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Multi‑level analysis reveals 
the association between diabetes, 
body mass index, and HbA1c 
in an Iraqi population
Rasoul Kowsar 1* & Alireza Mansouri 2

Type 2 diabetes (T2D) known as a complex metabolic disorder may cause health problems and changes 
in blood biochemical markers. A growing number of studies have looked into several biomarkers and 
their connections with T2D risk. However, few have explored the interconnection of these biomarkers, 
as well as the prospective alterations in the diabetes biomarker correlation network. We conducted 
a secondary analysis in order to introduce a multi‑level approach to establish a relationship between 
diabetes, pre‑diabetes, blood biochemical markers, age, and body mass index (BMI). The dataset 
was obtained from the Mendeley Data (available at https:// data. mende ley. com/ datas ets/ wj9rw 
kp9c2/1. In this study, three groups were established: non‑diabetic (n = 103), pre‑diabetic (n = 53), 
and diabetic (n = 844). According to the Heatmap analysis, non‑diabetic and pre‑diabetic individuals 
had the lowest BMI, age, and HbA1c. Diabetes and pre‑diabetes were correlated with BMI (r = 0.58 
and − 0.27, respectively), age (r = 0.47 and − 0.28, respectively), and HbA1c (r = 0.55 and − 0.21, 
respectively) using Pearson analysis. Using multivariate analysis, we found that diabetes, BMI, age, 
HbA1c, cholesterol, triglyceride, LDL, VLDL, and HDL were all associated. Network analysis revealed 
a connection between BMI and diabetes at the highest cut‑off point. Moreover, receiver operating 
characteristic (ROC) analysis validated the network findings, revealing that BMI (area under the ROC 
curve, AUC = 0.95), HbA1c (AUC = 0.94), and age (AUC = 0.84) were the best predictors of diabetes. In 
conclusion, our multi‑step study revealed that identifying significant T2D predictors, such as BMI and 
HbA1c, required a series of mathematical analyses.

The number of people living with type 2 diabetes mellitus (T2D) has grown to 350 million  worldwide1, and it 
is expected that this metabolic disease will grow to 592 million (1 in 10 adults) by  20352. The number of adults 
with diabetes is expected to rise by 20% in developed countries and 70% in developing countries over the next 
20  years3. Mainly, T2D is distinguished by hyperglycemia, or a persistently elevated glucose level in the  blood4. 
The most serious complication in T2D is the severe increase in blood glucose levels, known as "Diabetic Hyper-
glycemia", which is usually caused by insulin hormone production and secretion deficiency, insulin function 
failure, or a combination of these two pathological  disorders5. This syndrome is also characterized by a decrease 
in antioxidants, an abnormal metabolic pattern of  lipids6,7,  carbohydrates8,9,  proteins10 and  electrolytes11, as well 
as a change in the hepatic  enzymes12.

Type 2 diabetes is a complex metabolic disease that can lead to health problems in the  body11. A plethora of 
evidence illustrated the impact of hyperglycemia on various body tissues as a result of protein  glycation12. The 
steady elevation of glycated hemoglobin (HbA1c) due to diabetes-related hyperglycemia, for example, is attrib-
uted to structural and functional modifications in the hemoglobin  molecule12. The impact of hyperglycemia on 
blood indices does not exhibit any pathological symptoms, but it may be the cause of various adverse findings 
and chronic problems in diabetic  patients12. Increased triglycerides (TGs), decreased high-density lipoproteins 
(HDL)4, increased very-low density lipoprotein (VLDL), and low-density lipoproteins (LDL) are some of the 
lipoprotein anomalies associated with  T2D6,13. Insulin resistance is often associated with certain lipoprotein 
 anomalies6. Insulin resistance can also be caused by  genetics14, obesity, abdominal  obesity15, physical  inactivity16, 
and  age17. Furthermore, increased TGs, low HDL, and hyperuricemia are important metabolic risk factors in 
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people with insulin  resistance18. Insulin resistance enhances the likelihood of having decreased glucose toler-
ance and  T2D18.

