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Current‑state opacity verification 
in discrete event systems using 
an observer net
Abdeldjalil Labed 1, Ikram Saadaoui 2, Naiqi Wu 1, Jiaxin Yu 3 & Zhiwu Li 1*

Due to the proliferation of contemporary computer‑integrated systems and communication networks, 
there is more concern than ever regarding privacy, given the potential for sensitive data exploitation. 
A recent cyber‑security research trend is to focus on security principles and develop the foundations 
for designing safety‑critical systems. In this work, we investigated the problem of verifying current‑
state opacity in discrete event systems using labeled Petri nets. A system is current‑state opaque 
provided that the current‑state estimate cannot be revealed as a subset of secret states. We 
introduced a new sub‑model of the system, named an observer net. The observer net have the same 
structure as the plant, but it is distinguished by the use of colored markers as well as simultaneous 
and recursive transition enabling and firing, which offer an efficient state estimation. We considered 
two settings of the proposed approach: an on‑line setting, in which a current‑state opacity algorithm 
is proposed. The algorithm waits for the occurrence of an observable event and determines if the 
current observation of a plant reveals the secret behaviour, as well as, an off‑line setting, where the 
verification problem is solved based on a state estimator called a colored estimator. In this context, 
necessary and sufficient conditions for verifying opacity are developed with illustrative examples to 
demonstrate the presented approach.

Cybersecurity is needed as an extension of reliability to protect systems from errors or damage caused by cyberat-
tacks. Nowadays, ensuring the privacy of information  flows1,2 has become an increasingly significant  concern3–7. 
Formalizing security principles and developing theoretical basics for secure systems design is a current cyberse-
curity research trend. Specifically, in discrete event systems (DESs), the problem of whether privacy is disclosed 
in information flows can be addressed in terms of a confidentiality property called opacity. Opacity characterizes 
whether the secret behaviour of a considered system is revealed to an external observer or intruder. The term 
opacity is first used to describe cryptographic protocols  in8 and then expanded to the DES domain through the 
work of Bryans et al.9, where it formally expresses the absence of information flow, i.e., the intruder’s inability 
to make any useful inference about the secret information in systems modeled as Petri nets (PNs). In DESs, the 
secret can be represented by the states or language of a system. Accordingly, opacity properties are generally 
classified into two types: state-based opacity (SBO)9–11 and language-based opacity (LBO)12,13.

The computer security community has recently looked into several aspects of opacity. A brief overview of 
some of the recent studies is provided in what follows.  In14, Yang et al. propose new types of opacity in net-
worked DESs that are modeled as finite state automata (FSA) by taking into account the communication delays 
and losses in the observation channel. Opacity was also investigated in stochastic DESs modeled as probabil-
istic  automata15 and for fuzzy DESs modeled as fuzzy  automata16,17, which extends the relevant findings of the 
opacity theory for classical DESs. It should be noted that when a system is evaluated to be non-opaque, opacity 
enforcement becomes crucial. In this context, opacity enforcement has been considered either by restricting the 
system behavior using supervisory  control18,19 or by changing the information flow using insertion  function20,21.

This paper aims to verify the property of current-state-based opacity (CSO) for DESs that can be described 
by bounded PNs. It is assumed that an intruder completely knows the system structure, but can partially observe 
the occurrence of some events only. Therefore, he/she tries to estimate the system states based on its observations 
to infer the secret behaviour. The system considered in this work is represented by labeled PNs (LPNs) with a 
static observation  function22,23. A subset of the reachable markings represents the secret. A system is CSO if an 
intruder cannot unambiguously discover the secret states from its observations.
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The problem of CSO verification is shown to be decidable for bounded labeled Petri  nets24,25. However, Tong 
et al.26 recently demonstrate that, in general, the opacity verification problem is undecidable if the PN system is 
unbounded. For this reason, our work concentrates on bounded LPN by proposing an efficient approach that 
provides definite answers to the CSO problem.

Many of the existing studies on DESs pay particular attention to the opacity problem. Various methods have 
investigated the issue of state-based opacity verification in  DESs27,28.  In10, the authors report a necessary and 
sufficient criterion using a non-deterministic finite automaton (NFA) by building an observer, i.e., transforming 
an NFA into a deterministic finite automaton (DFA) with a complexity of O(2n)29, where n is the number of states 
in the NFA. However, the verification of CSO is proved to be PSPACE-complete with respect to n30–32. By using a 
compact representation of a reachability graph (RG) called a basis RG (BRG), the work  in27 presents a necessary 
and sufficient condition for CSO. Note that the concept of BRGs have been proposed  in33–36. The benefit of this 
method consists in avoiding the exhaustive enumeration of all reachable markings. However, the computational 
effort is still considerably heavy, and a large amount of memory is required.

