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Distribution of controlled unitary 
quantum gates towards factoring 
large numbers on today’s 
small‑register devices
Andrei Tănăsescu , David Constantinescu  & Pantelimon George Popescu *

Factoring a 2048-bit number using Shor’s algorithm, when accounting for error correction, reportedly 
requires 400,000 qubits. However, it is well known that there is yet much time before we will have 
this many qubits in the same local system. This is why we propose a protocol for distributed quantum 
computation applicable to small register devices, specifically for the distribution of controlled unitary 
gates, the key element in the construction of every quantum computation algorithm. We leverage 
quantum sharing of partial results to obtain a parallel processing scheme, allowing for the first time 
the quantum distribution of very large gates with thousands of inputs using only small register 
devices with tens of qubits. In this way, we improve all previous controlled unitary gate distribution 
approaches, obtaining surprising results. The impact is quantified for recent milestone hardware 
realizations of quantum processors.

The security of today’s critical communication protocols is generally based upon three pillars: public key encryp-
tion, digital signatures and key exchange, the implementation of which is most often based on the difficulty of 
number theoretic problems such as integer factorization and other hidden subgroup problems1. In fact, integer 
factorization is the computational problem behind today’s most famous cryptosystem, the RSA (Rivest-Shamir-
Adleman) cryptosystem, and thus a lot of work has went into developing increasingly sophisticated attacks, 
based on everything from approximation algorithms to quantum computing. Recently, a PQCrypto 2014 talk2 
estimated that by 2030 a billion-dollar quantum computer could break 2000-bit RSA in a few hours, a figure 
that was taken by NIST as a serious long-term threat to the cryptosystems currently standardized by NIST1, a pro-
cess which ultimately kicked off a competition to determine the best candidate to replace today’s most popular 
cryptosystem whose third round finished in late 20213, with a replacement to be ready by 2024. The security 
of the communication protocols of tomorrow is thus heavily influenced by the advent of quantum computing.

Quantum computing is the branch of computational science that aims to harness quantum phenomena such 
as superposition and entanglement to perform computational feats, such as the famous polynomial-time Shor 
factoring algorithm4. A recent implementation analysis of Shor’s algorithm5 shows that factoring 2048-bit num-
bers requires at least 400,000 qubits working at least 1 trillion qubit-hours, when error correction is accounted 
for. While Shor’s algorithm is trivially distributed using sector search, each “thread” still has to have 400,000 
qubits, whereas the world’s most powerful quantum processor is reportedly the 127-qubit IBM Eagle r16, itself 
a far cry from the 5-7 qubit systems freely available in the cloud.

Motivated by similar examples, distributed quantum computation has long studied peer-to-peer coupling in 
quantum-classical networks using teleportation7. One of the first steps in this direction was the distribution of 
controlled unitary gates8, the quantum equivalents of the if programmatic statement. Using the observation 
that any function can be written as a sequence of if statements, this protocol was recently generalized to allow 
the distribution at no additional cost of quantum functions9, including the Deutsch and Grover oracles, and even 
the fast modular exponentiation function which is the bottle-necking factor in Shor’s algorithm. While this work 
shows that the system requirements for distributing a quantum function is the same as for a controlled unitary, 
the specific implementation of the previously mentioned protocols8,9 have the disadvantage that they require a 
large number of ancillary qubits at the target site.

The distribution of a quantum function Uf ∈ End
(

C
2N ⊗ C

2M
)

9 (and particularly N-control unitaries8) 
starts by sharing each of the “control” qubits C1, . . . , CN with the computer containing the “target” qubits 
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T1, . . . , TM , using N additional Bell pairs whose halves we denote by O1, . . . , On (at the control site) and 
I1, . . . , In (at the target site). The protocol then locally applies the quantum function Uf  , and finally decommis-
sions the extra qubits, as shown in Fig. 1. This last step is required to avoid residual entanglement, and follows 
the transfer procedure discussed in9,10. Yet, the point of both protocols is not to circumvent register size limits, 
but rather to allow the processing of non-local data, and as such they both make use of a local copy of the gate. 
In brief, to distribute a N-control Toffoli gate in this way, we still need a (N + 1)-qubit computer.