Obviously, a long family history of T2D, age, obesity, and physical inactivity distinguish those at greatest  risk18. 
The risk of diabetes has been shown to rise in lockstep with increasing baseline BMI levels, with each kg/m2 
increase in BMI resulting in a 23% increase in T2D  risk19. There is a linear link between BMI and the prevalence 
of T2D in all age groups, with a larger relationship in younger  persons19.

We are typically concerned about what factors are connected with various outcomes or the strength of the 
relationship between a variable and an outcome, as well as between variables. There is definitely collinearity and 
complex interactions between biological indices that cannot be identified by basic mathematical  analysis20. Typi-
cally, regression analysis is used to investigate such correlations. The downside of this strategy is that it makes 
certain assumptions, such as the outcomes and variables being completely independent of one  another21. As a 
result, statistical significance is  overstated21. Multilevel analysis, as one analytical method, may assist in resolving 
this difficulty by permitting the simultaneous assessment of group-level and individual-level  aspects22. Multilevel 
analysis allows for the testing of more relevant hypotheses, particularly those pertaining to variance in outcomes 
or variable  interactions21. For example, the principal component analysis (PCA) may be used to assess complex 
interactions, as well as the degree and direction of associations between variables and  outcomes23–25. The ANOVA 
tests, in fact, are incapable of dealing with complicated treatment structures and multidimensional data, such as 
omics  data26. Furthermore, network analysis can be used to determine central nodes that are linked to a certain 
outcome. For example, using network analysis, Santiago et al.27 showed that an inflammatory-related gene, Fork-
head box O3 (FOXO3, as a major transcriptional regulator), is up-regulated in the blood of children with T2D 
and mild cognitive impairment. Using a correlation network, Huang et al.28 demonstrated the importance of the 
leptin system in the development of diabetes. Liu et al.29 stated that network-based analysis allows us to have a 
better understanding of the pathophysiology of T2D patients. They also emphasized the need of using a system 
biology approach to investigate complex  disorders29. As a result, network analysis and PCA may offer a deeper 
understanding of the relationships between variables (such as blood indicators) and outcomes (i.e., diabetes).

The receiver operating characteristic (ROC) curve analysis was also used in this study. This method is exten-
sively used in biomedical studies to measure how well medical diagnostic tests (or systems) can distinguish 
between two patient/health  conditions30. In this approach, patient/health statuses are usually referred to as 
"diseased" and "non-diseased" based on test findings, and the optimum cut-off value with the highest diagnostic 
performance is  established30. For example, the glutamine/glutamic acid ratio has been shown to be the best 
biomarker (the area under the ROC curve, AUC, 0.74) for predicting diabetic retinopathy in T2D  patients31.

Due to the limited amount of evidence, we carried out a secondary multilevel analysis in this study to uncover 
potential relationship between some blood biochemical indices, age, and BMI in diabetic and pre-diabetic per-
sons, as well as the best predictor of diabetes diagnosis.

Methods
Data collection. The dataset was obtained from the Mendeley Data (available at https:// data. mende ley. 
com/ datas ets/ wj9rw kp9c2/1)32. The data were gathered from the Iraqi population, as they were retrieved from 
the laboratory of Medical City Hospital and the Specialized Center for Endocrinology and Diabetes-Al-Kindy 
Teaching Hospital. Data was collected from patients’ files and entered into the database to create the diabetes 
dataset. The protocol and methods were performed in accordance with the guidelines and regulations approved 
by the Committee on the ethics of the medical experiments of the Specialized Center for Endocrinology and 
Diabetes-Al-Kindy Teaching Hospital. The dataset included fasting blood glucose, age, gender, creatinine (Cr), 
body mass index (BMI), blood urea nitrogen (BUN), fasting lipid profile (including total, LDL, VLDL, TG, HDL 
and cholesterol), and HbA1c. The patient’s diabetes disease classes were non-diabetes, pre-diabetes, and diabe-
tes. At each visit, fasting venous blood samples were taken after at least a 10-h fast. Diabetes, pre-diabetes, and 
non-diabetes were identified as fasting plasma glucose levels of > 7.0 mmol/L, 5.5–7.0 mmol/L, and 5.5 mmol/L, 
respectively.

