
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21260  | https://doi.org/10.1038/s41598-022-25724-y

www.nature.com/scientificreports

Fast algorithm and new potential 
formula represented by Chebyshev 
polynomials for an 

m× n
 globe 

network
Yufan Zhou 1, Yanpeng Zheng 2*, Xiaoyu Jiang 1 & Zhaolin Jiang 3*

Resistor network is widely used. Many potential formulae of resistor networks have been solved 
accurately, but the scale of data is limited by manual calculation, and numerical simulation has 
become the trend of large-scale operation. This paper improves the general solution of potential 
formula for an m× n globe network. Chebyshev polynomials are introduced to represent new 
potential formula of a globe network. Compared with the original potential formula, it saves time 
to calculate the potential. In addition, an algorithm for computing potential by the famous second 
type of discrete cosine transform (DCT-II) is also proposed. It is the first time to be used for machine 
calculation. Moreover, it greatly increases the efficiency of computing potential. In the application of 
this new potential formula, the equivalent resistance formulae in special cases are given and displayed 
by three-dimensional dynamic view. The new potential formulae and the proposed fast algorithm 
realize large-scale operation for resistor networks.

With the development of natural science, people have encountered various new problems. According to the com-
plexity of the problem, solutions emerge in endlessly. Researches show that a host of problems can be solved by 
establishing resistor network model1–10 and neural network model11–17. In the past few years, many results have 
been achieved in the study of resistor networks. For example, the establishment of graph theory, the researches 
on Laplacian matrix (LM) method of resistor network, infinite network, finite network, and corner-to-corner 
resistance and so on7–10,18–31. Shi11,12 et al. studied a novel discrete-time recurrent neural network. Liu13 et al. 
and Sun14 et al. proposed different types of the zeroing neural network. And Jin15–17 et al. studied an innovative 
control theory stimulated gradient neural network algorithm.

In recent years, Tan32–43 proposed the Recursion-Transform (RT) method which is different from the Lapla-
cian matrix method. It only depends on one matrix and one direction, and the calculation is simpler. In 2013, 
Tan32 studied the problem of two-point resistance on cobweb with a 2r boundary, which has never been solved 
before. Under finite and infinite conditions, the m× n cobweb general formula of resistance between any two 
nodes is proposed. In 2014, Tan36,38 made a new breakthrough and introduced the equivalent resistance of the 
globe network and fan network model by RT method. Shortly after that many researches on resistor networks are 
based on RT method. RT method needs eigenvalues of a tridiagonal matrix to represent the potential formula. 
At present, there have been many results on tridiagonal matrices45–51, which are also widely used. It can be said 
that it is a powerful tool to solve the resistor network33–43.

In 2018, Tan44 proposed an m× n globe network, as shown in Fig. 1. The resistances in the latitude and 
longitude directions are r and r0 , respectively, where m and n are the resistance numbers along the latitude and 
longitude directions. The nodes of the network are represented by coordinates {x, y} . Considering O0 = 0 as the 
origin of the coordinate system, the potential of node d(x, y) is Um×n(x, y) as shown in Fig. 2. The potential of 
any node in the m× n globe network is as follows

where
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(2)Sk,i = sin(ykθi), θi = (i − 1)π/m,

(3)β(i)
xs ,xk

=Fn−|xs−xk | + F|xs−xk |, F
(i)
k = (�ki − �̄

k
i )/(�i − �̄i),

(4)
�i =1+ b− b cos θi +

√

(1+ b− b cos θi)2 − 1,

�̄i =1+ b− b cos θi −
√

(1+ b− b cos θi)2 − 1, b = r/r0.

Figure 1.   An m × n globe network which has n longitude and m− 1 latitude. The resistances in the longitude 
and latitude directions are r0 and r, respectively.

Figure 2.   Segment of the globe network with current directions and parameters.
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New formula of potential represented by Chebyshev polynomials
Since the potential formula (1) contains exponential function operation, it is less efficient to calculate potential 
of globe resistor networks by computer. The purpose of this section is to give an improved potential formula of 
the globe network44, i.e. a new formula of potential expressed by Chebyshev polynomial of the second class is 
given53. it saves time to calculate the potential by computer.

Let the current J from d1(x1, y1) to d2(x2, y2) , the potential formula of two nodes in an m× n resistor network 
can be written as

where

In particular, the input and output points can be one or more, so formula (5) applies to all coordinate points 
(xk , yk) (0 ≤ k ≤ n) . Therefore, p can also be y3, y4, . . . , yk.