Another interesting work is recently presented  in28, where the authors discuss CSO modeling and verification 
in DESs modeled by partially observed PNs (POPNs)37. They propose a discernible reachability graph (DRG) 
to compute the state estimation of a POPN system and check if the opacity condition holds. Its limitation lies 
in the fact that the DRG alone does not provide a necessary and sufficient CSO verification condition. Con-
sequently, the authors resort to integer linear programming (ILP) to solve this problem. In the same context, 
online verification algorithms for  current38 and  initial39 state opacity have been proposed by Cong et al. in LPNs 
by assuming the acyclicity of the observable and unobservable subnets. These algorithms detect the occurrence 
of events and decide whether the transition (event) sequence observed so far is opaque or not. This decision 
is based on solving a group of ILPs. The works  in38,39 are restricted to secret markings defined by generalized 
mutual exclusion constraints (GMECs)40.

On the other hand, LBO has been formalized in the existing studies in various ways. It is first proposed in the 
framework of  NFA41,42. The secret for the LBO problem is described by a sub-language of the DES. A system is 
said to be of LBO with respect to a secret language if an intruder cannot reveal that any generated event sequence 
is entirely within the secret.  In43, the authors characterize and introduce two types of opacity on the basis of 
languages, namely strong opacity and weak opacity.  In12, the authors propose approaches to ensure language-
based opacity for bounded LPNs based on finite-time automata, called a verifier, by assuming that an intruder 
captures observable transitions only. For LBO verification using ILP, the work  in44 formulates a necessary and 
sufficient condition. Jacob et al. provide a thorough overview of opacity for  DESs31. A historical perspective on 
the development of the opacity theory (and diagnosability theory) in DESs can be found  in45.

This work investigates CSO using a new model called observer net. The main contributions of this work can 
be summarized below: 

1. A new sub-model of the system called an observer net is developed based on the plant structure. It is char-
acterised by the new concepts of simultaneous and recursive transition enabling and firing allowing a rapid 
computation of the reachable markings.

2. We proposed an on-line algorithm for CSO verification in an LPN system. It provides the state estimation and 
the opacity decision of the word observed so far by waiting the occurrence of an event and then determines 
if the last observed event reveals the secret behaviour or not.

3. The proposed observer net model provides efficient usage of space, while improving runtime performance. 
We managed to lower the space complexity by avoiding the exhaustive computation of all reachable mark-
ings, and also lower the time complexity by merging the computation phases using the new concepts of 
simultaneous and recursive transition enabling and firing.

4. When an off-line opacity verification is desired, we constructed a state estimator called a colored estimator, 
where each of its states corresponds to a set of the consistent markings.

The remainder of this paper is structured as follows. In section “Current-state opacity”, we state the problem of 
CSO and present its definitions. Section “Observer net” introduces the concept of the observer net and specifies 
its dynamics. In section “Verification of current-state opacity”, we verify current-state opacity using on-line and 
off-line algorithms. Section “Computational complexity and comparison” investigates the proposed approach’s 
effectiveness by giving a comparative study with related works. In section “Conclusions”, concluding remarks 
and possible future directions are discussed.

Current‑state opacity
We intend to define the notion of opacity in a DES modeled as a PN. In a system modeled with an LPN 
G = (N ,M0,E, ℓ) , a secret S is a subset of the reachability set composed of some particular markings, called 
secret markings. Current-state opacity claims that, for every secret state reachable from the initial state by firing 
a transition sequence, a non-secret state reachable by firing another transition sequence must exist, and both 
sequences have the same observation from the intruder perspective. Moreover, it is assumed that an intruder 
knows the system’s structure, but he/she can get a partial observation of the event occurrences only. Necessary 
preliminaries are provided in the appendix of this  study46.

Definition 1 27 Given an LPN G = (N ,M0,E, ℓ) and a secret S ⊆ R(N ,M0) , we say that observation w ∈ L(N ,M0) 
is current-state opaque wrt S if C(w) � S holds.
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Definition 2 27 We say that G = (N ,M0,E, ℓ) is current-state opaque wrt S ⊆ R(N ,M0) if for any w ∈ L(N ,M0) , 
we have C(w) � S.

Namely, for any possible w ∈ L(N ,M0) , an intruder is unable to determine if the current state lies within S. 
Now, we define the non-current-state opaque observation and system as follows.

Definition 3 39 Given G = (N ,M0,E, ℓ) as an LPN system and S ⊆ R(N ,M0) as a secret, if C(w) ⊆ S holds, then 
w ∈ L(N ,M0) is non-current-state opaque wrt S.