Serum TG, total cholesterol, LDL and HDL were measured on the AU 5800 autoanalyzer (Beckman, USA). 
On an autoanalyzer (Beckman 5800, USA), plasma glucose levels were analyzed using the glucose oxidase 
method. Body weight was assessed to the nearest 0.1 kg when wearing loose clothes with no shoes. The height 
was calculated to the nearest 0.1 cm. Body mass index was calculated by dividing one’s weight in kilograms by 
one’s height in meters squared.

Data analysis. A total of 1000 patients were divided into three categories based on their diabetes risk: (1) 
diabetic (n = 843), (2) pre-diabetic (n = 53), and (3) non-diabetic or normal (n = 103) classes. Using the Ander-
son–Darling test, data was found to be normally distributed. The Pearson correlation (Bonferroni correction) 
was used in the bivariate study to determine the relationship between blood biochemical parameters, age, BMI, 
and diabetes incidence. To evaluate the validity of the relationships in the correlation matrix, the Bonferroni 
correction was  used33.

Principal component analysis was used to assess the complicated relationship or multi-collinearity between 
blood biochemical parameters, age, BMI and the diabetes incidence. This strategy can be used to reduce the 
number of variables while retaining the majority of the essential  information34. In this study, multiple data dimen-
sions were reduced to two dimensions and the biplot was generated using PAST software. Correlations in the 
PCA biplot are expressed as directional vectors and determined by the angle between  vectors35. Vectors with < 45° 
angles had a positive correlation, vectors with perpendicular angles (approaching 90°) had no relationship, and 
vectors pointing in opposite directions (approaching 180°) indicated a negative association.

https://data.mendeley.com/datasets/wj9rwkp9c2/1
https://data.mendeley.com/datasets/wj9rwkp9c2/1
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The Heatmapper (http:// www1. heatm apper. ca/ expre ssion/) was used to produce patterns of blood biochemi-
cal parameters, age, and BMI in relation to diabetes  incidence33. The heatmap was created using the Pearson 
distance measure and complete linkage as the clustering method. Because the data were normally distributed, the 
Pearson distance metric was applied. In the network analysis, the Pearson similarity index was used in conjunc-
tion with the Fruchterman–Reingold algorithm as a force-directed layout  algorithm36. This algorithm generates 
a network based on the frequency with which nodes are connected. Pearson correlation, PCA, and network 
visualization investigations were carried out using the PAST tools (available at: http:// folk. uio. no/ ohamm er/ past).

The ROC curve analysis was conducted on the basis of network outputs that defined a correlation between 
blood biochemical parameters, age, and BMI, and diabetes incidence using the easyROC web-tool (available at: 
http:// www. bioso ft. hacet tepe. edu. tr/ easyR OC/)37. This was accomplished to determine the predictive strength 
and cut-off point of network-detected parameters for detecting diabetes occurrence using the AUC analysis. The 
optimal cut-off was determined by maximizing the Youden  index37.

Results
Data characteristics. Table 1 shows the patient’s features. The non-diabetic group was 25–77 years old 
(44.2 ± 9.4, mean ± SD), the pre-diabetic group was 30–55  years old (43.3 ± 7.8), and the diabetic group was 
20–79 years old (55.3 ± 7.5). In the non-diabetic, pre-diabetic, and diabetic classes, the percentage of males was 
37.9, 67.9, and 58.1%, respectively. The mean (± SD) of BMI was 22.4 ± 1.4, 23.9 ± 2.7, and 30.8 ± 4.3 kg/m2 for 
non-diabetic, pre-diabetic, and diabetic classes, respectively. Bays et al.38 found that more than 75% of diabetic 
persons had a BMI more than 25 kg/m2.

