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Time inhomogeneous quantum 
dynamical maps
Dariusz Chruściński 

We discuss a wide class of time inhomogeneous quantum evolution which is represented by 
two-parameter family of completely positive trace-preserving maps. These dynamical maps are 
constructed as infinite series of jump processes. It is shown that such dynamical maps satisfy time 
inhomogeneous memory kernel master equation which provides a generalization of the master 
equation involving the standard convolution. Time-local (time convolution-less) approach is 
discussed as well. Finally, the comparative analysis of traditional time homogeneous versus time 
inhomogeneous scenario is provided.

The dynamics of an open quantum system1,2 is usually represented by the dynamical map {�t,t0 }t≥t0 , i.e. a fam-
ily of completely positive trace-preserving maps �t,t0 : B(H) → B(H)3,4 ( B(H) stands for the vector space of 
bounded linear operators acting on the system’s Hilbert space H ). In this paper we consider only finite dimen-
sional scenario and hence B(H) contains all linear operators. The map �t,t0 transforms any initial system’s state 
represented by a density operator ρ0 at an initial time t0 into a state at the current time t, i.e. ρt = �t,t0(ρ0) . 
Dynamical maps {�t,t0 }t≥t0 provide the powerful generalization of the standard Schrödinger unitary evolution 
Ut,t0ρ0U

†
t,t0 , where Ut,t0 is a family of unitary operators acting on H . A dynamical map is usually realized as a 

reduced evolution1

where Ut,t0 is a unitary operator acting on H⊗HE , ρE is a fixed state of the environment (living in HE ), and TrE 
denotes a partial trace (over the environmental degrees of freedom). The unitary Ut,t0 is governed by the total 
(in general time-dependent) ‘system + environment’ Hamiltonian Ht . Now, if Ht = H does not depend on time 
the reduced evolution (1.1) is time homogeneous (or translationally invariant), i.e. �t,t0 = �t−t0 (or equivalently 
�t+τ ,t0+τ = �t,t0 for any τ ). In this case one usually fixes t0 = 0 and simply considers one-parameter family 
of maps {�t}t≥0 . Such scenario is usually considered by majority of authors. The most prominent example of 
time homogeneous dynamical maps is the celebrated Markovian semigroup �t = eLt , where L denotes the 
Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) generator5,6 (cf. also the detailed exposition in7 and8 for a 
brief history)

with the (effective) system’s Hamiltonian H, noise operators Lk , and non-negative transition rates γk . It is well 
known, however, that semigroup evolution usually requires a series of additional assumptions and approxima-
tions like e.g. weak system-environment interaction and separation of natural time scales of the system and 
environment. Departure from a semigroup scenario calls for more refined approach which attracts a lot of 
attention in recent years and is intimately connected with quantum non-Markovian memory effects (cf. recent 
reviews9–17). To go beyond dynamical semigroup keeping translational invariance one replaces time independent 
GKLS generator L by a memory kernel {Kt}t≥0 and considers the following dynamical equation

where A ◦ B denotes composition of two maps. Equation (1.3) is often referred as Nakajima–Zwanzig master 
equation18,19. The very structure of the convolution Kt ∗�t does guarantee translational invariance. However, 
the property of complete positivity of �t is notoriously difficult as already observed in20–22. Time non-local 
master equation (1.3) were intensively studied by several authors23–35. Since the master equation (1.3) involving 

(1.1)�t,t0(ρ0) = TrE
(
Ut,t0ρ0 ⊗ ρEUt,t0

)
,

(1.2)L(ρ) = −i[H , ρ] +
∑

k

γk

(

LkρL
†
k −

1

2
{L

†
kLk , ρ}

)

,

(1.3)∂t�t =

∫ t

0
Kt−τ ◦�τdτ = Kt ∗�t , �t=0 = id,
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the convolution is technically quite involved one usually tries to describe the dynamics in terms of convolution-
less time-local approach involving a time dependent generator {Lt}t≥0 (cf. the recent comparative analysis36). 
Time-local generator Lt plays a key role in characterizing the property of CP-divisibility which is essential in the 
analysis of Markovianity. Note, however, that the corresponding propagator �t,s = �t ◦�

−1
s  is no longer time 

homogeneous unless Lt is time independent.
In this paper we go beyond time homogeneous case and consider the following generalization of (1.3)

which reduces to (1.3) if Kt,τ = Kt−τ . Equation (1.4) may be, therefore, considered as a time inhomogeneous 
Nakajima-Zwanzig master equation. Such description is essential whenever the ‘system + environment’ Ham-
iltonian Ht does depend on time. Note, that formally if Kt,τ = Ltδ(t − τ) , then (1.4) reduces to time-local but 
inhomogeneous master equation

and the corresponding solution �t,t0 is CPTP for all t and t0 with t > t0 if and only if Lt is of GKLS form 
for all t ∈ R1,2,7. This is just inhomogeneous generalization of semigroup evolution and it is often called an 
inhomogeneous semigroup7. Note, that contrary to the homogeneous scenario where the time-local generator 
Lt = [∂t�t ] ◦�

−1
t  is defined only for t ≥ 0 the time dependent generator Lt in (1.5) is defined now for all t ∈ R.