For a non-CSO observation w, an intruder can deduce that any marking consistent with w is within S, i.e., for 
any M ∈ C(w) , M ∈ S . Accordingly, a non-current-state opaque system is defined as follows.

Definition 4 39 We say that an LPN G = (N ,M0,E, ℓ) is non- current-state opaque wrt a secret S ⊆ R(N ,M0) if 
there is at least an observation w ∈ L(N ,M0) with C(w) ⊆ S.

Based on Definition 4, to ensure the CSO of a bounded LPN system, we need to check whether there is at least 
a w ∈ L(N ,M0) such that C(w) ⊆ S . To answer this question, one must perform an exhaustive enumeration of all 
reachable markings, i.e., computing C(w) for all w ∈ L(N ,M0) , and then build a reachability graph observer, i.e., 
a DFA equivalent to the RG, using the standard determinization  procedure47, whose computational complexity is 
O(2|X|) with X being the set of states in the  RG31,47,48. The reachability graph observer provides the state estima-
tion after the occurrence of an observation sequence as shown in the following example.

Example 1 We consider the plant G in Fig. 1 with initial marking M0 = 2p1 and E = {a, b} . The sets of unob-
servable and observable transitions are Tuo = {t2, t3, t4, t7} and To = {t1, t5, t6, t8} , respectively. The RG and its 
corresponding observer are given in Figs. 2 and 3, respectively. Let S = {M8,M13,M14,M18,M20} be a secret. 
For observation w = aba , we have C(w) = {M8,M13,M14,M18,M20} ⊆ S . Then, based on Definition 4, the LPN 
system G is non-CSO with respect to S.

Observer net
This section defines the concept of an observer net. For a plant G, an observer net is a labeled Petri net that has 
the same structure of G (in terms of places, transitions, and arcs) but has a different behaviour. Specifically, an 
observer net allows the simultaneous presence of several markings, characterised with distinct colors, in order 
to determine the states the plant can be in upon observation of an event. In Fig. 4, we summarize the interac-
tion between a plant G and its associated observer net � . Upon the occurrence of an event, the observer net � 
determines the system state estimation. Specifically, it finds the possible marking at which a plant may lies, i.e., 
all the states consistent with the sequence of events observed thus far.

The primary challenges in this work lie in defining how the observer net is modeled, graphically represented, 
and how it operates. Although the observer net is modeled as a labeled Petri net graphically, its state transition 
function and states differ from regular Petri nets. In what follows, a formal definition of the observer net, and 
its construction algorithm, as well as its dynamics, are presented.

Note that, in the following, the word “marking” refers to a marking of the plant and the word “state” refers 
to a marking of the observer net.

Definition 5 For an LPN G = (N ,M0,E, ℓ) , we define its associated observer net as a six-tuple � = (N ,M�,0 , 
E, ℓ , Cc , CM) , where 

Figure 1.  An LPN with M0 = 2p1.
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Figure 2.  RG of the LPN in Fig. 1.

Figure 3.  Observer of the RG in Fig. 2.

Figure 4.  Observer net.
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1. Cc is a non-empty and finite set of colors.
2. CM : R(N ,M0) → Cc is a function for associating each marking M ∈ R(N ,M0) with a color c ∈ Cc.
3. M�,0 = {(M, c)|M ∈ U(M0) and CM(M) = c ∈ Cc} gives the initial state of the observer net.

The structure of � is same as that of the plant G. Its initial state M�,0 consists of colored markings (M, c), 
where M ∈ U(M0) and c is generated by the function CM . A state in � is a set of colored markings (M, c), denoted 
as M� , specifying the system state estimation after observing an event. We need to make sure that CM associates 
distinct colors to the markings belonging to M� to tell the distinction between them (due to the simultaneous 
presence of different colored markings in the observer net, it can be thought of as being a special class of colored 
Petri net).

Algorithm 1 takes an LPN G = (N ,M0,E, ℓ) as input and outputs its associated observer net � = (N , M�,0, 
E, ℓ, Cc , CM) . In the first step, we build the structure of the observer net � by cloning the plant G, i.e., G and � 
have the same structure N = (P,T , Pre, Post) , and the same labeling function ℓ . Then step 2 defines the initial 
state M�,0 of � by calculating the unobservable reach of the initial marking M0 of G, and assigns a distinct color 
c ∈ Cc to each marking using the color function CM . This step runs iteratively until all the unobservable reaches 
of M0 are colored. The computational complexity of Algorithm 1 is mainly dependent on the number of mark-
ings in the unobservable reach of M0.

