, blink frequency OD, blink frequency OS, corneal sensibility OD, corneal 
sensibility OS, OSS OD, OSS OS, and the class to be predicted (TBUT OD or TBUT OS). TBUT was measured in 
whole seconds, < 10 s was considered pathological. The TBUT class was divided into three groups, with group 1 
(ranging 0–4 s), group 2 (5–9 s) and group 3 (≥ 10 s). TBUT values as a running numerical class was removed as 
a feature for both eyes to avoid information leakage and consequential false overperformance of the ML models.

Analysis. The final dataset consisted of 431 instances and 25 features; it is not public available as it contains 
sensitive patient data.

Analysis was performed in the Weka library version 3.8.6 (Weka 3—Data Mining with Open Source Machine 
Learning Software in Java (waikato.ac.nz)) with TBUT at baseline in both eyes as the classes to be predicted. 
ZeroR was run as the baseline classifier. ZeroR is considered one of the simplest rule-based classifiers, it ignores 
all predictors and relies on the  target28. Based on a frequency table it predicts the majority class. It predicts the 
mode for nominal data and the mean for numeric data. As a classifier it is considered difficult to beat with respect 
to certain metrics, such as accuracy, if the data is biased, due to classification of all instances to the majority class.

After calculating the ZeroR classification baseline, the performance of other algorithms were evaluated. 
Algorithms were chosen based on empirical testing (in total we tested 40 different algorithms). The algorithms 
presented in this work are the best known and highest performing algorithms tested. Detailed information 
regarding classifier evaluation and results were saved for comparison. The top classifiers that are also reported in 
this work are random forest, multilayer perceptron, AdaBoostM1, LogitBoost and randomizable filtered classifier. 
All hyperparameters of the classifiers were set to the optimal standard settings provided by Weka.

Decision trees predict the value of a target feature based on input features and can perform both regression 
and classification  tasks10. A random forest is made up of an assortment of decision trees. Upon performing 
classification tasks, the output of the random forest is the class predicted by the highest number of decision 
trees within the forest. The random forest algorithm trades a higher bias for a lower variance through greater 
diversity by searching for the best feature among a random subset of features upon splitting a node, resulting in 
an overall superior model.

For the sake of including models of various categories, we have included the results from classification with 
naïve Bayes. This algorithm is a simple probabilistic classifier based on Bayes`  theorem29. It is based on the 
probability of observing predictor values given an outcome, to calculate the probability of an outcome based on 
the feature values.

The multilayer perceptron is an artificial neural network consisting of an input layer, at least one hidden layer 
and an output layer. The multilayer perceptron employs a technique referred to as backpropagation to calculate 
the error rate of the model and tweak the input of weights and bias to reduce the overall error.

AdaBoost (Adaptive Boosting) boosts nominal class classifiers by running a “weak” learning algorithm over 
numerous allotments of the training data and then combining these into a single  classifier30. The main weakness 
of this model stems from the random guessing of the label for a hypothesis with expected error 1–1/k where 
k is the number of possible labels. Hence, when k > 2, there is an increased requirement that the error be < ½.

LogitBoost, like AdaBoost, performs additive logistic  regression31. However, whereas adaptive boosting mini-
mizes the exponential loss, logistic boosting minimizes the logistic loss.

The randomizable filtered classifier is a version of the filtered classifier that concretize the model with a ran-
domizable filter. It implements IBk, a K-nearest neighbour’s classifier, as the base classifier.

Based on the results obtained when predicting the TBUT of the right eye at baseline, the best performing 
classifiers were also employed to predict the OS class.

Determination of which features had the greatest impact on the classification, and to what degree, was ana-
lysed using algorithms that can determine the feature importance for a given classification task. Specifically, we 
used the information gain and information gain ratio algorithms. This was done to evaluate what clinical features 
being most important in producing an unstable tear film.

Metrics. To evaluate the performance of the algorithms we used a set of metrics to get a better understand-
ing. The metrics were chosen based on insights obtained  from32. Specifically, we used recall, false positive rate, 
precision, F-measure, and Matthews correlation coefficient (MCC). Included in these metrics are true positive 
(TP), true negative (TN), false positive (FP) and false negative (FN).

