
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:21572 | https://doi.org/10.1038/s41598-022-25697-y

www.nature.com/scientificreports

Current‑state opacity verification
in discrete event systems using
an observer net
Abdeldjalil Labed 1, Ikram Saadaoui 2, Naiqi Wu 1, Jiaxin Yu 3 & Zhiwu Li 1*

Due to the proliferation of contemporary computer‑integrated systems and communication networks,
there is more concern than ever regarding privacy, given the potential for sensitive data exploitation.
A recent cyber‑security research trend is to focus on security principles and develop the foundations
for designing safety‑critical systems. In this work, we investigated the problem of verifying current‑
state opacity in discrete event systems using labeled Petri nets. A system is current‑state opaque
provided that the current‑state estimate cannot be revealed as a subset of secret states. We
introduced a new sub‑model of the system, named an observer net. The observer net have the same
structure as the plant, but it is distinguished by the use of colored markers as well as simultaneous
and recursive transition enabling and firing, which offer an efficient state estimation. We considered
two settings of the proposed approach: an on‑line setting, in which a current‑state opacity algorithm
is proposed. The algorithm waits for the occurrence of an observable event and determines if the
current observation of a plant reveals the secret behaviour, as well as, an off‑line setting, where the
verification problem is solved based on a state estimator called a colored estimator. In this context,
necessary and sufficient conditions for verifying opacity are developed with illustrative examples to
demonstrate the presented approach.

Cybersecurity is needed as an extension of reliability to protect systems from errors or damage caused by cyberat-
tacks. Nowadays, ensuring the privacy of information flows1,2 has become an increasingly significant concern3–7.
Formalizing security principles and developing theoretical basics for secure systems design is a current cyberse-
curity research trend. Specifically, in discrete event systems (DESs), the problem of whether privacy is disclosed
in information flows can be addressed in terms of a confidentiality property called opacity. Opacity characterizes
whether the secret behaviour of a considered system is revealed to an external observer or intruder. The term
opacity is first used to describe cryptographic protocols in8 and then expanded to the DES domain through the
work of Bryans et al.9, where it formally expresses the absence of information flow, i.e., the intruder’s inability
to make any useful inference about the secret information in systems modeled as Petri nets (PNs). In DESs, the
secret can be represented by the states or language of a system. Accordingly, opacity properties are generally
classified into two types: state-based opacity (SBO)9–11 and language-based opacity (LBO)12,13.

The computer security community has recently looked into several aspects of opacity. A brief overview of
some of the recent studies is provided in what follows. In14, Yang et al. propose new types of opacity in net-
worked DESs that are modeled as finite state automata (FSA) by taking into account the communication delays
and losses in the observation channel. Opacity was also investigated in stochastic DESs modeled as probabil-
istic automata15 and for fuzzy DESs modeled as fuzzy automata16,17, which extends the relevant findings of the
opacity theory for classical DESs. It should be noted that when a system is evaluated to be non-opaque, opacity
enforcement becomes crucial. In this context, opacity enforcement has been considered either by restricting the
system behavior using supervisory control18,19 or by changing the information flow using insertion function20,21.

This paper aims to verify the property of current-state-based opacity (CSO) for DESs that can be described
by bounded PNs. It is assumed that an intruder completely knows the system structure, but can partially observe
the occurrence of some events only. Therefore, he/she tries to estimate the system states based on its observations
to infer the secret behaviour. The system considered in this work is represented by labeled PNs (LPNs) with a
static observation function22,23. A subset of the reachable markings represents the secret. A system is CSO if an
intruder cannot unambiguously discover the secret states from its observations.

OPEN

1Institute of Systems Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR,
China. 2Mediterranean Institute of Technology, South Mediterranean University, 99628 Tunis, Tunisia. 3Hitachi
Building Technology (Guangzhou) Co., Ltd., Guangzhou 510670, China. *email: zwli@must.edu.mo

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-25697-y&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:21572 | https://doi.org/10.1038/s41598-022-25697-y

www.nature.com/scientificreports/

The problem of CSO verification is shown to be decidable for bounded labeled Petri nets24,25. However, Tong
et al.26 recently demonstrate that, in general, the opacity verification problem is undecidable if the PN system is
unbounded. For this reason, our work concentrates on bounded LPN by proposing an efficient approach that
provides definite answers to the CSO problem.

Many of the existing studies on DESs pay particular attention to the opacity problem. Various methods have
investigated the issue of state-based opacity verification in DESs27,28. In10, the authors report a necessary and
sufficient criterion using a non-deterministic finite automaton (NFA) by building an observer, i.e., transforming
an NFA into a deterministic finite automaton (DFA) with a complexity of O(2n)29, where n is the number of states
in the NFA. However, the verification of CSO is proved to be PSPACE-complete with respect to n30–32. By using a
compact representation of a reachability graph (RG) called a basis RG (BRG), the work in27 presents a necessary
and sufficient condition for CSO. Note that the concept of BRGs have been proposed in33–36. The benefit of this
method consists in avoiding the exhaustive enumeration of all reachable markings. However, the computational
effort is still considerably heavy, and a large amount of memory is required.

Another interesting work is recently presented in28, where the authors discuss CSO modeling and verification
in DESs modeled by partially observed PNs (POPNs)37. They propose a discernible reachability graph (DRG)
to compute the state estimation of a POPN system and check if the opacity condition holds. Its limitation lies
in the fact that the DRG alone does not provide a necessary and sufficient CSO verification condition. Con-
sequently, the authors resort to integer linear programming (ILP) to solve this problem. In the same context,
online verification algorithms for current38 and initial39 state opacity have been proposed by Cong et al. in LPNs
by assuming the acyclicity of the observable and unobservable subnets. These algorithms detect the occurrence
of events and decide whether the transition (event) sequence observed so far is opaque or not. This decision
is based on solving a group of ILPs. The works in38,39 are restricted to secret markings defined by generalized
mutual exclusion constraints (GMECs)40.