Example 2 Let us consider the LPN system G in Fig. 1. According to Algorithm 1, the observer net � is shown 
in Fig. 5 it has the same structure (states and transitions) as plant G. The initial state of � is retrieved from the 
initial marking of G. We have M0 = 2p1 and U(M0) = {M0,M2,M5,M7,M12,M17} ; based on Definition 5. the 
initial state of the observer net is given by:

The initial state of the observer net is composed of six colored markings as shown in Fig. 6.

The dynamic behaviour of a PN is characterized by the transition firing rules together with the distribution 
of tokens in places. In the following, we introduce the rules that govern the flows of tokens in the observer net.

Given an observer net � = (N ,M�,0, E, ℓ , Cc , CM) and a state M� , a transition t ∈ To is enabled at M� if there 
exists (M, c) ∈ M� such that M ≥ Pre(t, ·) holds, and we denote it by (M, c)[t� . The set of enabled transitions at 
(M, c) with label e is defined as

and the set of all the enabled transitions at M� with label e is defined as

M�,0 = {(M0, •), (M2,�), (M5,⋆), (M7,△), (M12, ⋄), (M17,�)}

(1)�((M, c), e) = {t ∈ To|(M, c)[t� and ℓ(t) = e}

Figure 5.  Observer net � with an initial state M�,0.
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Example 3 Consider the LPN G in Fig. 1, its corresponding observer net � is visualized in Fig. 5 with initial state 
is M�,0 = {(M0, •), (M2,�), (M5,⋆), (M7,△), (M12, ⋄), (M17,�)} . Based on Equation (1), we have:

�((M0, •), a) = {t1}, �((M2,�), a) = {t1}, �((M5,⋆), a) = {t1, t6}, �((M7,△), a) = ∅, �((M12, ⋄), a) = {t6}, 
and �((M17,�), a) = {t6}.

Based on Equation (2), the set of enabled transitions at M�,0 with label a is given by:

Firing a transition t ∈ �((M, c), e) at (M, c) ∈ M� yields a new colored marking (M ′, c′) , denoted as 
(M, c)[t�(M ′, c′) . We define by

the set of reachable colored markings if all enabled transitions in �((M, c), e) are fired, and by

the set of all reachable colored markings if the enabled transitions at state M� with label e are fired.
Note that, if a transition with label e fires at a colored marking (M, c), all the enabled transitions with label e 

at (M, c) fire concurrently. Thus, the semantics of an observer net is different from the classical Petri nets.
The following rules define the dynamics of an observer net.

– Rule 1: Simultaneous enabling A set of k transitions {t ∈ To | ℓ(t) = e} are simultaneously enabled at a 
colored marking (M, c) if any t ∈ To with ℓ(t) = e is enabled at (M, c).

– Rule 2: Simultaneous firing Simultaneously firing k enabled transitions t1 , t2 , . . . , tk ∈ To with label e at (M, c) 
yields k colored markings, as defined by η((M, c), e) in (3).

– Rule 3: Recursive enabling A t ∈ To with ℓ(t) = e is said to be recursively enabled at a state M� if there exist 
k colored markings {(M1, c1), (M2, c2) , . . . , (Mk , ck)} in M� , for all i ∈ {1, 2, . . . , k} , (Mi , ci) enables t.

– Rule 4: Recursive firing The firing of a recursively enabled transition t ∈ To with label e at M� is defined by 
firing t at (M1, c1) , (M2, c2) , . . . , (Mk , ck) , respectively. Equivalently, t fires k times, yielding k colored markings 
as defined by η(M�, e) in (4).

– Rule 5: Irrelevant markings elimination If a colored marking (M, c) ∈ M� does not enable any transition 
t ∈ To with label e, i.e., �((M, c), e) = ∅ , then, for (M, c), let M(p) = 0 for all p ∈ P.

The observer net dynamic rules allow us to benefit from the simultaneous and recursive firing mechanism, which 
ensures a rapid computation of markings and guarantees a significant decrease in the time complexity of the 
proposed method, as shown in the following sections.

Examine the LPN systems shown in Fig. 7 that illustrates the dynamics of the observer net by two different 
scenarios. In Fig. 7a, the initial state is given as M�,0 = {(p1, •)} , where E = {a} . Transitions t1 and t2 have the 
same label a.

Initially, based on Rule 1, transitions t1 and t2 are simultaneously enabled wrt color • at M�,0 since 
�((p1, •), a) = {t1, t2}.