Recall, also known as sensitivity or true positive (TP) rate, is the fraction of correctly classified positive 
instances. It is bounded to [0, 1] where 1 represents perfect prediction of the positive class and 0 incorrect 
prediction of all samples.

FP rate reflects the probability of falsely rejecting the null hypothesis. The FP rate is bounded [0, 1], where 0 
represents no false positives predicted and 1 that all cases are wrongly predicted as positive.

(1)Recall =
True positives

Total number of positives
=

TP

TP + FN
.
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Precision, also known as positive predictive value, is the ratio of TP and the total number predicted as positive 
by a model. It is bounded [0, 1] where 0 represents no correct predictions and 1 represents all predictions correct.

The F-measure, or F1-score, is the harmonic mean of precision and recall. It penalizes extreme values of both 
and is used to evaluate the accuracy of predictions. It is bounded [0, 1] where 1 represents perfect precision and 
recall and 0 represents no precision and recall.

MCC is a correlation coefficient between true and predicted classes. It is bounded [− 1, 1] where − 1 represents 
total disagreement between the true value and prediction, 0 equals random guessing and 1 represents perfect 
prediction. As it includes all entries from the confusion matrix a high value necessitates globally good results.

References for Eqs. (1–5) can be found  in32,33. We split the data into 50% training and 50% test data. On the 
training data we performed tenfold cross validation, a method where the training set is randomly divided into 
ten subsets (folds)10. The model is trained and evaluated 10 times using a different subset of the data for valida-
tion every time while training on the remaining nine folds. The resulting model was tested on the 50% test data 
split. Hyperparameter optimization was performed using GridSearch on the best performing algorithms. This 
did not enhance performance on any model with the exception of naïve Bayes. For future work we will test the 
model trained on the full dataset in a prospective study to validate the clinical applicability of the best methods 
identified in this work.

Results
The patients were from 18 to 88 years old, with a mean age of 52.7 years. 101 patients were male and 330 were 
female. One patient was excluded from the dataset and analysis as the age was registered as “0”. Demographic 
and clinical data is presented in Table 1. All results are available in the supplementary materials (Supplementary 
File 1).

Right eye at baseline. In the right eye groups 1, 2 and 3 had 334, 61 and 24 instances respectively. Moreo-
ver, 12 instances had blank values and was assigned to group “999”. Results are shown in Table 2.

Classification through ZeroR gave 77.494% correctly classified instances. For class 1 it demonstrated a recall 
and FP rate of 1.0, precision of 0.775 and a F-measure of 0.873. MCC could not be calculated because only 
majority class labels are assigned.

Using RandomForest with 100 iterations correctly classified instances increased to 99.768%. The weighted 
average for recall was 0.998 and the FP rate was 0.008. Precision, F-measure and MCC were 0.998, 0.998 and 
0.993, respectively. As opposed to ZeroR, the confusion matrix after RandomForest demonstrated improvement 
with increased diagonal dispersion, representing more correctly classified instances.

MultilayerPerceptron with “t” hidden layers (t = features + classes) and 500 epochs gave 97.912% correctly 
classified instances.

AdaBoostM1 and LogitBoost with RandomForest as the sub classifier gave exactly the same results on all 
metrics as RandomForest alone, with only one wrong prediction.

The randomizable filtered classifier with IBk as the base classifier gave 100% correctly classified instances with 
recall = 1.0, FP = 0.0, Precision = 1.0, F-measure = 1.0 and MCC = 1.0 in weighted average.

Left eye at baseline. In the left eye groups 1, 2 and 3 had 323, 60 and 36 instances respectively. Also, 12 
instances had blank values and was assigned to group “999”. Results are shown in Table 3.

ZeroR classification demonstrated 74.942% correctly classified instances with a recall and FP rate of 1.0, 
Precision = 0.749 and F-measure = 0.857 for class 1. As with OD, the MCC could not be calculated.