On the other hand, LBO has been formalized in the existing studies in various ways. It is first proposed in the
framework of NFA41,42. The secret for the LBO problem is described by a sub-language of the DES. A system is
said to be of LBO with respect to a secret language if an intruder cannot reveal that any generated event sequence
is entirely within the secret. In43, the authors characterize and introduce two types of opacity on the basis of
languages, namely strong opacity and weak opacity. In12, the authors propose approaches to ensure language-
based opacity for bounded LPNs based on finite-time automata, called a verifier, by assuming that an intruder
captures observable transitions only. For LBO verification using ILP, the work in44 formulates a necessary and
sufficient condition. Jacob et al. provide a thorough overview of opacity for DESs31. A historical perspective on
the development of the opacity theory (and diagnosability theory) in DESs can be found in45.

This work investigates CSO using a new model called observer net. The main contributions of this work can
be summarized below:

1. A new sub-model of the system called an observer net is developed based on the plant structure. It is char-
acterised by the new concepts of simultaneous and recursive transition enabling and firing allowing a rapid
computation of the reachable markings.

2. We proposed an on-line algorithm for CSO verification in an LPN system. It provides the state estimation and
the opacity decision of the word observed so far by waiting the occurrence of an event and then determines
if the last observed event reveals the secret behaviour or not.

3. The proposed observer net model provides efficient usage of space, while improving runtime performance.
We managed to lower the space complexity by avoiding the exhaustive computation of all reachable mark-
ings, and also lower the time complexity by merging the computation phases using the new concepts of
simultaneous and recursive transition enabling and firing.

4. When an off-line opacity verification is desired, we constructed a state estimator called a colored estimator,
where each of its states corresponds to a set of the consistent markings.

The remainder of this paper is structured as follows. In section “Current-state opacity”, we state the problem of
CSO and present its definitions. Section “Observer net” introduces the concept of the observer net and specifies
its dynamics. In section “Verification of current-state opacity”, we verify current-state opacity using on-line and
off-line algorithms. Section “Computational complexity and comparison” investigates the proposed approach’s
effectiveness by giving a comparative study with related works. In section “Conclusions”, concluding remarks
and possible future directions are discussed.

Current‑state opacity
We intend to define the notion of opacity in a DES modeled as a PN. In a system modeled with an LPN
G = (N ,M0,E, ℓ) , a secret S is a subset of the reachability set composed of some particular markings, called
secret markings. Current-state opacity claims that, for every secret state reachable from the initial state by firing
a transition sequence, a non-secret state reachable by firing another transition sequence must exist, and both
sequences have the same observation from the intruder perspective. Moreover, it is assumed that an intruder
knows the system’s structure, but he/she can get a partial observation of the event occurrences only. Necessary
preliminaries are provided in the appendix of this study46.

Definition 1 27 Given an LPN G = (N ,M0,E, ℓ) and a secret S ⊆ R(N ,M0) , we say that observation w ∈ L(N ,M0)
is current-state opaque wrt S if C(w) � S holds.

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:21572 | https://doi.org/10.1038/s41598-022-25697-y

www.nature.com/scientificreports/

Definition 2 27 We say that G = (N ,M0,E, ℓ) is current-state opaque wrt S ⊆ R(N ,M0) if for any w ∈ L(N ,M0) ,
we have C(w) � S.

Namely, for any possible w ∈ L(N ,M0) , an intruder is unable to determine if the current state lies within S.
Now, we define the non-current-state opaque observation and system as follows.

Definition 3 39 Given G = (N ,M0,E, ℓ) as an LPN system and S ⊆ R(N ,M0) as a secret, if C(w) ⊆ S holds, then
w ∈ L(N ,M0) is non-current-state opaque wrt S.

For a non-CSO observation w, an intruder can deduce that any marking consistent with w is within S, i.e., for
any M ∈ C(w) , M ∈ S . Accordingly, a non-current-state opaque system is defined as follows.

Definition 4 39 We say that an LPN G = (N ,M0,E, ℓ) is non- current-state opaque wrt a secret S ⊆ R(N ,M0) if
there is at least an observation w ∈ L(N ,M0) with C(w) ⊆ S.

Based on Definition 4, to ensure the CSO of a bounded LPN system, we need to check whether there is at least
a w ∈ L(N ,M0) such that C(w) ⊆ S . To answer this question, one must perform an exhaustive enumeration of all
reachable markings, i.e., computing C(w) for all w ∈ L(N ,M0) , and then build a reachability graph observer, i.e.,
a DFA equivalent to the RG, using the standard determinization procedure47, whose computational complexity is
O(2|X|) with X being the set of states in the RG31,47,48. The reachability graph observer provides the state estima-
tion after the occurrence of an observation sequence as shown in the following example.

Example 1 We consider the plant G in Fig. 1 with initial marking M0 = 2p1 and E = {a, b} . The sets of unob-
servable and observable transitions are Tuo = {t2, t3, t4, t7} and To = {t1, t5, t6, t8} , respectively. The RG and its
corresponding observer are given in Figs. 2 and 3, respectively. Let S = {M8,M13,M14,M18,M20} be a secret.
For observation w = aba , we have C(w) = {M8,M13,M14,M18,M20} ⊆ S . Then, based on Definition 4, the LPN
system G is non-CSO with respect to S.

Observer net
This section defines the concept of an observer net. For a plant G, an observer net is a labeled Petri net that has
the same structure of G (in terms of places, transitions, and arcs) but has a different behaviour. Specifically, an
observer net allows the simultaneous presence of several markings, characterised with distinct colors, in order
to determine the states the plant can be in upon observation of an event. In Fig. 4, we summarize the interac-
tion between a plant G and its associated observer net � . Upon the occurrence of an event, the observer net �
determines the system state estimation. Specifically, it finds the possible marking at which a plant may lies, i.e.,
all the states consistent with the sequence of events observed thus far.

The primary challenges in this work lie in defining how the observer net is modeled, graphically represented,
and how it operates. Although the observer net is modeled as a labeled Petri net graphically, its state transition
function and states differ from regular Petri nets. In what follows, a formal definition of the observer net, and
its construction algorithm, as well as its dynamics, are presented.

Note that, in the following, the word “marking” refers to a marking of the plant and the word “state” refers
to a marking of the observer net.