(2)�(M�, e) =
⋃

(M,c)∈M�

�((M, c), e)

�(M�,0, a) =
⋃

(M,c)∈M�,0

�((M, c), a) = {t1, t6}

(3)η((M, c), e) =
{

(M ′, c′)|∃t ∈ �((M, c), e) : (M, c)[t�(M ′, c′) and CM(M ′) = c′
}

(4)η(M�, e) =
⋃

(M,c)∈M�

η((M, c), e)

Figure 6.  The initial state M�,0 of the observer net.
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Then, based on Rule 2, the observer net simultaneously fires t1 and t2 since both are simultaneously enabled. 
The token of (p1, •) is consumed by the execution of firing both transitions t1 and t2 , which yields to a new reach-
able state composed of two colored markings M�,1 = {(p2,�), (p3,⋆)}.

In Fig. 7b, the initial state is given as M�,0 = {(2p1 + p2, •), (p1 + p2,�), (p2,⋆)} , where E = {a}.
Based on Rule 3, transition t1 is recursively enabled wrt • and � at M�,0 since we have �((2p1 + p2, •), a) = {t1} 

and �((p1 + p2,�), a) = {t1}.
Then, based on Rule 4, the observer net recursively fires t1 , which yields to a new reachable state composed 

of two colored markings M�,1 = {(p1 + p3 + p4,⊙), (p3 + p4,�)}.
According to Rule 5, the colored marking (p2,⋆) does not enable transition t1 . Thus the token with color type 

⋆ is removed from p2 , i.e., colored marking (p2,⋆) is discarded.

Example 4 The observer net � of the LPN G in Fig. 1, is portrayed in Fig. 5. The initial state of the observer net 
is M�,0 = {(M0, •), (M2,�), (M5,⋆), (M7,△), (M12, ⋄), (M17,�)} . Figure 8 shows the set of markings reachable 
from M�,0 by firing transitions labeled with a, which is denoted as η(M�,0, a) . Based on Rules 3 and 4, transition 
t1 is recursively enabled at (M0, •), (M2,�) , and (M5,⋆) . In this case, the recursive firing of t1 yields new colored 
markings (M1, CM(M1)) , (M6, CM(M6)) , (M9, CM(M9)) . Similarly, transition t6 is recursively enabled at (M5,⋆) , 
(M12, ⋄) and (M17,�) . When firing, markings (M10, CM(M10)) , (M16, CM(M16)) , and (M19, CM(M19)) are reached. 
We can also say that t1 and t6 are enabled and fired simultaneously following Rules 1 and 2. Besides, we notice 
that the colored marking (M7,△) does not enable any observable transition, i.e., �((M7,△), e) = ∅ for all e ∈ E , 
therefore tokens of (M7,△) can be removed from the observer net based on Rule 5.

We define the unobservable reach of a state M� as

Figure 7.  Observer net � dynamics.

Figure 8.  The set of markings reachable from M�,0 by firing transitions with label a.
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A state transition function of � is given by : δ : 2M� × E → 2M� such that:

We call the set of states reachable from M�,0 the reachable state set of (N ,M�,0) , denoted by R(N ,M�,0).

Example 5 Examine the LPN G in Fig. 1 and its associated observer net � in Fig. 5. The initial state of � is M�,0 = 
{(M0, •), (M2,�), (M5,⋆), (M7,△), (M12, ⋄), (M17,�)} . The state estimation after observing event a from M�,0 
is given by the state transition function δ as follows:

The transition firing steps from M�,0 that enable the occurrence of event a are illustrated in Fig. 9.

We define the operator �.� on the states of an observer net by �M�� = {M ∈ Nm|(M, c) ∈ M�} . As usual, the 
state transition function of � can be naturally extended to be δ : 2M� × E∗ → 2M�.

Proposition 1 Given an LPN G = (N ,M0,E, ℓ) and its observer net � = (N ,M�,0,E, ℓ, Cc , CM) , we have 
C(w) = �δ(M�,0,w)� for all w ∈ L(N ,M0).

Proof We do so by mathematical induction on the length of the observation sequence w.
(Basis case) For w = ε , we have C(ε) = U(M0) and δ(M�,0, ε) = M�,0 . Since �M�,0� = U(M0) = C(ε) , then 

the result is clearly true.
(Inductive case) Assume that it is true for w. Then, we prove that it also holds for w′ = we , where e ∈ E . 

1. We have C(we) = {M ∈ Nm| M ′′ ∈ C(w), t ∈ To : M
′′[t�M ′,M ∈ U(M ′) and ℓ(t) = e}.

2. By δ(M�,0,we) = δ(δ(M�,0,w), e) , let δ(M�,0,w) = M ′
� . Then, it holds 

.
3. Based on (6), it holds 

.
4. Based on (5), we have 

.
5. Based on (4), one gets 

(5)U(M�) =
{

(M ′, c′)|(M, c) ∈ M� : M ′ ∈ U(M) and c′ = CM(M ′)
}

(6)δ(M ′
�, e) =

{

U(η(M ′
�, e)), if �(M ′

�, e) �= ∅
M ′

�, otherwise.