RandomForest gave 100% correctly classified instances with recall = 1.0, FP = 0.0, Precision = 1.0, F-meas-
ure = 1.0 and MCC = 1.0 in weighted average.

LogitBoost and AdaBoostM1 with RandomForest as the sub classifier gave exactly the same results as Ran-
domForest alone. Perfect predictions were also achieved through IBk and KStar (K*, instance-based K-nearest 
neighbour classifier).

Only minor differences in the predictive capabilities of the included algorithms for OD and OS can be found, 
with generally slightly higher percentage of correctly classified instances seen in OD. NaiveBayes had 14% more 
correct instances in OD. However, random forest made perfect predictions on OS but not OD. Boosting with 
either AdaBoost or LogitBoost with random forest as the subclassifier made no difference on the results in either 
OD or OS. The randomizable filtered classifier with IBk as the subclassifier made the best predictions on OD with 

(2)FP rate =
FP

FP + TN
.

(3)Precision =
Correctly classified samples

Samples assigned to class
=

TP

TP + FP
.

(4)F1 score = 2 ∗
precision ∗ recall
precision+ recall

=
2 ∗ TP

2 ∗ TP + FP + FN
.

(5)MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.
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marginally weaker results on OS. The predictive algorithms overcame class imbalance and correctly classified 
instances to the minority classes 2 and 3, even though the data was skewed.

Impact of various features. Most important features in the right eye. As entropy-based ranking methods 
are computationally cheap and reliable, results from information gain and information gain ratio are  presented34. 
Following analysis, medical implications of the identified features were assessed, this is discussed below.

The information gain-based feature evaluation determines the worth of a feature by measuring the informa-
tion gain with respect to the  class35, the ten most important features are listed in Table 4. The values presented 
for a given feature reflects its contribution to reduce the entropy, calculated by InfoGain (Class, Feature) = H 
(Class) – H (Class | Feature), where a higher score reflects a greater contribution.

The information gain ratio-based evaluation determines the worth of a feature by measuring the gain ratio 
with respect to the class, the ten most important features are listed in Table 5.

Most important features in the left eye. The ten most important information gain features for the left eye are 
listed in Table 6.

The ten most important information gain ratio features for the left eye are listed in Table 7.
Information gain revealed quite similar features of importance for OD and OS, with the exception of OSS 

OS being replaced by osmolarity OS when predicting on the left eye. When predicting on the right eye, infor-
mation gain rates MQ as more important than blink frequency, conversely, this is opposite for the left eye. The 
dissimilarities are greater concerning important features according to information gain ratio. OSS OD, MQ OS 
and ME OD are included for the right eye, but not for the left eye. However, in the left eye osmolarity OD and 
degree of MG dropout for both eyes as determined through meibography are important contributing factors. 

Table 1.  Demographics and clinical data. Max maximum, ME meibomian gland expressibility, MQ meibum 
quality, Min minimum, mm millimetres, mOsm/L milliosmole/litre, OSDI ocular surface disease index, OSS 
ocular surface staining, SD standard deviation, TBUT tear film break up time.

Sex Frequency

Men 101

Women 330

Parameter Min Max Mean SD

Age 18 88 52.65 21.21

Schirmer test (mm/5 min)

Right eye 0 35 12.61 8.85

Left eye 0 36 13.98 8.88

TBUT (seconds)

Right eye 1 14 3.45 2.67

Left eye 1 16 3.54 2.96

OSS

Right eye 0 9 1.83 1.75

Left eye 0 8 2.12 2.02

ME

Right eye 0 3 2.17 0.86

Left eye 0 3 2.25 0.84

MQ

Right eye 0 24 9.86 5.71

Left eye 0 22 10.27 5.90

Blink frequency (blinks/minute)

Right eye 12 52 26.52 8.43

Left eye 12 52 26.52 8.43

Corneal sensibility

Right eye 30 60 57.42 5.54

Left eye 15 60 57.30 7.35

Osmolarity (mOsm/L)

Right eye 281 313 296.45 9.30

Left eye 276 329 296.07 13.41

Meibography (meiboscale by Pult et al.)