Figure 1 shows the pattern of data distribution of treatment groups. The HbA1c, cholesterol, TG, VLDL, 
BUN, and Cr levels were greater in the diabetic group compared to the pre-diabetic and non-diabetic groups. 
The pre-diabetic group had higher levels of HbA1c, cholesterol, TG, and Cr than the non-diabetic group (Table 1, 
Fig. 1). Other studies found that patients with T2D had higher levels of serum cholesterol, LDL, TG, creatinine, 
and BUN (above 25 mg/dL), as well as lower levels of  HDL39–42.

The association of blood biochemical markers, age, and BMI with diabetes. Diabetes was posi-
tively associated with BMI (r = 0.58), HbA1c (r = 0.55), and age (r = 0.47), according to the Pearson correlation 
(Fig. 2A). BMI was negatively associated with both pre-diabetes (r = − 0.27) and non-diabetes (r = − 0.49) groups. 
The pre-diabetes (r = − 0.21) and non-diabetes (r = − 0.50) groups showed a negative correlation with HbA1c. The 
Pearson correlation study revealed a relationship between HbA1c and age (r = 0.38) or BMI (r = 0.41, Fig. 2A).

The Pearson correlation analysis revealed a link between HbA1c and either cholesterol (r = 0.18) or TG 
(r = 0.22, Fig. 2A). According to the Ghari Arab et al.  study43, there was a substantial link between HbA1c level 
and serum cholesterol, TG, LDL, and FBS; hence, a high level of HbA1C was related to dyslipidemia. Another 
study revealed no correlation between HbA1c and age, BMI, cholesterol, LDL, or HDL  values44.

The PCA study revealed that there was multi-collinearity between HbA1c, cholesterol, TG, VLDL, LDL, 
BMI, age, and diabetes (Fig. 2B). According to the PCA study, the first four principal axis factors accounted for 
a reasonable amount of overall variance (58.2%). Oujidi et al.45 found a significant connection between age and 
HbA1c in T2D patients using a PCA approach.

More specifically, network analysis showed that diabetes was associated with BMI, HbA1c, and age at the 
70% cut-off point (this cut-off point was the maximum threshold that after that the biochemical markers had no 
association with diabetes, Fig. 3A). Network analysis revealed that, at the maximum cut-off point (75%), where 
there was no correlation between all parameters thereafter, diabetes incidence was only associated with BMI 
(Fig. 3B). Using network analysis, Huang et al.28 identified a link (positive correlation) between BMI and HbA1c.

ROC analysis to identify best indicators of diabetes incidence. Tables 2 and 3 demonstrate the 
AUC analysis for blood biochemical markers, BMI, and age in identifying diabetes patients. As seen in Table 3 
and Fig. 4, the ROC analysis revealed that BMI (AUC: 0.95, p = 0.000), HbA1c (AUC: 0.94, p = 0.000), and age 

Table 1.  Data and patients characteristics. n number, Cr creatinine, Chol cholesterol, TG triglyceride, BMI 
body mass index.

Items All patients, n = 1000 Non-diabetes, n = 103 Pre-diabetes, n = 53 Diabetes, n = 843

Age, years (mean ± SD) 53.5 ± 8.8 44.2 ± 9.4 43.3 ± 7.8 55.3 ± 7.5

Male, n/total n 565/1000 (56.5%) 39/103 (37.9%) 36/53 (67.9%) 490/843 (58.1%)