Definition 5 For an LPN G = (N ,M0,E, ℓ) , we define its associated observer net as a six-tuple � = (N ,M�,0 ,
E, ℓ , Cc , CM) , where

Figure 1. An LPN with M0 = 2p1.

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:21572 | https://doi.org/10.1038/s41598-022-25697-y

www.nature.com/scientificreports/

Figure 2. RG of the LPN in Fig. 1.

Figure 3. Observer of the RG in Fig. 2.

Figure 4. Observer net.

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:21572 | https://doi.org/10.1038/s41598-022-25697-y

www.nature.com/scientificreports/

1. Cc is a non-empty and finite set of colors.
2. CM : R(N ,M0) → Cc is a function for associating each marking M ∈ R(N ,M0) with a color c ∈ Cc.
3. M�,0 = {(M, c)|M ∈ U(M0) and CM(M) = c ∈ Cc} gives the initial state of the observer net.

The structure of � is same as that of the plant G. Its initial state M�,0 consists of colored markings (M, c),
where M ∈ U(M0) and c is generated by the function CM . A state in � is a set of colored markings (M, c), denoted
as M� , specifying the system state estimation after observing an event. We need to make sure that CM associates
distinct colors to the markings belonging to M� to tell the distinction between them (due to the simultaneous
presence of different colored markings in the observer net, it can be thought of as being a special class of colored
Petri net).

Algorithm 1 takes an LPN G = (N ,M0,E, ℓ) as input and outputs its associated observer net � = (N , M�,0,
E, ℓ, Cc , CM) . In the first step, we build the structure of the observer net � by cloning the plant G, i.e., G and �
have the same structure N = (P,T , Pre, Post) , and the same labeling function ℓ . Then step 2 defines the initial
state M�,0 of � by calculating the unobservable reach of the initial marking M0 of G, and assigns a distinct color
c ∈ Cc to each marking using the color function CM . This step runs iteratively until all the unobservable reaches
of M0 are colored. The computational complexity of Algorithm 1 is mainly dependent on the number of mark-
ings in the unobservable reach of M0.

Example 2 Let us consider the LPN system G in Fig. 1. According to Algorithm 1, the observer net � is shown
in Fig. 5 it has the same structure (states and transitions) as plant G. The initial state of � is retrieved from the
initial marking of G. We have M0 = 2p1 and U(M0) = {M0,M2,M5,M7,M12,M17} ; based on Definition 5. the
initial state of the observer net is given by:

The initial state of the observer net is composed of six colored markings as shown in Fig. 6.

The dynamic behaviour of a PN is characterized by the transition firing rules together with the distribution
of tokens in places. In the following, we introduce the rules that govern the flows of tokens in the observer net.

Given an observer net � = (N ,M�,0, E, ℓ , Cc , CM) and a state M� , a transition t ∈ To is enabled at M� if there
exists (M, c) ∈ M� such that M ≥ Pre(t, ·) holds, and we denote it by (M, c)[t� . The set of enabled transitions at
(M, c) with label e is defined as

and the set of all the enabled transitions at M� with label e is defined as

M�,0 = {(M0, •), (M2,�), (M5,⋆), (M7,△), (M12, ⋄), (M17,�)}

(1)�((M, c), e) = {t ∈ To|(M, c)[t� and ℓ(t) = e}

Figure 5. Observer net � with an initial state M�,0.

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:21572 | https://doi.org/10.1038/s41598-022-25697-y

www.nature.com/scientificreports/

Example 3 Consider the LPN G in Fig. 1, its corresponding observer net � is visualized in Fig. 5 with initial state
is M�,0 = {(M0, •), (M2,�), (M5,⋆), (M7,△), (M12, ⋄), (M17,�)} . Based on Equation (1), we have:

�((M0, •), a) = {t1}, �((M2,�), a) = {t1}, �((M5,⋆), a) = {t1, t6}, �((M7,△), a) = ∅, �((M12, ⋄), a) = {t6},
and �((M17,�), a) = {t6}.

Based on Equation (2), the set of enabled transitions at M�,0 with label a is given by:

Firing a transition t ∈ �((M, c), e) at (M, c) ∈ M� yields a new colored marking (M ′, c′) , denoted as
(M, c)[t�(M ′, c′) . We define by

the set of reachable colored markings if all enabled transitions in �((M, c), e) are fired, and by

the set of all reachable colored markings if the enabled transitions at state M� with label e are fired.
Note that, if a transition with label e fires at a colored marking (M, c), all the enabled transitions with label e

at (M, c) fire concurrently. Thus, the semantics of an observer net is different from the classical Petri nets.
The following rules define the dynamics of an observer net.

– Rule 1: Simultaneous enabling A set of k transitions {t ∈ To | ℓ(t) = e} are simultaneously enabled at a
colored marking (M, c) if any t ∈ To with ℓ(t) = e is enabled at (M, c).

– Rule 2: Simultaneous firing Simultaneously firing k enabled transitions t1 , t2 , . . . , tk ∈ To with label e at (M, c)
yields k colored markings, as defined by η((M, c), e) in (3).

– Rule 3: Recursive enabling A t ∈ To with ℓ(t) = e is said to be recursively enabled at a state M� if there exist
k colored markings {(M1, c1), (M2, c2) , . . . , (Mk , ck)} in M� , for all i ∈ {1, 2, . . . , k} , (Mi , ci) enables t.

– Rule 4: Recursive firing The firing of a recursively enabled transition t ∈ To with label e at M� is defined by
firing t at (M1, c1) , (M2, c2) , . . . , (Mk , ck) , respectively. Equivalently, t fires k times, yielding k colored markings
as defined by η(M�, e) in (4).

– Rule 5: Irrelevant markings elimination If a colored marking (M, c) ∈ M� does not enable any transition
t ∈ To with label e, i.e., �((M, c), e) = ∅ , then, for (M, c), let M(p) = 0 for all p ∈ P.

The observer net dynamic rules allow us to benefit from the simultaneous and recursive firing mechanism, which
ensures a rapid computation of markings and guarantees a significant decrease in the time complexity of the
proposed method, as shown in the following sections.