In the specific case of controlled unitaries that can be further optimized. A clever trick11 is to use the rela-
tion between the 3-control Toffoli gate and the AND gate to share only partial results of the AND operations. 
In the bipartite setting, this trick allows expenditure of only 1 Bell pair rather than 2. This idea has been refined 
by12 who eliminated the ancilla and also extended the approach to N-control unitary gates. In this setting, the 
control space is partitioned into K groups, C = C1 ⊗ · · · ⊗ CK , each with a possibly different number of qubits 
Ni , Ci ∼= C

2Ni , which we denote C(i)
1 , . . . , C

(i)
Ni

 for 1 ≤ i ≤ K . Additionally, each control system shares a Bell pair 
with the target system. In the first step, the protocol applies a local Toffoli gate on each control system targeting 
the half of the Bell pair. These partial sums are then shared with the target system, where a K-control version of 
the unitary gate is performed. The last step of the protocol is to apply partially classically controlled Z gates on 
the control systems, as depicted in Fig. 2. Yet, the point of this protocol is to optimize for local agglomerations 
of qubits, so it is only a side effect that it helps our goal. In brief, to distribute a N-control Toffoli gate in this way 
using n-qubit control systems we have K = N

n−1 and so we still need still need a ( N
n−1 + 1)-qubit computer. For 

example, taking N=400,000 and n=5, we still need a 100,000-qubit computer. Alternatively, requiring all quantum 
computers to be of the same size, i.e. setting n = K + 1 , we find n = ⌈1+

√
N⌉ , i.e. when N=400,000 we need 

633 computers each having 633 qubits, which is still far from current technology.
In summary, while the literature has optimized distribution of controlled unitaries to some extent, for fully 

nonlocal controlled unitaries its best solution still comes down to applying the full gate at the target site. Given the 

Figure 1.   Multipartite distribution of N-qubit quantum functions9.

Figure 2.   Improved multipartite distribution of N-control unitaries12.
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lack of any specialized protocol that can work with small register devices, the only recourse is to decompose the 
K-control Toffoli gate into single- and two-qubit gates and then run it through a distributed quantum compiler, 
such as the one recently developed by IBM researchers13 which optimizes the number of remote operations in 
the compiled circuit using integer programming. While serviceable, this black-box approach offers no particular 
insight as to how many small-register systems are required to efficiently run a workload requiring full connec-
tivity. Thus, in this paper we set out to provide the first protocols for the distribution of N-control Toffoli gates 
using only small register devices.

Methods
Throughout this paper we consider a logical quantum system comprised of N control qubits, C1, . . . , CN and M 
target qubits, T1, . . . , TM . The N control qubits are split across K local physical quantum systems, S1, . . . , SK , 
while the M target qubits are consolidated in a single local physical quantum system, SK+1 . These K + 1 local 
physical systems also include ancillary qubits used for entanglement distribution as well as computation. For 
convenience, we denote by Ni the number of controls at site Si for 1 ≤ i ≤ K  and relabel them C(i)

1 , . . . , C
(i)
Ni

 . 
On top of these K + 1 local physical systems we overlay a communication oriented tree, G = (V , E) , where 
V = {S1, . . . , SK+1} , with the tree rooted at the target site SK+1 . Without loss of generality, we assume that the 
nodes are labeled in reverse breadth-first order. For simplicity, we reduce our construction to a single parameter, 
1 ≤ B ≤ K  , corresponding to the branching factor, and all internal nodes will have exactly B children, except 
possibly the smallest indexed one, which may have fewer if the number of nodes is insufficient for them all to 
have B children. As an example, for a balanced binary tree with K = 5 control systems, the target system has 
index S6 and communicates with S5, S4 , where S5 communicates with S3, S2 and S4 communicates only with S1.

We now use the parametric communication tree to describe a sequence of circuit equivalences. At each step we 
apply the equivalence in Fig. 2 to a partition of a subset of nodes, based on the subtrees to which they belong. To 
aid this process, we additionally denote for each 1 ≤ i ≤ K + 1 the following: let Pi ⊆ {1, . . . , K} be its children 
in the tree, let 1 ≤ ai ≤ K be the smallest index of its children, let 0 ≤ bi ≤ B be the number of its children, let 
1 ≤ pi ≤ K + 1 be its parent in the tree, and let P̂i ⊆ {1, . . . , K} be all the nodes in its subtree (including itself). 
By the chosen construction and numbering, it follows that Pi =

{

Sai+1, . . . , Sai+bi

}

.

Theorem  The circuit equivalence in Fig. 3 holds.

We provide a proof by induction, following a chain of circuit equivalences aided by Fig. 2, as follows.

Proof  In the first step we consider the entire controlled unitary gate. Its targets are the qubits T1, . . . , TM in 
system SK+1 , while its controls are the qubits C1, . . . , CN split across the systems S1, . . . , SK . We partition the 
controls C1, . . . , CN into bK+1 sets based on the subtree to which their system belongs, i.e. corresponding to the 
controls in P̂aK+1+1, . . . , P̂aK+1+bK+1 . We then place bK+1 Bell pairs, one between each pair of systems SaK+1+j 

Figure 3.   Parallel cascade distribution of controlled unitaries.
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and SK+1 for 1 ≤ j ≤ bK+1 . For each jth such Bell pair, we denotte by O(aK+1+j)
aK+1+j  its half residing within SaK+1+j , 

and by I(K+1)
aK+1+j its half residing within SK+1 . We now apply the equivalence in Fig. 2. This distributes the entire 

controlled unitary gate targeting SK+1 , decomposing it into 1 ≤ bK+1 ≤ B (possibly non-local) Toffoli gates each 
targeting one of the bK+1 systems SaK+1+j.