M ′
� = δ(M�,0, a) = U(η(M�,0, a))

= {(M1,�), (M4,⊟), (M6,⊞), (M9,⊙), (M10,⊖), (M11,⊕), (M15,⊠), (M16,⊗), (M19,⊛)}

δ(M�,0,we) = δ(M ′
�, e)

δ(M ′
�, e) = U(η(M ′

�, e))

δ(M ′
�, e) = {(M, c)|(M ′, c′) ∈ η(M ′

�, e) : M ∈ U(M ′) and CM(M ′) = c′}

Figure 9.  State transition from M�,0.
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 .
6. Based on (2), it holds 

.
Combining (1) and (6), it holds C(we) = �δ(M�,0,we)� .   �

Proposition 2 Given an LPN G = (N ,M0,E, ℓ) , its observer net � = (N ,M�,0,E, ℓ, Cc , CM) and a secret 
S ⊆ R(N ,M0) , an observation w ∈ L(N ,M0) is non-CSO with respect to S iff �δ(M�,0,w)� ⊆ S.

Proof (If) Suppose that �δ(M�,0,w)� ⊆ S . Based on Proposition 1, we have �δ(M�,0,w)� = C(w) . According to 
Definition 3, C(w) ⊆ S holds and thus w is not-CSO.

(Only if) Let w ∈ L(N ,M0) be a non-CSO observation. Based on Definition 3, C(w) ⊆ S holds. Since we have 
already shown that �δ(M�,0,w)� = C(w) in Proposition 1, then �δ(M�,0,w)� ⊆ S holds.   �

Proposition 3 Given an LPN G = (N ,M0,E, ℓ) , its observer net � = (N ,M�,0,E, ℓ, Cc , CM) , and a secret 
S ⊆ R(N ,M0) , the system G is non-CSO iff at least an observation w exists such that �δ(M�,0,w)� ⊆ S.

Proof It is inferred directly from Definition 4 and Proposition 2.   �

Verification of current‑state opacity
Next, methods for checking CSO of a DES in on-line and off-line settings are developed using the presented 
observer net model.

On‑line verification. This subsection presents an on-line algorithm devoted to verifying CSO for a given 
LPN system using an observer net. The observer net � of the plant G provides a state estimation of G after an 
observable event occurs, and then verifies the CSO of the system. A discussion on Algorithm 2 is presented next.

Algorithm 2 takes an LPN G = (N ,M0,E, ℓ) and a secret S as input. For any current observation w, the algo-
rithm checks its CSO and returns “Yes” if it is opaque; otherwise it returns “No”, meaning that G is non-CSO. 
The first step builds the observer net � for G. Then, we initialize the observed word w in the second step. Upon 
observing the occurrence of any event e ∈ E , w is updated in Step 3. Then, we check its CSO with respect to S in 
Step 4. Specifically, when an event e occurs at M�,i , the observer net � generates a new state M�,i+1 by simulta-
neously and recursively firing the enabled transitions with label e. If the set of colored markings in M�,i+1 is not 
fully included in the secret S, then, by Proposition 1 and Definition 1, w is CSO. In this case, it executes Step 2 and 
waits for the occurrence of a new event; otherwise, w is non-CSO, and the opacity property is violated according 
to Proposition 2. Consequently, based on Proposition 3, G is non-CSO with respect to S.

Algorithm 2 employs the observer net for CSO verification. After an event occurrence, we need to compute 
the state estimation and then check if the opacity condition holds. Although the algorithm has the exponential 
space complexity in the worst case, compared with the RG-based verification approach, the main advantage of 
the on-line verification consists in limiting the analysis to the observed word only instead of exploring the whole 
language generated by the PN. Besides, the concept of simultaneous and recursive transition firing permits the 
concurrent execution of transition sequences and results in a significant decrease in the time complexity com-
pared with the classical off-line opacity verification.

δ(M ′
�, e) = {(M, c)|(M ′′, c′′) ∈ M ′

�, (M
′, c′) ∈ η((M ′′, c′′), e) : M ∈ U(M ′) and CM(M ′) = c} and

δ(M ′
�, e) = {(M, c)|(M ′′, c′′) ∈ M ′

�, t ∈ �((M ′′, c′′), e) : M ′′[t�M ′,M ∈ U(M ′) and CM(M ′) = c}

δ(M ′
�, e) = {(M, c)|(M ′′, c′′) ∈ M ′

�, t ∈ To : M
′′[t�M ′,M ∈ U(M ′), CM(M ′) = c and ℓ(t) = e}
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Example 6 Apply Algorithm 2 to LPN G shown in Fig. 1 and its associated observer net � depicted in Fig. 5 
whose initial state is M�,0 = {(M0, •), (M2,�), (M5,⋆), (M7,△), (M12, ⋄), (M17,�)} . Given a secret S = {M8,M13, 
M14,M18, M20} , in the following, we show how Algorithm 2 operates if an observation w = aba occurs.