Examine the LPN systems shown in Fig. 7 that illustrates the dynamics of the observer net by two different
scenarios. In Fig. 7a, the initial state is given as M�,0 = {(p1, •)} , where E = {a} . Transitions t1 and t2 have the
same label a.

Initially, based on Rule 1, transitions t1 and t2 are simultaneously enabled wrt color • at M�,0 since
�((p1, •), a) = {t1, t2}.

(2)�(M�, e) =
⋃

(M,c)∈M�

�((M, c), e)

�(M�,0, a) =
⋃

(M,c)∈M�,0

�((M, c), a) = {t1, t6}

(3)η((M, c), e) =
{

(M ′, c′)|∃t ∈ �((M, c), e) : (M, c)[t�(M ′, c′) and CM(M ′) = c′
}

(4)η(M�, e) =
⋃

(M,c)∈M�

η((M, c), e)

Figure 6. The initial state M�,0 of the observer net.

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:21572 | https://doi.org/10.1038/s41598-022-25697-y

www.nature.com/scientificreports/

Then, based on Rule 2, the observer net simultaneously fires t1 and t2 since both are simultaneously enabled.
The token of (p1, •) is consumed by the execution of firing both transitions t1 and t2 , which yields to a new reach-
able state composed of two colored markings M�,1 = {(p2,�), (p3,⋆)}.

In Fig. 7b, the initial state is given as M�,0 = {(2p1 + p2, •), (p1 + p2,�), (p2,⋆)} , where E = {a}.
Based on Rule 3, transition t1 is recursively enabled wrt • and � at M�,0 since we have �((2p1 + p2, •), a) = {t1}

and �((p1 + p2,�), a) = {t1}.
Then, based on Rule 4, the observer net recursively fires t1 , which yields to a new reachable state composed

of two colored markings M�,1 = {(p1 + p3 + p4,⊙), (p3 + p4,�)}.
According to Rule 5, the colored marking (p2,⋆) does not enable transition t1 . Thus the token with color type

⋆ is removed from p2 , i.e., colored marking (p2,⋆) is discarded.

Example 4 The observer net � of the LPN G in Fig. 1, is portrayed in Fig. 5. The initial state of the observer net
is M�,0 = {(M0, •), (M2,�), (M5,⋆), (M7,△), (M12, ⋄), (M17,�)} . Figure 8 shows the set of markings reachable
from M�,0 by firing transitions labeled with a, which is denoted as η(M�,0, a) . Based on Rules 3 and 4, transition
t1 is recursively enabled at (M0, •), (M2,�) , and (M5,⋆) . In this case, the recursive firing of t1 yields new colored
markings (M1, CM(M1)) , (M6, CM(M6)) , (M9, CM(M9)) . Similarly, transition t6 is recursively enabled at (M5,⋆) ,
(M12, ⋄) and (M17,�) . When firing, markings (M10, CM(M10)) , (M16, CM(M16)) , and (M19, CM(M19)) are reached.
We can also say that t1 and t6 are enabled and fired simultaneously following Rules 1 and 2. Besides, we notice
that the colored marking (M7,△) does not enable any observable transition, i.e., �((M7,△), e) = ∅ for all e ∈ E ,
therefore tokens of (M7,△) can be removed from the observer net based on Rule 5.

We define the unobservable reach of a state M� as

Figure 7. Observer net � dynamics.

Figure 8. The set of markings reachable from M�,0 by firing transitions with label a.

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:21572 | https://doi.org/10.1038/s41598-022-25697-y

www.nature.com/scientificreports/

A state transition function of � is given by : δ : 2M� × E → 2M� such that:

We call the set of states reachable from M�,0 the reachable state set of (N ,M�,0) , denoted by R(N ,M�,0).

Example 5 Examine the LPN G in Fig. 1 and its associated observer net � in Fig. 5. The initial state of � is M�,0 =
{(M0, •), (M2,�), (M5,⋆), (M7,△), (M12, ⋄), (M17,�)} . The state estimation after observing event a from M�,0
is given by the state transition function δ as follows:

The transition firing steps from M�,0 that enable the occurrence of event a are illustrated in Fig. 9.

We define the operator �.� on the states of an observer net by �M�� = {M ∈ Nm|(M, c) ∈ M�} . As usual, the
state transition function of � can be naturally extended to be δ : 2M� × E∗ → 2M�.

Proposition 1 Given an LPN G = (N ,M0,E, ℓ) and its observer net � = (N ,M�,0,E, ℓ, Cc , CM) , we have
C(w) = �δ(M�,0,w)� for all w ∈ L(N ,M0).

Proof We do so by mathematical induction on the length of the observation sequence w.
(Basis case) For w = ε , we have C(ε) = U(M0) and δ(M�,0, ε) = M�,0 . Since �M�,0� = U(M0) = C(ε) , then

the result is clearly true.
(Inductive case) Assume that it is true for w. Then, we prove that it also holds for w′ = we , where e ∈ E .

1. We have C(we) = {M ∈ Nm| M ′′ ∈ C(w), t ∈ To : M
′′[t�M ′,M ∈ U(M ′) and ℓ(t) = e}.

2. By δ(M�,0,we) = δ(δ(M�,0,w), e) , let δ(M�,0,w) = M ′
� . Then, it holds

.
3. Based on (6), it holds

.
4. Based on (5), we have

.
5. Based on (4), one gets

(5)U(M�) =
{

(M ′, c′)|(M, c) ∈ M� : M ′ ∈ U(M) and c′ = CM(M ′)
}

(6)δ(M ′
�, e) =

{

U(η(M ′
�, e)), if �(M ′

�, e) �= ∅
M ′

�, otherwise.

M ′
� = δ(M�,0, a) = U(η(M�,0, a))

= {(M1,�), (M4,⊟), (M6,⊞), (M9,⊙), (M10,⊖), (M11,⊕), (M15,⊠), (M16,⊗), (M19,⊛)}

δ(M�,0,we) = δ(M ′
�, e)

δ(M ′
�, e) = U(η(M ′

�, e))

δ(M ′
�, e) = {(M, c)|(M ′, c′) ∈ η(M ′

�, e) : M ∈ U(M ′) and CM(M ′) = c′}

Figure 9. State transition from M�,0.