In the next steps, we perform a similar operation for each nonlocal Toffoli gate that has not yet been dis-
tributed. By induction, we assume (and, for the first step, we know) that every such gate corresponds to a 
subtree rooted at a system Si , i.e. that the involved controls are exactly those belonging to the systems in this 
subtree, P̂i , and that the target is O(i)

i  . We partition these controls into bi + 1 sets according to their belonging to 
P̂ai+1, . . . , P̂ai+bi and Si . We then place bi Bell pairs, one between each pair of systems Sai+j and Si for 1 ≤ j ≤ bi . 
For each jth such Bell pair, we denotte by O(ai+j)

ai+j  its half residing within Sai+j , and by I(i)ai+j its half residing within 
Si . We now apply the equivalence in Fig. 2, with the first bi sets acting non-locally, and the local U gate acting 
on the target and local controls in Si . This distributes this nonlocal Toffoli gate controlled by the controls in P̂i 
and Si and targeting O(i)

i  , decomposing it into (possibly non-local) 1 ≤ bi ≤ B Toffoli gates, each targeting one 
of the bi systems Sai+j . Notice that this perpetuates the induction assumption, hence at the end of this process 
all of the gates are local.

Now, at the end of this process, the final circuit equivalence takes the form shown in Fig. 3, completing the 
proof.	�  �

Results
The main insight of this paper is that not all K controls in a fully non-local K-control Toffoli gate need to be 
brought together. Instead, each site can compute and store the partial sum of one or more subsets of bits. In a 
chain topology, site i receives from site i − 1 the product of the first i − 1 bits, factors the ith bit into the product, 
and sends the result forward. This allows us to distribute the K-qubit Toffoli gate over a network comprised 
only of 3-qubit systems, at the cost of execution time numerically equal to K. Similarly, in a tree topology with 
uniform branching factor B ≥ 2 , site i receives from subordinate sites i1, . . . , iB the product of their assigned 
bits, factors them together with the ith bit, and sends the result forward to its superior. This allows us to distribute 
the K-qubit Tofffoli gate over a network comprised only of (B+ 2)-qubit systems, at the cost of execution time 
logB K . In particular, when every site has B+ 2 qubits, the execution time is logarithmic: logB+2 K , and when 
the execution time is required to be a fixed constant t the qubit count is a fractional power, K1/t.

Cascading Toffoli gates.  The most qubit-efficient rendition of this argument comes in the form of a cas-
cade of Toffoli gates. Based on the equivalence between the statement if(∧

j=1
Ncj==1) then |ψ�=U|ψ�; and 

the cascade statement if(∧j=1N1 cj==1) then {... if(∧N
j=N−NK+1

cj==1) then |ψ�=U|ψ�;...}, we 
note that the unitary gate in the equivalence in Fig. 2 can itself be a controlled unitary. We apply this observation 
K times, each time considering only the controls located at the ith site, and targeting not only the target qubits at 
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site K + 1 , but also the qubits in sites i + 1, . . . , K . This produces the equivalence in Fig. 4, a simplified version 
of Fig. 3 adapted to the path topology.

Corollary  The circuit equivalence in Fig. 4 holds.

Proof  This immediately follows from the equivalence in Fig. 3 setting B = 1 . 	�  �

As can be observed, the ith site must have Ni + 2 qubits for 1 < i ≤ K , the 1st site must have N1 + 1 qubits, 
and the target site must have M + 1 qubits. In particular, to implement a non-local N-control Toffoli gate when 
all systems have n qubits we find K = ⌈N−1

n−2 ⌉ computers. We can also present this protocol in the form of a dis-
tributed algorithm, specifying the actions at each of the local sites Si , as shown in Algorithm 1 where all internal 
nodes S1, . . . , SK execute procedure SeqInternalNode and the root SK+1 executes SeqFinalNode. Using this 
protocol we can implement such a gate controlled by N=400,000 qubits using 133,333 5-qubit systems, but at a 
cost of a linear execution time, required by the fact that site i + 1 necessarily awaits for the input from site i before 
performing its computation. Alternatively, one can use 15,385 28-qubit IBM Falcon r1 systems, etc.