Right eye 0 4 2.31 1.14

Left eye 0 4 2.34 1.12

OSDI 0 80 28.62 18.83
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When comparing results between information gain and information gain ratio age, Schirmer test, OSS, MQ, MG 
expressibility and dropout, osmolarity, blink frequency and OSDI are the most important features for predicting 
an unstable tear film in both eyes using both evaluation methods. According to information gain, blink frequency 
is an important feature in both eyes, but not according to information gain ratio.

Discussion
The main aim of the present study was to evaluate whether common ML algorithms can make predictions on 
clinical data in DED. In the right eye, the ZeroR baseline resulted in a total of 77.49% correctly classified instances. 
Furthermore, for class 1, the recall and FP rate was 1.0, with precision of 0.78 and F-measure 0.87. MCC could 
not be calculated. Excluding the latter and the FP rate, these results are considered difficult to beat. These seem-
ingly strong baseline metrics are a result of bias due to class imbalance as 334/431 instances belong to class 1. 

Table 2.  Supervised learning results on the right eye. FP false positive, MCC Matthews correlation coefficient, 
avg. average, NC not calculable.

Scheme Recall FP rate Precision F-measure MCC Correctly classified

ZeroR class 1 1.0 1.0 0.775 0.873 NC

ZeroR class 2 0.0 0.0 NC NC NC

ZeroR class 3 0.0 0.0 NC NC NC

ZeroR weighted avg 0.775 0.775 NC NC NC 77.494%

NaiveBayes class 1 1.0 0.522 0.876 0.934 0.650

NaiveBayes class 2 0.469 0.0 1.0 0.638 0.660

NaiveBayes class 3 0.417 0.0 1.0 0.588 0.640

NaiveBayes weighted avg 0.888 0.410 0.902 0.871 0.650 88.837%

Random forest class 1 1.0 0.010 0.997 0.999 0.993

Random forest class 2 0.984 0.0 1.0 0.992 0.990

Random forest class 3 1.0 0.0 1.0 1.0 1.0

Random forest class weighted avg 0.998 0.008 0.998 0.998 0.993 99.768%

Multilayer perceptron class 1 0.994 0.072 0.979 0.987 0.940

Multilayer perceptron class 2 0.967 0.005 0.967 0.967 0.962

Multilayer perceptron class 3 0.792 0.0 1.0 0.884 0.884

Multilayer perceptron weighted avg 0.979 0.057 0.979 0.979 0.941 97.912%

Randomizable filtered classifier + IBk class 1 1.0 0.0 1.0 1.0 1.0

Randomizable filtered classifier + IBk class 2 1.0 0.0 1.0 1.0 1.0

Randomizable filtered classifier + IBk class 3 1.0 0.0 1.0 1.0 1.0

Randomizable filtered classifier + IBk weighted avg 1.0 0.0 1.0 1.0 1.0 100%

Table 3.  Supervised learning results on the left eye. FP false positive, MCC Matthews correlation coefficient, 
avg. average, NC not calculable.