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:21572 | https://doi.org/10.1038/s41598-022-25697-y

www.nature.com/scientificreports/

 .
6. Based on (2), it holds

.
Combining (1) and (6), it holds C(we) = �δ(M�,0,we)� . �

Proposition 2 Given an LPN G = (N ,M0,E, ℓ) , its observer net � = (N ,M�,0,E, ℓ, Cc , CM) and a secret
S ⊆ R(N ,M0) , an observation w ∈ L(N ,M0) is non-CSO with respect to S iff �δ(M�,0,w)� ⊆ S.

Proof (If) Suppose that �δ(M�,0,w)� ⊆ S . Based on Proposition 1, we have �δ(M�,0,w)� = C(w) . According to
Definition 3, C(w) ⊆ S holds and thus w is not-CSO.

(Only if) Let w ∈ L(N ,M0) be a non-CSO observation. Based on Definition 3, C(w) ⊆ S holds. Since we have
already shown that �δ(M�,0,w)� = C(w) in Proposition 1, then �δ(M�,0,w)� ⊆ S holds. �

Proposition 3 Given an LPN G = (N ,M0,E, ℓ) , its observer net � = (N ,M�,0,E, ℓ, Cc , CM) , and a secret
S ⊆ R(N ,M0) , the system G is non-CSO iff at least an observation w exists such that �δ(M�,0,w)� ⊆ S.

Proof It is inferred directly from Definition 4 and Proposition 2. �

Verification of current‑state opacity
Next, methods for checking CSO of a DES in on-line and off-line settings are developed using the presented
observer net model.

On‑line verification. This subsection presents an on-line algorithm devoted to verifying CSO for a given
LPN system using an observer net. The observer net � of the plant G provides a state estimation of G after an
observable event occurs, and then verifies the CSO of the system. A discussion on Algorithm 2 is presented next.

Algorithm 2 takes an LPN G = (N ,M0,E, ℓ) and a secret S as input. For any current observation w, the algo-
rithm checks its CSO and returns “Yes” if it is opaque; otherwise it returns “No”, meaning that G is non-CSO.
The first step builds the observer net � for G. Then, we initialize the observed word w in the second step. Upon
observing the occurrence of any event e ∈ E , w is updated in Step 3. Then, we check its CSO with respect to S in
Step 4. Specifically, when an event e occurs at M�,i , the observer net � generates a new state M�,i+1 by simulta-
neously and recursively firing the enabled transitions with label e. If the set of colored markings in M�,i+1 is not
fully included in the secret S, then, by Proposition 1 and Definition 1, w is CSO. In this case, it executes Step 2 and
waits for the occurrence of a new event; otherwise, w is non-CSO, and the opacity property is violated according
to Proposition 2. Consequently, based on Proposition 3, G is non-CSO with respect to S.

Algorithm 2 employs the observer net for CSO verification. After an event occurrence, we need to compute
the state estimation and then check if the opacity condition holds. Although the algorithm has the exponential
space complexity in the worst case, compared with the RG-based verification approach, the main advantage of
the on-line verification consists in limiting the analysis to the observed word only instead of exploring the whole
language generated by the PN. Besides, the concept of simultaneous and recursive transition firing permits the
concurrent execution of transition sequences and results in a significant decrease in the time complexity com-
pared with the classical off-line opacity verification.

δ(M ′
�, e) = {(M, c)|(M ′′, c′′) ∈ M ′

�, (M
′, c′) ∈ η((M ′′, c′′), e) : M ∈ U(M ′) and CM(M ′) = c} and

δ(M ′
�, e) = {(M, c)|(M ′′, c′′) ∈ M ′

�, t ∈ �((M ′′, c′′), e) : M ′′[t�M ′,M ∈ U(M ′) and CM(M ′) = c}

δ(M ′
�, e) = {(M, c)|(M ′′, c′′) ∈ M ′

�, t ∈ To : M
′′[t�M ′,M ∈ U(M ′), CM(M ′) = c and ℓ(t) = e}

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:21572 | https://doi.org/10.1038/s41598-022-25697-y

www.nature.com/scientificreports/

Example 6 Apply Algorithm 2 to LPN G shown in Fig. 1 and its associated observer net � depicted in Fig. 5
whose initial state is M�,0 = {(M0, •), (M2,�), (M5,⋆), (M7,△), (M12, ⋄), (M17,�)} . Given a secret S = {M8,M13,
M14,M18, M20} , in the following, we show how Algorithm 2 operates if an observation w = aba occurs.

By applying Algorithm 2 to plant G, given w = a , we obtain �M�,1� � S . Then the observation w = a is CSO
with respect to S. After that, w is updated and the observer net � computes M�,2 and also we have �M�,2� � S ,
indicating that the observation w = ab is CSO with respect to S. Finally, when event a occurs, the on-line algo-
rithm outputs “No” since �M�,3� ⊆ S holds, implying that the observation w = aba is not opaque with respect
to S. According to Proposition 3, the LPN system G is non-CSO wrt S.

If Algorithm 2 never outputs “No”, we infer that all the previously generated observations are CSO. Once
Algorithm 2 returns “No”, based on Definition 4, we conclude that G is non-CSO.

Off‑line verification.
Next, we develop Algorithm 3 to construct the RG of an observer net, called a colored estima‑
tor, which can be used for the purpose of an off‑line CSO verification.

Let us now clarify how Algorithm 3 works. It takes G = (N ,M0,E, ℓ) as input and outputs an automaton
EST� = (M�,E, �,M�,0) , also called an observer or a colored estimator. Initially, we build the observer net �
of G. In the second step, we start constructing the colored estimator by initializing the set M� to M�,0 . Then,
for all states M�,i ∈ M� that have not yet been explored (i.e., without tags) and all events e ∈ E , we check if the
set of enabled transitions �(M�,i , e) is not empty. Then we move to the next state computation. This procedure
runs iteratively until all states in M� are explored. Each state in M� represents set of markings consistent with
observation. In the worst-case scenario, Algorithm 3 can compute the whole reachability set, suggesting that
the space complexity can grow exponentially with the number of tokens at the initial marking. Algorithm 3,
on the other hand, exploits the efficient mechanism of the observer net � , namely, simultaneous and recursive
transition firing, to generate a straightforward state-estimator without constructing the reachability graph of G.
The complexity analysis of the algorithm shows a reduced time complexity compared with other related works.
Numerical results for approving this benefit are given in section “Computational complexity and comparison”.