By applying Algorithm 2 to plant G, given w = a , we obtain �M�,1� � S . Then the observation w = a is CSO 
with respect to S. After that, w is updated and the observer net � computes M�,2 and also we have �M�,2� � S , 
indicating that the observation w = ab is CSO with respect to S. Finally, when event a occurs, the on-line algo-
rithm outputs “No” since �M�,3� ⊆ S holds, implying that the observation w = aba is not opaque with respect 
to S. According to Proposition 3, the LPN system G is non-CSO wrt S.

If Algorithm 2 never outputs “No”, we infer that all the previously generated observations are CSO. Once 
Algorithm 2 returns “No”, based on Definition 4, we conclude that G is non-CSO.

Off‑line verification. 
Next, we develop Algorithm 3 to construct the RG of an observer net, called a colored estima‑
tor, which can be used for the purpose of an off‑line CSO verification.

Let us now clarify how Algorithm 3 works. It takes G = (N ,M0,E, ℓ) as input and outputs an automaton 
EST� = (M�,E, �,M�,0) , also called an observer or a colored estimator. Initially, we build the observer net � 
of G. In the second step, we start constructing the colored estimator by initializing the set M� to M�,0 . Then, 
for all states M�,i ∈ M� that have not yet been explored (i.e., without tags) and all events e ∈ E , we check if the 
set of enabled transitions �(M�,i , e) is not empty. Then we move to the next state computation. This procedure 
runs iteratively until all states in M� are explored. Each state in M� represents set of markings consistent with 
observation. In the worst-case scenario, Algorithm 3 can compute the whole reachability set, suggesting that 
the space complexity can grow exponentially with the number of tokens at the initial marking. Algorithm 3, 
on the other hand, exploits the efficient mechanism of the observer net � , namely, simultaneous and recursive 
transition firing, to generate a straightforward state-estimator without constructing the reachability graph of G. 
The complexity analysis of the algorithm shows a reduced time complexity compared with other related works. 
Numerical results for approving this benefit are given in section “Computational complexity and comparison”.
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Proposition 4 Given an LPN G = (N ,M0,E, ℓ) , its observer net � = (N ,M�,0,E, ℓ, Cc , CM) , and a secret 
S ⊆ R(N ,M0) , iff each state M�,i of the colored estimator obtained by Algorithm 3 is not fully included in S, i.e., 
�M�,i� � S , then the system is current-state opaque wrt S.

Proof From Proposition 1, we have C(w) = �δ(M�,0,w)� . According to Definition 4, if we find at least a state 
M�,i of the colored estimator that satisfies �M�,i� ⊆ S , then the LPN is non-CSO wrt S; otherwise, the system 
is CSO.   �

Example 7 Consider the LPN system G shown in Fig. 1. Its observer net � is depicted in Fig. 5. The colored 
estimator of G, generated by Algorithm 3, is shown in Fig. 10. Let S = {M8,M13,M14,M18,M20} be a secret. We 
have �M�,5� ⊆ S , it follows from Proposition 4 that the LPN is non-CSO with respect to S.

Computational complexity and comparison
The effectiveness of the approach developed in section “Verification of current-state opacity” is investigated in this 
section by comparing it with the opacity verification methods recently proposed in the literature to demonstrate 
their advantages and limitations. It is based on the CPU time in seconds of a desktop computer running under 
the operating system Windows 10 with I7.4 CPU 3.40 GHz, 32 GB memory.

To do so, we apply the proposed on-line algorithm to a larger version of the LPN in Fig. 1, where the initial 
mark ing  i s  M0 = 15p1 .  L e t  S = {(4p3 + 11p5), (5p1 + 10p5), (8p1 + 3p5 + 4p6), (11p1 + 2p2 + 2p3),
(13p1 + 2p5), (14p1 + p5), (15p1)} be a secret. We use the standard opacity verification approach, which consists 
of computing the RG and converting the obtained RG into its equivalent DFA. After that, for each state of the 
observer (i.e., C(w) ), we check whether it is fully included in the secret or not. This method takes more than 
1.9× 104 seconds and shows that the considered LPN system is non-CSO. This computational overhead is mainly 
caused by the RG construction and conversion from an NFA to a DFA.