Scheme Recall FP rate Precision F-measure MCC Correctly classified

ZeroR class 1 1.0 1.0 0.749 0.857 NC

ZeroR class 2 0.0 0.0 NC NC NC

ZeroR class 3 0.0 0.0 NC NC NC

ZeroR weighted avg 0.749 0.749 NC NC NC 74.942%

NaiveBayes class 1 1.0 0.964 0.746 0.855 0.163

NaiveBayes class 2 0.0 0.0 NC NC NC

NaiveBayes class 3 0.0 0.0 NC NC NC

NaiveBayes weighted avg 0.749 0.713 NC NC NC 74.884%

Random forest class 1 1.0 0.0 1.0 1.0 1.0

Random forest class 2 1.0 0.0 1.0 1.0 1.0

Random forest class 3 1.0 0.0 1.0 1.0 1.0

Random forest weighted avg 1.0 0.0 1.0 1.0 1.0 100%

Randomizable filtered classifier + IBk class 1 0.994 0.0 1.0 0.997 0.988

Randomizable filtered classifier + IBk class 2 1.0 0.0 1.0 1.0 1.0

Randomizable filtered classifier + IBk class 3 1.0 0.005 0.947 0.973 0.971

Randomizable filtered classifier + IBk weighted avg 0.995 0.0 0.996 0.995 0.988 99.536%
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In Weka there are ways of counteracting class imbalance problems such as systematic oversampling (SMOTE) 
and random under sampling. In the former, the software produces synthetic instances for the minority class 
(es) based on a given number of nearest neighbours. Conversely, in the latter instances in the majority class is 
randomly removed. Class balancing through SMOTE is often employed to balance skewed datasets. We did not 
do this due to the excellent predictive capabilities of the algorithms on our unmanipulated dataset. However, 

Table 4.  Most important features predicting an unstable tear film in the right eye with information gain. OD 
right eye, OS left eye, ST Schirmer test, MQ meibum quality, OSDI ocular surface disease index, Blinkfreq blink 
frequency, OSS ocular surface staining.

InfoGainAttributeEval 
(Information gain)

Age 0.864

ST, OS 0.763

OSDI 0.480

ST, OD 0.462

MQ, OD 0.348

MQ, OS 0.321

OSS, OD 0.289

OSS, OS 0.286

Blinkfreq., OS 0.266

Blinkfreq., OD 0.266

Table 5.  Most important features predicting an unstable tear film in the right eye with information gain ratio. 
OD right eye, OS left eye, ST Schirmer test, ME meibomian gland expressibility, MQ meibum quality, OSDI 
ocular surface disease index, OSS ocular surface staining, Osm osmolarity.

GainRatioAttributeEval 
(Information gain ratio)

Age 0.264

OSS, OD 0.225

ST, OS 0.218

OSS, OS 0.180

OSDI 0.175

Osm, OS 0.170

ST, OD 0.162

ME, OS 0.161

MQ, OS 0.158

ME, OD 0.150

Table 6.  Most important features predicting an unstable tear film in the left eye with information gain. OD 
right eye, OS left eye, ST Schirmer test, MQ meibum quality, OSDI ocular surface disease index, Blinkfreq blink 
frequency, OSS ocular surface staining, Osm osmolarity.

InfoGainAttributeEval 
(Information gain)

Age 1.050

ST, OS 0.808

ST, OD 0.747

OSDI 0.511

Blinkfreq., OD 0.423

Blinkfreq., OS 0.423

MQ, OS 0.380

MQ, OD 0.364

OSS, OD 0.360

Osm, OS 0.264
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as class imbalance is a potential pitfall and source of bias when employing ML algorithms, it should be kept in 
mind during data collection, preparation and calculation.

Random forest correctly classified 99.77% on the right eye with recall, precision, F-measure and MCC 
all > 0.99 for class 1. As can be seen in Table 2, these metrics do not deteriorate when predicting on class 2 and 3. 
Moreover, the FP rate for class 1 is 0.01, indicating that very few instances belonging to class 2 and 3 are wrongly 
assigned to class 1.

By comparison the multilayer perceptron correctly predicted 97.91% of instances. For class 1 the recall was 
lower. However, the FP was also slightly decreased, indicating less of a tendency for wrongly assigning instances 
belonging to class 2 and 3 to class 1. Despite this, the MCC of the multilayer perceptron was lower than that 
of the random forest with 0.941 vs. 0.993 weighted average, indicating overall poorer classifier performance.

Age, OSS, ST and OSDI stand out as the most important predictors upon examining the features associated 
with an unstable tear film, followed by meibomian gland dropout, expressibility, blink frequency, osmolarity 
and meibum quality. These findings are in accordance with those described by the Tear Film and Ocular Surface 
(TFOS) Pathophysiology subcommittee and the vicious cycle of DED as depicted in Fig. 136. This cycle may be 
entered at any point and propagated by numerous interrelated processes collectively advancing DED. Tear film 
instability may cause increased evaporation of the underlying watery component with resultant hyperosmolar-
ity, a clinical sign included in the “TFOS Dry Eye Workshop 2” definition of  DED4. In our findings, changes in 
osmolarity were considered among the ten most important features in three of the four analyses, corroborating 
its importance as a pathophysiologic entity of DED. Arita et al. proposed several diagnostic criteria for obstruc-
tive MGD based on the correlations of clinical findings in patients compared to healthy  controls37. They found 

Table 7.  Most important features predicting an unstable tear film in the left eye with information gain ratio. 
OD right eye, OS left eye, ST Schirmer test, ME meibomian gland expressibility, OSDI ocular surface disease 
index, OSS ocular surface staining, Osm osmolarity, Meibography degree of MG dropout.