11

Vol.:(0123456789)

Scientific Reports | (2022) 12:21572 | https://doi.org/10.1038/s41598-022-25697-y

www.nature.com/scientificreports/

Proposition 4 Given an LPN G = (N ,M0,E, ℓ) , its observer net � = (N ,M�,0,E, ℓ, Cc , CM) , and a secret
S ⊆ R(N ,M0) , iff each state M�,i of the colored estimator obtained by Algorithm 3 is not fully included in S, i.e.,
�M�,i� � S , then the system is current-state opaque wrt S.

Proof From Proposition 1, we have C(w) = �δ(M�,0,w)� . According to Definition 4, if we find at least a state
M�,i of the colored estimator that satisfies �M�,i� ⊆ S , then the LPN is non-CSO wrt S; otherwise, the system
is CSO. �

Example 7 Consider the LPN system G shown in Fig. 1. Its observer net � is depicted in Fig. 5. The colored
estimator of G, generated by Algorithm 3, is shown in Fig. 10. Let S = {M8,M13,M14,M18,M20} be a secret. We
have �M�,5� ⊆ S , it follows from Proposition 4 that the LPN is non-CSO with respect to S.

Computational complexity and comparison
The effectiveness of the approach developed in section “Verification of current-state opacity” is investigated in this
section by comparing it with the opacity verification methods recently proposed in the literature to demonstrate
their advantages and limitations. It is based on the CPU time in seconds of a desktop computer running under
the operating system Windows 10 with I7.4 CPU 3.40 GHz, 32 GB memory.

To do so, we apply the proposed on-line algorithm to a larger version of the LPN in Fig. 1, where the initial
mark ing i s M0 = 15p1 . L e t S = {(4p3 + 11p5), (5p1 + 10p5), (8p1 + 3p5 + 4p6), (11p1 + 2p2 + 2p3),
(13p1 + 2p5), (14p1 + p5), (15p1)} be a secret. We use the standard opacity verification approach, which consists
of computing the RG and converting the obtained RG into its equivalent DFA. After that, for each state of the
observer (i.e., C(w)), we check whether it is fully included in the secret or not. This method takes more than
1.9× 104 seconds and shows that the considered LPN system is non-CSO. This computational overhead is mainly
caused by the RG construction and conversion from an NFA to a DFA.

Now, let us implement the on-line algorithm to the same example. Table 1 shows the performance of Algo-
rithm 2. The first column represents the occurrence of an event. The second indicates the time (CPU seconds)
required to run an observer net when an event occurs. The third column shows the algorithm’s outputs when an
event occurs: “Y” if the observation is CSO and “N” otherwise. From Table 1, it is known that the observed event
sequence w = aabaab is non-current-state opaque wrt S. Thus, by Definition 4, the LPN is non-CSO with respect
to the given secret. Consequently, due to the short time taken to verify if an observation is CSO or non-CSO,

Figure 10. The colored estimator of the observer net.

12

Vol:.(1234567890)

Scientific Reports | (2022) 12:21572 | https://doi.org/10.1038/s41598-022-25697-y

www.nature.com/scientificreports/

we conclude that the proposed approach can be used for real-time verification. However, this process can be
computationally intensive, mainly when an observed word’s length is excessively long.

Examine the LPN system G in Fig. 1 with initial marking M0 = kp1 , where k ∈ N . Accordingly, we consider
a family of nets rather than a single LPN, which is parameterized by the initial marking. Table 2 compares the
colored estimator construction using the observer net, i.e., EST� , as shown in Algorithm 3, with the standard
approach for observer construction, i.e., DFA construction using the RG of an LPN. The first column shows the
value of k. The number of reachable markings is represented in Column 2. Columns 3 and 4 give the number
of states of the standard observer and its construction time, respectively. Finally, Columns 5 and 6, respectively,
expose the number of states in the observer net and the time of its construction. We use the notation “o.t.” (out of
time) to indicate that the computation takes more than three hours to complete. Both methods are computation-
ally demanding in the worst case. However, the observer net’s advantage compared with the standard approach
consists of a lower time cost and simplicity of construction.

Table 3 exposes the proposed observer net’s advantages compared with the recent works for the opacity veri-
fication problem. For this purpose, we choose three typical methods respectively presented in10,27,28. The second
column indicates the application framework. The third column shows the presence of an acyclicity assumption.
Column 4 indicates whether the method applies to on-line and off-line settings. Column 5 shows whether we
need a conversion from an NFA to a DFA. Finally, Column 6 shows the complexity of each method. Notice that
the proposed approach outperforms the related works by getting rid of the acyclicity assumption; in addition, it
provides a straightforward strategy for the estimator construction by avoiding the conversion from NFA to DFA.
In the worst case, it has an exponential space complexity as it is possible to compute all the reachable markings.
However, the observer net has a lower practical time overhead compared with related works due to using the
new concepts of simultaneous and recursive transition enabling and firing.

Conclusions
This paper proposes a new PN subclass, called an observer net, to verify the current-state opacity of a DES mod-
eled with an LPN. We define the structure and dynamics (transition enabling and firing rules) for the observer
net, which is useful in providing a rapid computation of the set of markings consistent with each observation.
Then, we consider on-line and off-line settings for opacity verification. In the on-line setting, the proposed
algorithm observes the event occurrence and then decides on-line if the observed word is CSO with respect to
the predefined secret. In the off-line setting, we design an algorithm for constructing a colored (state) estimator

Table 1. Performance of Algorithm 2.