Parallel cascades.  To circumvent the linear execution time, we can set up a different communication tree, 
G = (V , E) , as described in the Methods section, where the vertices correspond to the sites V = {1, . . . , K + 1} 
with K + 1 being the root and the directed edges E are such that the degree of almost all vertices except the leaves 
is B+ 1 . The resulting circuit is shown in Fig. 3 and the corresponding equivalence is proven in the Methods 
section.

In this protocol, the time required for the execution of the gate is equal to the depth of the graph. If each site 
except the sources has an inner degree B ≥ 2 , this depth is ⌈logB K⌉ . We can also present this protocol in the form 
of a distributed algorithm, specifying the actions at each of the local sites Si , as shown in Algorithm 2 where all 
internal nodes S1, . . . , SK execute procedure ParInternalNode and the root SK+1 executes ParFinalNode. In 
particular, to implement a non-local N-control Toffoli gate when all systems have n qubits we find K = ⌈N+1−B

n−B−1 ⌉ . 
Thus, using this protocol we can implement such a gate controlled by N = 400, 000 qubits using 200, 000 5-qubit 
systems, in execution time 18τ where τ is the time required for a node’s computation (i.e. the local Toffoli and 
Hadamard gates and communication with neighbors). Alternatively, one can use 16,667 27-qubit IBM Falcon 
systems, etc.

Figure 4.   Cascade distribution of controlled unitaries.
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Discussion
In this subsection we will compare the existing distribution algorithms with the presented one in terms of execu-
tion time, number of required maximum local qubits, as well as number of entanglement pairs consumed. Next, 
we will discuss the applications and implications of the improved distribution algorithm.

We firstly consider the case of a fully non-locally N-controlled unitary having M target qubits. In this scenario, 
the protocols of8,9,12 reduce to the circuit in Fig. 1. We compare these protocols with the cascade method in Fig. 4 
and two variations of the parallel cascade method in Fig. 3: considering a balanced binary tree topology, and 
a balanced 

√
N-tree topology. As it can be seen from Table 1, our protocols greatly reduce the requirement on 

local subsystem dimension, either to its square root while maintaining constant time, or even to a constant but 
at the cost of logarithmic time.

Now, we consider the case of a non-local N-controlled unitary where N controls are spread across K local 
subsystems and all M target qubits are consolidated into one subsystem. We denote the largest number of controls 
assigned to either of these subsystems as n. In this scenario, the protocols of8,9 no longer coincide with that of12. 
We again compare the existing protocols with the cascade method in Fig. 4 and the same two variations of the 
parallel cascade method in Fig. 3. As it can be seen from Table 2, our protocols once again greatly reduce the 
requirement on local subsystem dimension even beyond12, either to its square root while maintaining constant 
time, or even to a constant but at the cost of logarithmic time.

We visually represent the number of systems required to distribute a 400,000-controlled unitary gate using 
Algorithm 2 in Fig. 5, emphasizing the timeline of recent milestone hardware realization of quantum proces-
sors. For example, we can see that we would need a network of 200,000 5-qubit Canary r1 processors (or other 

Table 1.   Comparison of distribution protocols for a fully non-locally N-controlled unitary.

Ancillary Qubits Maximum Qubits Locally EPR pairs consumed Time

Existing Algorithms8,9,12 (Fig. 1) 2N N +M N O(1)

Sequential Cascade (Fig. 4) 2N max {3, M + 1} N O(N)

Binary Parallel Cascades (Fig. 3) 2N max {4, M + 2} N O
(

logN
)

√
N  Parallel Cascades (Fig. 3) 2N ⌈

√
N +M⌉ N O(1)
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equivalents, as commonly available on the market) or, equivalently instead, a network of 3,226 127-qubit IBM 
Eagle r1 processors.

In conclusion, the protocols presented in this paper compare favorably to the state of the art, greatly reduc-
ing restrictions on local system dimension. Consequently, if all quantum operations in Shor’s algorithm such as 
modular exponentiation were to be decomposed as products of controlled unitaries, with a logarithmic (18x) 
increase in execution time, we could run Shor’s algorithm to factor 2048-bit numbers using 200,000 5-qubit 
systems. This highlights the impact of future work related to the distribution of not just controlled unitaries, but 
actual quantum functions such as fast modular exponentiation which could lead to the experimental implemen-
tations of Shor’s algorithm distributed across a network of small registry devices.

For future work we propose the analysis of the noise introduced by entanglement distribution across a net-
work with tens of thousands of quantum computers, for example considering computation fidelity when using 
only diluted EPR states. In fact, it is not clear how this compares to how noise scales in large-scale quantum 
computers with hundreds of thousands of qubits.

Data availability
The datasets generated during the current study will be made available from the corresponding author on rea-
sonable request.
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