GainRatioAttributeEval 
(Information gain ratio)

Age 0.288

Meibography, OS 0.264

Meibography, OD 0.264

ST, OS 0.226

OSS, OS 0.216

ST, OD 0.191

Osm, OS 0.190

OSDI 0.183

ME, OS 0.169

Osm, OD 0.167

Figure 1.  The vicious cycle of dry eye disease. Illustration by Sara Nøland.
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that ocular symptom score, degree of lid margin abnormalities, MG expressibility and meibum quality, ocular 
surface staining and degree of MG dropout were significantly higher in patients with MGD.

Past studies have demonstrated correlation between MG dropout,  TBUT38,39 and  OSDI40. However, in other 
studies this correlation is either very weak or  absent41,42. In our dataset, MG dropout as a feature was ranked as 
the 2nd and 3rd most important features when predicting decreased TBUT in the left eye, but not in the right 
using information gain ratio with Ranker.

Our findings that MG expressibility and meibum quality were of importance in predicting decreased tear film 
stability corroborates the importance of meibum lipids in stabilizing the tear film and preventing evaporation 
of the underlying aqueous  component1. As ocular surface staining is a hallmark of longstanding inflammatory 
changes in DED resulting from damage to the ocular surface, its role as one of the most important predictors 
for decreased TBUT is  understandable7. However, whether a decreased TBUT causes ocular surface staining, 
inflammation destabilizes the tear film, or if it is a mutually degrading relationship, remains unknown. Based 
on the rationale of the vicious cycle of DED, the latter is an alluring concept.

Blink frequency in the healthy population ranges from 10 to 15 blinks per minute and is increased in  DED7. 
A stable tear film that does not dissociate during the interblink interval is vital in protecting the ocular surface. 
Longer periods between the break-up of the tear film and the subsequent blink, increase the stress inflicted on 
the ocular  surface43. Thus, our finding that increased blink frequency is associated with an unstable tear film 
substantiates this relationship.

Our analyses revealed ST as a significant factor in predicting tear film instability concerning values from both 
eyes, on both eyes with both algorithms. Hence, it is in our case one of the most consequential predictors. As 
ST is a measure of tear fluid volume produced over a given period, this relationship might seem counterintui-
tive. Mathers et al. identified a subgroup of MGD patients with hyperosmolarity, high degree of MG dropout 
and decreased ST  values44. This cohort corresponds to the subgroup predicted by Bron et al. where advanced 
EDE patients suffering from corneal neuropathy loose lacrimal compensation developing a functional  ADDE45. 
Indeed, a correlation between decreased ST values, TBUT and lipid layer thickness has been  reported46. Moreover, 
a recent study demonstrated that MGD patients with lower ST values had decreased tear film stability compared 
to healthy controls (not age nor sex matched) and MGD patients with normal ST  values47.

There are several limitations to the present study. The first and foremost limitation is the retrospective design 
and that all patients were included on the sole basis of being diagnosed with DED. The lack of exclusion criteria 
might have resulted in a heterogenous sample with increased prevalence of comorbidities resulting in selection 
bias. This inclusion model is explained by our aim to examine whether ML algorithms could be used on clini-
cal data in DED and the need for a large number of instances. Another limitation is class imbalance. However, 
the skewedness of our dataset did not appear to impact the ability of our models to make accurate predictions 
of the minority classes and maintained a low FP rate in the majority class. Thus, we did not counteract this 
through synthetic oversampling. Missing values in the dataset were ascribed the value “999”. It is unlikely that 
this influenced the results as the value is far higher than the range of any included tests and the algorithms are 
more likely to learn that these are non-relevant outliers. In total 1319/12930 (10.2%) values are missing which is 
a small percentage of the full dataset and should not have a big effect on the results (especially for methods that 
can handle missing values). Nevertheless, for future work we would also like to test different imputation methods 
and their influence on the overall performance. Despite good predictive capabilities, caution is warranted upon 
drawing conclusions concerning the impact of the different features in affecting the tear film stability. There 
might be an element of multicollinearity among the included features. Although this will not influence the 
predictive capabilities of the models as a whole, it might affect the validity in explaining which features are the 
most important, and this might be the reason for some discrepancy in our results regarding which is the most 
influential features on TBUT between the right and the left eye.