BMI, kg/m2 29.6 ± 5.0 22.4 ± 1.4 23.9 ± 2.7 30.8 ± 4.3

HbA1c, % 8.28 ± 2.53 4.56 ± 0.92 6.00 ± 0.19 8.88 ± 2.26

Chol, mmol/L 4.86 ± 1.30 4.27 ± 1.28 4.58 ± 1.04 4.95 ± 1.30

TG, mmol/L 2.35 ± 1.40 1.63 ± 1.03 2.13 ± 1.06 2.45 ± 1.43

HDL, mmol/L 1.20 ± 0.66 1.23 ± 0.51 1.13 ± 0.38 1.21 ± 0.69

LDL, mmol/L 2.61 ± 1.12 2.63 ± 0.98 2.49 ± 0.87 2.62 ± 1.14

VLDL, mmol/L 1.85 ± 3.66 0.94 ± 1.48 0.98 ± 0.50 2.02 ± 3.93

BUN, mmol/L 5.12 ± 2.94 4.68 ± 2.52 4.51 ± 2.02 5.22 ± 3.02

Cr, µmol/L 68.94 ± 60.0 62.80 ± 30.02 66.08 ± 41.57 69.87 ± 63.58

http://www1.heatmapper.ca/expression/
http://folk.uio.no/ohammer/past
http://www.biosoft.hacettepe.edu.tr/easyROC/
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(AUC: 0.84, p = 0.000) had a strong predictive capacity to detect diabetic patients. According to the AUC analy-
sis, BMI > 25.6 kg/m2, HbA1c > 6.5%, and age > 51 years were the cut-off values for identifying diabetes. Similarly, 
Tankova et  al.46 demonstrated superior performance of HbA1c for detecting diabetes (AUC: 0.95) and pre-
diabetes (AUC: 0.73) using ROC analysis.

Discussion
This multi-step study revealed that BMI, HbA1c, and age were all associated with diabetes and had the highest 
predictive potential. Surprisingly, none of them was associated with pre-diabetes. Furthermore, utilizing this 
multi-step approach, it was revealed that BMI was the most associated factor of diabetes, as demonstrated by 
network and ROC analysis. The data showed that identifying the most interconnected parameter, particularly 
in clinical examinations, required a multi-step strategy.

The presented approach, which included bivariate Pearson analysis, network analysis, and ROC analysis, 
revealed that BMI was the best predictor of diabetes. The prevalence of T2D has risen exponentially in recent 
decades as a result of lifestyle  changes19. Obesity almost doubled worldwide between 1980 and  200847. In 2008, 
there were over 200 million obese men and over 300 million obese women worldwide, accounting for 11% of 
 adults47. Also, BMI has been linked to an increase in metabolic disorders such as  T2D19. A meta-analysis of data 
found a greater correlation between BMI and diabetes risk in people under the age of  6048. According to the 
Bays et al.  study38, T2D prevalence increased with increasing BMI. They  found38 that more than 75% of T2D 
patients had a BMI greater than 25 kg/m2. In our research, the AUC analysis revealed that the cut-off point for 
diabetes occurrence was 25.6 kg/m2, which was consistent with the findings of Bays et al.  study38. The current 
data indicated that BMI was closely correlated with diabetes and should be kept under surveillance.

The multiple factor analysis, PCA, revealed a complex collinearity between diabetes and factors used in this 
research. Data revealed a link between LDL, cholesterol, TG, VLDL, BMI, age, HbA1c, and diabetes. This sug-
gested that, in addition to the best predictor uncovered by the current method, other lipid-related elements (such 
as LDL, cholesterol, TG, and VLDL) should be considered. Klisic et al.49 indicated that an undesirable lipid profile 
predicted HbA1c level in T2D patients. They advocated early recognition of dyslipidemia (an excess of lipids in 
the blood, such as TG, cholesterol, and fat phospholipids), as well as regulating and maintaining optimal lipid 
balance, as a precautionary tool for diabetes  diagnosis49. Furthermore, Bays et al.38 reported that higher BMI was 
associated with a rise in the incidence of diabetes and dyslipidemia. Adipocyte hypertrophy, visceral adipose 
tissue formation, and lack of physical activity in genetically and environmentally vulnerable patients have been 
linked to metabolic disorders such as T2D and  dyslipidemia38. Insulin resistance is believed to be the underlying 
cause of dyslipidemia in T2D  patients44,50. Increased TG levels in T2D patients are caused by insufficient insulin 