Suppose that O0 = 0 , then calculating the node potential between any two points by Ohm’s law can be 
described as

where I(j)x  is denoted by the current in the vertical direction.
Base on formula (5), using the visualization of data to realize the dynamic visualization of the potential 

change. With the change of the current input and output point change, the potential change of any two nodes 
is shown in Fig. 3.

Three terms recurrence sequence and discrete cosine transform
In this section, in order to improve the actual performance and realize the fast algorithm, the three terms 
recurrence sequence represented by Chebyshev polynomial of the second class and two types of discrete cosine 
transform are introduced.
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Figure 3.   A 3D dynamic view for the changing graph of U90×90(x, y)/J with the current input and output point 
change.
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The three terms recurrence sequence is defined by the following conditions:

where k ∈ N, k ≥ 2, A,B, d, q ∈ C , N is the set of all natural numbers and C is the set of all complex numbers.
The three terms recurrence sequence52 represented by Chebyshev polynomial of the second class is

where

is the Chebyshev polynomial of the second class53.

Remark  Based on the above formula, how to replace Eqs. (1), (2), (3) and (4) with Eqs. (5), (6), (7) and (9) will 
be showed, respectively. According to the equation (4), �j + �̄j = tj and �j · �̄j = 1 are obtained . Take it into the 
equation (11), and a three term recursive formula is obtained

 where d = tj , q = 1 , tj and F(j)k  are the same as Eqs. (8) and (3), respectively. By Eq. (14) and formula (12), the 
replacement result can be obtained

Similarly, Let
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0 = 2, Q
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1 = tj . Then the recursive relation of Q(j)

n  is obtained as follows

where d = tj , q = 1 , tj and Q(j)
n  are the same as Eqs. (8) and (16), respectively. By Eq. (17) and formula (12), the 

replacement result can be obtained as follows

According to Eqs. (1), (3),(15) and (18), a new potential formula (5) is got.
In order to obtain a fast numerical algorithm for computing the potential, the orthogonal diagonalization 

of the matrix Bm is given.

where b = r/r0.
Then the eigenvalues t1, . . . , tm of Bm are given by

and the corresponding eigenvectors ζ (j) = (ζ
(j)
1 , . . . , ζ

(j)
m )† are given by

where dj =
{

1, j �= 1,√
2
2
, j = 1.

Let

(11)Wk = dWk−1 − qWk−2, W0 = A, W1 = B,

(12)Wk = (
√
q)k

(

B
√
q
Uk−1

(

d

2
√
q

)

− AUk−2

(

d

2
√
q

))

,

(13)Uk =
sin(k + 1)ψ

sinψ
, ψ = arccos(

d

2
√
q
) ∈ C,

(14)F
(j)
k = tjF

(j)
k−1 − F

(j)
k−2, F

(j)
0 = 0, F

(j)
1 = 1,

(15)F
(j)
k = (�kj − �̄

k
j )/(�j − �̄j) = U

(j)
k−1(

tj

2
).

(16)Q
(j)
n = �

n
j + �̄

n
j ,

(17)Q
(j)
n = tjQ

(j)
n−1 − Q

(j)
n−2, Q

(j)
0 = 2, Q

(j)
1 = tj ,

(18)Q
(j)
n = �

n
j + �̄

n
j = tjUn−1(

tj

2
)− Un−2(

tj

2
).

(19)Bm =



















2+ b −b 0 · · · 0

−b 2(1+ b) −b
. . .

.

.

.

0
. . .

. . .
. . . 0

.

.

.
. . . −b 2(1+ b) −b

0 · · · 0 −b 2+ b



















m×m

,

(20)tj = 2+ 2b− 2b cos
(j − 1)π

m
, j = 1, 2, . . . ,m,

(21)ζ
(j)
k =

√

2

m
dj cos

(2k − 1)(j − 1)π

2m
, k = 1, 2, . . . ,m, j = 1, 2, . . . ,m,



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21260  | https://doi.org/10.1038/s41598-022-25724-y

www.nature.com/scientificreports/

where dj =
{

1, j �= 1,√
2
2
, j = 1.

Obviously, the matrix CIII
m  is the famous third type of discrete cosine transform (DCT-III)54–57. CIII

m  is an 
orthogonal matrix and the inverse of CIII

m  is actually CII
m , i.e.

where the orthogonal matrix CII
m is the famous second type of discrete cosine transform (DCT-II)54–57.