Now, let us implement the on-line algorithm to the same example. Table 1 shows the performance of Algo-
rithm 2. The first column represents the occurrence of an event. The second indicates the time (CPU seconds) 
required to run an observer net when an event occurs. The third column shows the algorithm’s outputs when an 
event occurs: “Y” if the observation is CSO and “N” otherwise. From Table 1, it is known that the observed event 
sequence w = aabaab is non-current-state opaque wrt S. Thus, by Definition 4, the LPN is non-CSO with respect 
to the given secret. Consequently, due to the short time taken to verify if an observation is CSO or non-CSO, 

Figure 10.  The colored estimator of the observer net.
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we conclude that the proposed approach can be used for real-time verification. However, this process can be 
computationally intensive, mainly when an observed word’s length is excessively long.

Examine the LPN system G in Fig. 1 with initial marking M0 = kp1 , where k ∈ N . Accordingly, we consider 
a family of nets rather than a single LPN, which is parameterized by the initial marking. Table 2 compares the 
colored estimator construction using the observer net, i.e., EST� , as shown in Algorithm 3, with the standard 
approach for observer construction, i.e., DFA construction using the RG of an LPN. The first column shows the 
value of k. The number of reachable markings is represented in Column 2. Columns 3 and 4 give the number 
of states of the standard observer and its construction time, respectively. Finally, Columns 5 and 6, respectively, 
expose the number of states in the observer net and the time of its construction. We use the notation “o.t.” (out of 
time) to indicate that the computation takes more than three hours to complete. Both methods are computation-
ally demanding in the worst case. However, the observer net’s advantage compared with the standard approach 
consists of a lower time cost and simplicity of construction.

Table 3 exposes the proposed observer net’s advantages compared with the recent works for the opacity veri-
fication problem. For this purpose, we choose three typical methods respectively presented  in10,27,28. The second 
column indicates the application framework. The third column shows the presence of an acyclicity assumption. 
Column 4 indicates whether the method applies to on-line and off-line settings. Column 5 shows whether we 
need a conversion from an NFA to a DFA. Finally, Column 6 shows the complexity of each method. Notice that 
the proposed approach outperforms the related works by getting rid of the acyclicity assumption; in addition, it 
provides a straightforward strategy for the estimator construction by avoiding the conversion from NFA to DFA. 
In the worst case, it has an exponential space complexity as it is possible to compute all the reachable markings. 
However, the observer net has a lower practical time overhead compared with related works due to using the 
new concepts of simultaneous and recursive transition enabling and firing.

Conclusions
This paper proposes a new PN subclass, called an observer net, to verify the current-state opacity of a DES mod-
eled with an LPN. We define the structure and dynamics (transition enabling and firing rules) for the observer 
net, which is useful in providing a rapid computation of the set of markings consistent with each observation. 
Then, we consider on-line and off-line settings for opacity verification. In the on-line setting, the proposed 
algorithm observes the event occurrence and then decides on-line if the observed word is CSO with respect to 
the predefined secret. In the off-line setting, we design an algorithm for constructing a colored (state) estimator 

Table 1.  Performance of Algorithm 2.

Event occurrence Time (s) CSO

Observable event a occurs 7.4× 10−2 Y

Observable event a occurs 6.7× 10−1 Y

Observable event b occurs 1.1× 101 Y

Observable event a occurs 2.6× 101 Y

Observable event a occurs 3.9× 101 Y

Observable event b occurs 5.7× 101 N

Table 2.  Performance of Algorithm 3.

k |RG| |ObsRG| Time (s) |EST�| Time (s)

2 21 6 0.8× 101 6 0.2× 101

4 126 15 1.4× 102 15 0.4× 102

8 1287 39 4.7× 103 39 1.4× 103

10 3003 – o.t. 54 5.2× 103

20 53,130 – o.t. 159 1.0× 104

40 – – o.t. – o.t.

Table 3.  Observer net for current-state opacity verification.

Framework Acyclic On-line/Off-line NFA to DFA Complexity
10 NFA Yes No Yes PSPACE-complete
27 LPN Yes No Yes PSPACE-complete
28 POPN Yes No No PSPACE-complete

Our work LPN Not required Yes No PSPACE-complete
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used for opacity verification rather than the conventional methods based on computing the state estimate (i.e., 
the set of consistent markings) by constructing a DFA from the reachability graph of a plant.

In the proposed model, every node of the colored estimator corresponds to the consistent markings, mak-
ing the reachability graph construction unnecessary. Finally, a comparison study is conducted to validate the 
effectiveness of this approach. Our future work includes exploring other security problems and potential vulner-
abilities such as unauthorized access, cyberattacks, intrusion detection, prevention, etc.

Data availability
The datasets generated and analysed during the current study are available in the GitHub repository, https:// 
github. com/ Labed AJalil/ Obser ver- net.
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