Figure 1.  The heatmap of the blood biochemical markers, age, BMI across various groups. Heatmap was 
generated by “Heatmapper web tool”. The heatmap was created using the Pearson distance measure. Red 
represents higher values. Blue represents smaller values. The color intensity indicates the variation of the 
values in the color scale on the left side of the heatmap. Dia diabetes, Pre pre-diabetes, N-Dia non-diabetes, Cr 
creatinine, Chol cholesterol, TG triglyceride, BMI body mass index.
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production or impaired insulin  action44,50. As a result of increasing substrate levels for TG synthesis, decreased 
insulin sensitivity causes increased hepatic VLDL production as well as late clearance of TG-rich  lipoproteins44,50. 
Our findings revealed that an unfavorable lipid profile was also linked to diabetes, BMI, and HbA1c.

The current findings showed that HbA1c had a high potential to diagnose diabetes (AUC: 0.95). HbA1c 
has long been recognized as a glycemic control  marker49. HbA1c appears to be a helpful, practical, and reliable 
method for identifying people with pre-diabetes and diabetes, according to the Tankova et al.  research46. As a 
result, HbA1c monitoring should be included in the establishment of diagnostic techniques. It has been shown 
that each 1% reduction in HbA1c reduced the risk of diabetes-related complications by 37% and the risk of 
diabetes-related mortality by 21%2.We found that 6.5% HbA1c was the cut-off point for diabetes diagnosis, which 
was consistent with the WHO recommendation of 6.5% HbA1c as the cut-off point for diagnosing  diabetes51,52. 
Because HbA1c represents mean plasma glucose over the previous 8–12 weeks, it may be used as both a diag-
nostic and a screening test for  diabetes53. Furthermore, the Pearson correlation and PCA analysis revealed a 
relationship between HbA1c and BMI. It has been demonstrated that BMI is associated with poor glycemic 
control, as evidenced by a high HbA1c  level47,49. Babikr et al.54 reported a positive relationship between BMI 
and HbA1c, which is similar to our findings. As a result, BMI and HbA1c should be closely monitored because 
they can serve as a powerful predictor of T2D.

Conclusions
In this study, we investigated the capacity of a multilevel analysis to assess complicated interactions, as well as 
the magnitude and direction of correlations between variables, such as blood indices, age, BMI, and the outcome 
(i.e., diabetes). Such connections are typically investigated using regression analysis or ANOVA tests, which 
assume that the outcomes/variables are independent of one another, resulting in an overstatement of statisti-
cal  significance21. It should be noted that multilevel analysis is particularly flexible in managing missing data 
and decreasing data dimension to reduce data features into fewer components to assist in the visualization of 
 patterns25,55. For example, using network analysis, we found BMI as the central node associated with diabetes as 
a specific outcome.  Kebede56 found, using a multilevel analysis, that among the parameters evaluated, the hemo-
globin level and weight of patients were linked with the CD4 count of patients with diabetes. We previously found 