By calculation we obtain the orthogonal diagonalization of the matrix Bm as follows

i.e.

where tj , j = 1, 2, . . . ,m are given by Eq. (20).
Tan44 used Kirchhoff ’s law to analyze the resistor network and to establish the resistor network model. The 

following general matrix equation is

where Bm is given by Eq. (19), the function δk,x is defined as: δk,x(x = k) = 1 , δk,x(x  = k) = 0 , Ik and Hx are the 
m× 1 column matrices, and can be written as

To solve the Eq. (26), using the matrix transformation method to multiply CIII
m  at the same time. Through Eq. 

(24) and the transformed matrix equation we appoint

where the m× 1 column matrix Wk is

Based on the Chebyshev polynomial of the second class, the general solution formula of current is rewrited . 
When j = 1 , the following formula is obtained

When j ≥ 2 , the following formula is obtained
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Displaying of some special and interesting potential formulae
Since formula (5) is a general potential conclusion of a globe network including all cases, some special conditions 
in formula (5) and a series of fascinating results under various parameters will be displayed. In the following, 
assuming that the potential reference at point O(0, 0) is U(0, 0) = 0.

Special 1.  Suppose the current J flows in from the origin d1(x1, y1) and out from d2(x2, y2) = O(0, 0) , the 
potential of any two points can be written as
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When m = n = 90, J = 10, x1 = y1 = 50, x2 = y2 = 0, and r0 = r = 1, the following formula is obtained
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where

And a 3D dynamic view is shown in Fig. 4 by Matlab.

Special 2.  Consider an arbitrary m× n globe network as shown in Fig. (1). Assume the electric current J out-
flow the network from the pole d2(x2, y2) , and the current J input at the node d1(x1, y1) = O(0, 0) , the potential 
of an arbitrary node d(x, y) can be written as

where γ (j)
xs ,xk is defined in Eq. (6), and U (j)

k  is the same as Eq. (9).
In the network with m = 90 and n = 90 , the current flows in from (x1, y1)(x1 = 0, y1 = 0) and out from 

(x2, y2)(x2 = 30, y2 = 30) . Let r0 = r = 1 and J = 10 , the formula is deduced.

where

tj and U (j)
k  are the same as Eqs. (35) and (37), respectively, k = 89− |30− x|, |30− x| − 1, 89, 88, j = 1, 2, . . . , 90. 

And a 3D dynamic view is shown in Fig. 5 by Matlab.
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Figure 4.   The process of forming a 3D dynamic view for U90×90(x, y)/J in Eq. (34).
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Special 3.  Presume that when the current J is injected at node d1(x1, y1) and withdrawn at node 
d2(x2, y2)(x2 = y1, y2 = x1) , the potential of any node d(x, y) is

where tj is defined in Eq. (8), and U (j)
k  is the same as Eq. (9).

In the scale of m× n(90× 90) , we get J = 10, x1 = y2 = 0, x2 = y1 = 30, and r0 = r = 1, the following 
formula is

where tj and U (j)
k  are the same as Eq. (35) and Eq. (37), respectively, and k = 90− x, x, 89, 88, j = 1, 2, . . . , 90.

And a 3D dynamic view is shown in Fig. 6 by Matlab.

Special 4.  When we inject current J at node d1(x1, y1) and exit the current J at node d2(x1, y2)(x2 = x1) , the 
potential of an arbitrary node d(x, y) is

where Ck,j , U
(j)
k  and γ (j)

x1,x are equal to Eqs. (7), (9) and Eq. (6), respectively.
When m = n = 90, J = 10, x1 = x2 = y1 = 50, y2 = 30, and r0 = r = 1, the following formula is obtained

where

tj , U
(j)
k  and γ (j)

50,x are the same as Eq. (35), Eq. (37)(k = 89, 88, j = 1, 2, . . . , 90 ) and Eq. (36), respectively.
And a 3D dynamic view is shown in Fig. 7 by Matlab.
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Figure 5.   The process of forming a 3D dynamic view for U90×90(x, y)/J in Eq. (39).
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Special 5.  When the current J enters from node d1(x1, y1) to node d2(x2, y1) , in other words, y1 = y2 . From 
Eq. (5), the potential of any node d(x, y) can be written as

where γ (j)
xs ,xk , U

(j)
k  and Ck,j are equal to Eq. (6), Eq. (9) and Eq. (7), respectively.

When m = n = 90, J = 10, y1 = y2 = x1 = 50, x2 = 30, and r0 = r = 1, the following formula is obtained
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Figure 6.   The process of forming a 3D dynamic view for U90×90(x, y)/J in Eq. (42).