A strength of the study is the large number of patients, all derived from one site, which reduces the variation 
in methodological approaches (clinicians and equipment), which otherwise may preclude the data set. However, 
this might also serve as a limitation as there can be considerable inter-rater variability concerning the various 
dry eye tests. Thus, it is unknown how well these algorithms would work on data collected from several clinics 
and clinicians. Moreover, even though a large number of patients is included, this is a relatively low number for 
training a robust multilayer perceptron and other ML algorithms. This, in combination with a skewed dataset, 
might have caused overfitting of models influencing the results. The relatively small sample size and skewedness 
of the dataset are also the reasons why tenfold cross validation was used on the training data split in order to 
obtain a more robust model and prevent overfitting the algorithms. Hyperparameter optimization was performed 
with GridSearch. This only improved naïve Bayes, possibly due to overfitting. The best performing algorithms of 
this study will be further evaluated in a prospective study. Another strength is the large number of algorithms 
employed, several of which made accurate predictions, substantiating the role of ML models in future works.

Despite the limitations of the current study, we conclude that ML algorithms are capable of making accurate 
predictions on TBUT based on tabular clinical data in DED. Further studies are warranted to examine whether 
other clinical outcomes might be successfully predicted based on tabular data. If these findings are confirmed 
in larger, prospective studies, preferably on balanced datasets, they might indicate clinical examinations that are 
superfluous and, thus, might be omitted from the standard work-up. If this is achievable, it will reduce patient 
discomfort as well save time and resources for clinicians. In addition to demonstrating that accurate predic-
tions can be made on tabular clinical data in DED, herein exemplified using TBUT, the present work helps to 
substantiate and solidify known associations between several clinical features, such as age, OSS, ST, OSDI and 
their effect on tear film stability. Our study provides new and important information as all diagnostics have the 
goal to ensure optimal therapy. In our study, we have taken an innovative AI based approach to reveal the most 
important factors associated with low and high TBUT. Based on this understanding, the therapy can more easily 
be optimized. For example, a clear association with MQ and TBUT, should bring the therapeutic focus to the 
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clinicians to what is scientifically well-documented to improve MQ. This will vary over time but can include 
strategies such as intense pulsed light  therapy48. TBUT is chosen in our study as it is a critical diagnostic param-
eter in all DED management. A major strength of the methodology described in this article is the versatility of 
ML algorithms. Once a dataset is collected one can relatively easily change what feature to predict. As we herein 
have demonstrated the ability of these algorithms to make accurate predictions on DED clinical data, this not 
only enables researchers to pinpoint clinical features easily predicted, but also through which examinations this 
might be done. An additional possibility is the combination of clinical data, ML algorithms and proteomic and/
or lipidomic measurements. As these biochemical analyses produce large amounts of data, they are ideal candi-
dates for predictions and clustering through both supervised and unsupervised learning algorithms. We believe 
these methodologies will help solidify the importance of established features and that novel connections may 
be identified. Identification of biochemical profiles typical of DED subgroups, how these subgroups respond to 
various treatment modalities and how to predict which treatment will be the most beneficial for a given patient 
might be possible. Studies with larger, balanced datasets, with a higher number of features are needed and cur-
rently underway based on the findings in this pilot study.

Data availability
The dataset is not publicly available as it contains sensitive patient data. Access to processed data used for analysis 
can be given upon request by contacting the corresponding author.
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