Figure 2.  (A) Pairwise-Pearson correlation between blood biochemical markers, BMI, age and diabetes 
incidence. The color intensity is proportional to the correlation coefficients. The scale bar is the color range for 
different R values. Correlations that are significant at P < 0.05 are shown in the bold profiles. (B) Biplot of PCA 
derived from the blood biochemical markers, age, BMI, and diabetes incidence. Vectors with close angles (< 45°) 
indicate a strong correlation, vectors that are perpendicular indicate no correlation, and vectors in opposite 
directions (approaching 180°) indicate a negative correlation. Dia diabetes, Pre-Dia pre-diabetes, Normal non-
diabetes, Cr creatinine, Chol cholesterol, TG triglyceride, BMI body mass index.
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Figure 3.  Correlation-based network analysis of blood biochemical markers, age, BMI, and diabetes. All 
parameters are defined by circles within the network. Network analysis and visualization was carried out using 
PAST and Fruchterman–Reingold algorithm as a force-directed layout algorithm. The Pearson correlation levels 
of (A) 70%, (B) 75% were selected to determine the connections between edges and nodes in terms of incident 
diabetes. The 70% and 75% cut-off points were the maximum level at which biochemical markers and all 
parameters demonstrated no relation with diabetes, respectively. Nodes represent parameters related to incident 
diabetes. Edges indicate the interactions between all factors. The node and edge sizes are proportional to the 
clustering and correlation coefficients, respectively. Small nodes and thin edges refer to small values. Normal 
non-diabetes, Cr creatinine, Chol cholesterol, TG triglyceride, BMI body mass index.

Table 2.  ROC analysis to describe the predictive power of the blood biochemical markers, age, and BMI to 
determine diabetes incidence. Cr creatinine, Chol cholesterol, TG triglyceride, BMI body mass index.

Marker AUC SE Lower limit Upper limit z p value

BMI 0.95 0.01 0.93 0.97 45.70 0.00

HbA1c 0.94 0.01 0.91 0.96 36.66 0.00

Age 0.84 0.02 0.81 0.87 21.61 0.00

TG 0.64 0.03 0.59 0.69 5.58 0.01

Chol 0.63 0.02 0.58 0.67 5.27 0.01

VLDL 0.60 0.03 0.54 0.66 3.37 0.04

Urea 0.56 0.03 0.51 0.61 2.34 0.18

Cr 0.53 0.03 0.48 0.59 1.14 0.25

LDL 0.51 0.03 0.46 0.56 0.36 0.72

HDL 0.51 0.03 0.45 0.56 0.24 0.81

Table 3.  ROC analysis to estimate the optimal cut-off point for the blood biochemical markers, age, and BMI 
to determine diabetes incidence. The analysis was carried out by determining the predictive power and cut-off 
point of the objects with the highest AUC (i.e., ≥ 80) for the detection of diabetes incidence. The optimal cut-off 
was calculated by maximizing the Youden index. BMI body mass index.

Items AUC p value
Optimal cut off 
point Sensitivity Specificity

Positive predictive 
value

Negative 
predictive value

Positive 
likelihood ratio 
(LR)

Negative 
likelihood ratio 
(LR) AUC rank

BMI, kg/m2 0.95 0.000 25.6 92.1 96.2 99.2 69.1 23.94 0.08 1

HbA1c, % 0.94 0.000 6.50 90.2 100 100 65.3 Infinity 0.09 2

Age, years 0.84 0.000 51.0 88.6 91.0 98.2 59.7 9.87 0.12 3
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that the proportion of blastocyst formation in bovines was connected with various blood indexes or follicular 
fluid CRP and bilirubin employing a multilevel  analysis37,57. Our findings using bivariate analysis indicated that 
age, BMI, and HbA1c had the highest connection with diabetes in the current research. Following that, PCA 
analysis indicated that additional parameters, such as an unfavorable lipid profile, were also linked to diabetes 
and higher HbA1c levels. Finally, network and ROC analysis revealed that, of all studied parameters, BMI had 
the best predictive power for diabetes diagnosis.

Therefore, it is necessary to conduct clinical studies using as many parameters as possible to identify the most 
associated patient features with diabetes. The findings also suggested that when investigating the relationship 
between variables, a multi-step strategy be employed to determine the indices that are the most interrelated.

Data availability
Statistical summaries of data generated and analyzed for the present article are included in the published article. 
Further details are available from the corresponding author on reasonable request.
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