Figure 7.   The process of forming a 3D dynamic view for U90×90(x, y)/J in Eq. (44).
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where γ (j)
50,x , γ

(j)
30,x , C50,j , tj and U (j)

k  are the same as Eq. (36), Eq. (40), Eq. (45), Eq. (35) and Eq. (37), respectively, 
k = 89− |50− x|, |50− x| − 1, 89− |30− x|, |30− x| − 1, 89, 88, j = 1, 2, . . . , 90. And a 3D dynamic view 
is shown in Fig. 8 by Matlab.

Special 6.  Presuming that dk(xk , y1)(k = 1, 2, . . . k) entering the node at the same latitude is J/k and the cur-
rent flowing out from O(0, 0) is J, the potential equation is obtained.

where Ck,j , γ
(j)
xs ,xk and U (j)

k  are equal to Eq. (7), Eq. (6) and Eq. (9), respectively.
When m = n = 90, J = 10, y1 = y2 = x1 = 50, x2 = 30, x3 = 40, r0 = r = 1, and k = 3 the following 

formula is obtained
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30,x and U (j)

k  is defined in Eq. (45), Eq. (35), Eq. (36), Eq. (40) and Eq. (37)(k = 89− |50− x|,
|50− x|−1, 89−|40− x|, |40− x|−1, 89−|30− x|, |30− x|−1, 89, 88, j = 1, 2, . . . , 90) , respectively.

And a 3D dynamic view is shown in Fig. 9 by Matlab.

Fast numerical algorithm for computing potential
In order to realize fast calculation of potential for large-scale resistor networks. In this section, by summarizing 
the previous discussion and analysis, a fast numerical algorithm of computing potential by the Eqs. (8), (9), (10), 
(26), (27), (28), (29), (30), (31), (32) and the famous second type of discrete cosine transform (DCT-II) are given.

(48)
Um×n(x, y)

J
= r0

yy1

mn
+

2r

km

m
∑

j=2

Cy1,jCy,j

tjU
(j)
n−1 − 2U

(j)
n−2 − 2

k
∑

s=1

γ
(j)
xs ,x ,

(49)

U90×90(x, y)

J
=

y

162
+

1

45

90
∑

j=2

C50,jCy,j

tjU
(j)
89 − 2U

(j)
88 − 2

(γ
(j)
50,x + γ

(j)
40,x + γ

(j)
30,x),

γ
(j)
40,x = U

(j)
89−|40−x| + U

(j)
|40−x|−1,

Figure 8.   The process of forming a 3D dynamic view for U90×90(x, y)/J in Eq. (47).
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As is well known, the complexity of tridiagonal matrix-vector multiplication is O(n), which is the same as 
Algorithm 1. Moreover, one DCT-II needs 2n log2 n+ O(n) real arithmetic operations57,58. So the complexity of 
Algorithm 2 is 4n log2 n+ O(n) consist of two DCT-II and Algorithm 1.

According to the above two algorithms, two examples are used to vividly show the computational efficiency 
for the large scale globe resistor networks.

Example 1  In the network with m = 1000 and n = 10 , the current flows in from (x1, y1)(x1 = 3, y1 = 200) and 
out from (x2, y2)(x2 = 5, y2 = 300) , r = 1, r0 = 100 , and J = 10 . The results calculated using Algorithm 2 are 
shown in Fig. 10.

Example 2  In the scale of m× n(300× 10) , when the current x1 = 3, x2 = 5, y1 = 100, y2 = 200 , and 
r = 1, r0 = 100 . The results calculated using Algorithm 2 are shown in Fig. 11.

Conclusions.  This paper achieved a series of improved exact potential formulae in an m× n globe network 
by the RT-I method. Chebyshev polynomial of the second kind is introduced to improve the potential formula of 
the globe network44. Some applications of the new potential formula of the globe network are presented, such as 
some special and interesting potential formulae are given in Eqs. (33), (38), (41), (43), (46) and (48), respectively. 
The image numerical simulation using matlab has produced many interesting 3D dynamic views. Finally, we also 
put forward a fast numerical algorithm by the famous second type of discrete cosine transform, which can realize 
fast calculation of potential for large-scale resistor networks. Furthermore, by using our research ideas of resistor 
network, we can also explore neural networks11–17. That will be our next step.

Figure 9.   The process of forming a 3D dynamic view for U90×90(x, y)/J in Eq. (49).
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Data availability
All data generated or analysed during this study are included in this article [and its supplementary information 
files].
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