Event occurrence Time (s) CSO

Observable event a occurs 7.4× 10−2 Y

Observable event a occurs 6.7× 10−1 Y

Observable event b occurs 1.1× 101 Y

Observable event a occurs 2.6× 101 Y

Observable event a occurs 3.9× 101 Y

Observable event b occurs 5.7× 101 N

Table 2. Performance of Algorithm 3.

k |RG| |ObsRG| Time (s) |EST�| Time (s)

2 21 6 0.8× 101 6 0.2× 101

4 126 15 1.4× 102 15 0.4× 102

8 1287 39 4.7× 103 39 1.4× 103

10 3003 – o.t. 54 5.2× 103

20 53,130 – o.t. 159 1.0× 104

40 – – o.t. – o.t.

Table 3. Observer net for current-state opacity verification.

Framework Acyclic On-line/Off-line NFA to DFA Complexity
10 NFA Yes No Yes PSPACE-complete
27 LPN Yes No Yes PSPACE-complete
28 POPN Yes No No PSPACE-complete

Our work LPN Not required Yes No PSPACE-complete

13

Vol.:(0123456789)

Scientific Reports | (2022) 12:21572 | https://doi.org/10.1038/s41598-022-25697-y

www.nature.com/scientificreports/

used for opacity verification rather than the conventional methods based on computing the state estimate (i.e.,
the set of consistent markings) by constructing a DFA from the reachability graph of a plant.

In the proposed model, every node of the colored estimator corresponds to the consistent markings, mak-
ing the reachability graph construction unnecessary. Finally, a comparison study is conducted to validate the
effectiveness of this approach. Our future work includes exploring other security problems and potential vulner-
abilities such as unauthorized access, cyberattacks, intrusion detection, prevention, etc.

Data availability
The datasets generated and analysed during the current study are available in the GitHub repository, https://
github. com/ Labed AJalil/ Obser ver- net.

Received: 26 June 2022; Accepted: 2 December 2022

References
 1. Lin, F., Wang, L. Y., Chen, W., Wang, W. & Wang, F. Information control in networked discrete event systems and its application

to battery management systems. Discrete Event Dyn. Syst. 30, 243–268 (2020).
 2. Khan, M. F., Saleem, K., Alshara, M. A. & Bashir, S. Multilevel information fusion for cryptographic substitution box construction

based on inevitable random noise in medical imaging. Sci. Rep. 11, 14282 (2021).
 3. Hadj-Alouane, N. B., Lafrance, S., Lin, F., Mullins, J. & Yeddes, M. M. On the verification of intransitive noninterference in

mulitlevel security. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 35, 948–958 (2005).
 4. Alur, R., Černỳ, P. & Zdancewic, S. Preserving secrecy under refinement. In Proceedings of International Colloquium on Automata,

Languages, and Programming, 107–118 (Springer, 2006).
 5. Schneider, S. & Sidiropoulos, A. CSP and anonymity. In Proceedings of European Symposium on Research in Computer Security,

198–218 (Springer, 1996).
 6. Sabelfeld, A. & Myers, A. C. Language-based information-flow security. IEEE J. Sel. Areas Commun. 21, 5–19 (2003).
 7. Zhuo, M., Liu, L., Zhou, S. & Tian, Z. Survey on security issues of routing and anomaly detection for space information networks.

Sci. Rep. 11, 22261 (2021).
 8. Mazaré, L. Using unification for opacity properties. In Proceedings of the Fourth Workshop on Issues in the Theory of Security,

165–176 (WITS, 2004).
 9. Bryans, J. W., Koutny, M. & Ryan, P. Y. Modelling opacity using Petri nets. Electron. Notes Theor. Comput. Sci. 121, 101–115 (2005).
 10. Saboori, A. & Hadjicostis, C. N. Notions of security and opacity in discrete event systems. In Proceedings of the 46th IEEE Confer-

ence on Decision and Control, 5056–5061 (IEEE, 2007).
 11. Saboori, A. & Hadjicostis, C. N. Verification of infinite-step opacity and complexity considerations. IEEE Trans. Autom. Control

57, 1265–1269 (2012).
 12. Tong, Y., Ma, Z. Y., Li, Z., Seactzu, C. & Giua, A. Verification of language-based opacity in Petri nets using verifier. In Proceedings

of American Control Conference (ACC), 757–763 (IEEE, 2016).
 13. Saadaoui, I., Li, Z., Wu, N. & Khalgui, M. Depth-first search approach for language-based opacity verification using Petri nets.

IFAC-PapersOnLine 53, 378–383 (2020).
 14. Yang, J., Deng, W., Qiu, D. & Jiang, C. Opacity of networked discrete event systems. Inf. Sci. 543, 328–344 (2021).
 15. Yin, X., Li, Z., Wang, W. & Li, S. Infinite-step opacity and k-step opacity of stochastic discrete-event systems. Automatica 99,

266–274 (2019).
 16. Deng, W., Qiu, D. & Yang, J. Opacity measures of fuzzy discrete event systems. IEEE Trans. Fuzzy Syst. 29, 2612–2622 (2021).
 17. Deng, W., Qiu, D. & Yang, J. Fuzzy infinite-step opacity measure of discrete event systems and its applications. IEEE Trans. Fuzzy

Syst. 30, 885–892 (2022).
 18. Xie, Y., Yin, X. & Li, S. Optimal synthesis of opacity-enforcing supervisors for qualitative and quantitative specifications. arXiv

preprint arXiv: 2102. 01402 (2021).
 19. Chen, Y., Pan, L. & Li, Z. Design of optimal supervisors for the enforcement of nonlinear constraints on Petri nets. In IEEE Trans-

actions on Automation Science and Engineering, 1–13 (2022).
 20. Liu, R., Mei, L. & Lu, J. K-memory-embedded insertion mechanism for opacity enforcement. Syst. Control Lett. 145, 104785 (2020).
 21. Liu, R. & Lu, J. Enforcement for infinite-step opacity and k-step opacity via insertion mechanism. Automatica 140, 110212 (2022).
 22. Bryans, J. W., Koutny, M., Mazaré, L. & Ryan, P. Y. Opacity generalised to transition systems. Int. J. Inf. Secur. 7, 421–435 (2008).
 23. Zhu, G., Li, Z., Wu, N. & Al-Ahmari, A. Fault identification of discrete event systems modeled by Petri nets with unobservable

transitions. IEEE Trans. Syst. Man Cybern. Syst. 49, 333–345 (2017).
 24. Dong, Y., Li, Z. & Wu, N. Symbolic verification of current-state opacity of discrete event systems using Petri nets. IEEE Trans. Syst.

Man Cybern. Syst. 52, 7628–7641 (2022).
 25. Masopust, T. & Yin, X. Complexity of detectability, opacity and A-diagnosability for modular discrete event systems. Automatica

101, 290–295 (2019).
 26. Tong, Y., Li, Z., Seatzu, C. & Giua, A. Decidability of opacity verification problems in labeled Petri net systems. Automatica 80,

48–53 (2017).
 27. Tong, Y., Li, Z., Seatzu, C. & Giua, A. Verification of state-based opacity using Petri nets. IEEE Trans. Autom. Control 62, 2823–2837

(2017).
 28. Saadaoui, I., Li, Z. & Wu, N. Current-state opacity modelling and verification in partially observed Petri nets. Automatica 116,

108907 (2020).
 29. Wu, Y.-C. & Lafortune, S. Comparative analysis of related notions of opacity in centralized and coordinated architectures. Discrete

Event Dyn. Syst. 23, 307–339 (2013).
 30. Saboori, A. & Hadjicostis, C. N. Verification of initial-state opacity in security applications of discrete event systems. Inf. Sci. 246,

115–132 (2013).
 31. Jacob, R., Lesage, J.-J. & Faure, J.-M. Overview of discrete event systems opacity: Models, validation, and quantification. Annu.

Rev. Control 41, 135–146 (2016).
 32. Zhang, H., Feng, L., Wu, N. & Li, Z. Integration of learning-based testing and supervisory control for requirements conformance

of black-box reactive systems. IEEE Trans. Autom. Sci. Eng. 15, 2–15 (2017).
 33. Cabasino, M. P., Giua, A., Pocci, M. & Seatzu, C. Discrete event diagnosis using labeled Petri nets. An application to manufacturing

systems. Control Eng. Pract. 19, 989–1001 (2011).
 34. Cabasino, M. P., Giua, A. & Seatzu, C. Fault detection for discrete event systems using Petri nets with unobservable transitions.

Automatica 46, 1531–1539 (2010).
 35. Cabasino, M. P., Giua, A. & Seatzu, C. Diagnosability of discrete-event systems using labeled Petri nets. IEEE Trans. Autom. Sci.

Eng. 11, 144–153 (2013).

https://github.com/LabedAJalil/Observer-net
https://github.com/LabedAJalil/Observer-net
http://arxiv.org/abs/2102.01402

14

Vol:.(1234567890)

Scientific Reports | (2022) 12:21572 | https://doi.org/10.1038/s41598-022-25697-y

www.nature.com/scientificreports/

 36. Ma, Z., Tong, Y., Li, Z. & Giua, A. Basis marking representation of Petri net reachability spaces and its application to the reachability
problem. IEEE Trans. Autom. Control 62, 1078–1093 (2016).

 37. Zhu, G., Li, Z. & Wu, N. Model-based fault identification of discrete event systems using partially observed Petri nets. Automatica
96, 201–212 (2018).

 38. Cong, X. Y., Fanti, M. P., Mangini, A. M. & Li, Z. On-line verification of current-state opacity by Petri nets and integer linear
programming. Automatica 94, 205–213 (2018).

 39. Cong, X. Y., Fanti, M. P., Mangini, A. M. & Li, Z. On-line verification of initial-state opacity by Petri nets and integer linear pro-
gramming. ISA Trans. 93, 108–114 (2019).

 40. Ma, Z., Li, Z. & Giua, A. Characterization of admissible marking sets in Petri nets with conflicts and synchronizations. IEEE Trans.
Autom. Control 62, 1329–1341 (2016).

 41. Badouel, E., Bednarczyk, M., Borzyszkowski, A., Caillaud, B. & Darondeau, P. Concurrent secrets. Discrete Event Dyn. Syst. 17,
425–446 (2007).

 42. Dubreil, J., Darondeau, P. & Marchand, H. Opacity enforcing control synthesis. In Proceedings of the Ninth International Workshop
on Discrete Event Systems, 28–35 (IEEE, 2008).

 43. Lin, F. Opacity of discrete event systems and its applications. Automatica 47, 496–503 (2011).
 44. Basile, F., De Tommasi, G. & Sterle, C. Non-interference enforcement in bounded Petri nets. In Proceedings of IEEE Conference on

Decision and Control (CDC), 4827–4832 (IEEE, 2018).
 45. Lafortune, S., Lin, F. & Hadjicostis, C. N. On the history of diagnosability and opacity in discrete event systems. Annu. Rev. Control

45, 257–266 (2018).
 46. Labed, A., Saadaoui, I., Wu, N. & Li, Z. Basics of Petri nets. https:// github. com/ Labed AJalil/ Obser ver- net.
 47. Cassandras, C. G. & Lafortune, S. Introduction to Discrete Event Systems (Springer Science & Business Media, 2009).
 48. Cassez, F., Dubreil, J. & Marchand, H. Synthesis of opaque systems with static and dynamic masks. Formal Methods Syst. Design

40, 88–115 (2012).

Acknowledgements
This work is partially supported by the Guangzhou Innovation and Entrepreneurship Leading Team Project
Funding under Grant No. 202009020008.

Author contributions
A.L., conceptualization ideas and evolution of research; S.I., algorithm design; N.W., reviewing, writing and
editing; J.Y., algorithm code development; Z.L., leadership responsibility for the research activity planning and
execution.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Z.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://github.com/LabedAJalil/Observer-net
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Current-state opacity verification in discrete event systems using an observer net
	Current-state opacity
	Observer net
	Verification of current-state opacity
	On-line verification.
	Off-line verification.

	Computational complexity and comparison
	Conclusions
	References
	Acknowledgements