In this paper we propose a particular representation of dynamical maps {�t,t0 }t≥t0 which by construction 
satisfy (1.4). Hence, it may be also considered as a particular construction of a legitimate class of memory kernels 
Kt,τ giving rise to CPTP dynamical maps. Clearly, it is not the most general construction. However, the pro-
posed representation possesses a natural physical interpretation in terms of quantum jumps. Time-local (time 
convolution-less) approach is discussed as well. It turns out that a time dependent generator also depends upon 
the initial time t0 , i.e. one has a two-parameter family of generators {Lt,t0 }t≥t0 . Finally, the comparative analysis 
of traditional time homogeneous versus time inhomogeneous scenario is provided.

Time homogeneous evolution
Markovian semigroup.  Consider a Markovian semigroup governed by the time independent master equa-
tion

where L stands for the GKLS generator (1.2), and t0 is an arbitrary initial time. It is clear that since L does not 
depend on time the dynamical map depends upon the difference t − t0 , i.e. the solution of (2.1) defines one-
parameter semigroup �t,t0 = �t−t0 = e(t−t0)L . Usually, one assumes t0 = 0 and simply writes �t . Observe, that 
any GKLS generator (1.2) can be represented as follows

where �,Z : B(H) → B(H) are linear maps defined by

with C = iH + 1
2

∑

k L
†
kLk.

Proposition 1  The solution of Eq. (2.1) can be represented via the following series

where �(0)
t = e−Zt.

Proof  let us introduce a perturbation parameter � and a one-parameter family of generators

such that L = L(�=1) . We find a solution to

as a perturbation series

Inserting the series (2.7) into (2.6) one finds the following infinite hierarchy of equations

(1.4)∂t�t,t0 =

∫ t

t0

Kt,τ ◦�τ ,t0dτ , �t0,t0 = id,

(1.5)∂t�t,t0 = Lt ◦�t,t0 , �t0,t0 = id,

(2.1)∂t�t,t0 = L ◦�t,t0 , �t0,t0 = id,

(2.2)L = �− Z ,

(2.3)�(ρ) =
∑

k

γkLkρL
†
k , Z(ρ) = Cρ + ρC†,

(2.4)�t = �
(0)
t +�

(0)
t ∗� ◦�

(0)
t +�

(0)
t ∗� ◦�

(0)
t ∗� ◦�

(0)
t + · · · ,

(2.5)L
(�) := ��− Z ,

(2.6)∂t�t = L
(�) ◦�t , �t=0 = id,

(2.7)�t = �
(0)
t + ��

(1)
t + �

2�
(2)
t + · · · .
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with initial conditions

It is clear that �(0)
t = e−Zt , and

Finally, fixing � = 1 the series (2.7) reduces to (2.4). 	�  �

Note, that (2.4) is indeed time homogeneous. One finds

and

does depend upon ‘ t − t0 ’. A series (2.4) is an alternative representation for the conventional exponential 
representation

Note, that contrary to (2.13) each term in (2.4) is completely positive and has a clear physical interpretation: 
an ℓ th term reads

and it can be interpreted as follows: there are ℓ quantum jumps up to time ‘t’ at {t1 ≤ t2 ≤ . . . ≤ tℓ} represented by 
a completely positive map � . Between jumps the system evolves according to (unperturbed) completely positive 
maps �(0)

t2−t1
,�

(0)
t3−t2

, . . . ,�
(0)
tℓ−tℓ−1

 . The series (2.4) represents all possible scenario of ℓ jumps for ℓ = 0, 1, 2, . . . . By 
construction, the resulting completely positive map �t is also trace-preserving. One often calls (2.4) a quantum 
jump representation of a dynamical map37–39. Note, however, that truncating (2.4) at any finite ℓ violates trace-
preservation since processes with more than ℓ jumps are not included. The standard exponential representation 
(2.13) does not have any clear interpretation. Each separate term tkLk does annihilate the trace but is not com-
pletely positive. Only the infinite sum of such terms gives rise to completely positive (and trace-preserving) map.

Corollary 1  Introducing two completely positive maps Qt := � ◦�
(0)
t  and Pt := �

(0)
t ◦� a series (2.4) can be 

rewritten as follows

To summarise: the Markovian semigroup represented in (2.4) is constructed out of the unperturbed completely 
positive and trace non-increasing map �(0)

t = e−Zt and the jump operator represented by a completely positive 
map � . These two objects are constrained to satisfy TrL(ρ) = 0 , where L = �− Z defines a GKLS generator.
Beyond a semigroup.  How to generalize (2.4) beyond a semigroup such that time homogeneity is pre-
served? Suppose that �(0)

t  is an arbitrary completely positive and trace non-increasing map satisfying �(0)
t=0 = id . 

Let {Zt}t≥0 be a family of maps such that

(2.8)

∂t�
(0)
t =− Z ◦�

(0)
t ,

∂t�
(1)
t =− Z ◦�

(1)
t +� ◦�

(0)
t ,

...

∂t�
(ℓ)
t =− Z ◦�

(ℓ)
t +� ◦�

(ℓ−1)
t ,

...

(2.9)�
(0)
t=0 = id , �

(ℓ)
t=0 = 0 , (ℓ ≥ 1).

(2.10)�
(ℓ+1)
t = �

(0)
t ∗� ◦�

(ℓ)
t = �

(0)
t ∗� ◦�

(0)
t ∗ . . . ∗� ◦�

(0)
t

︸ ︷︷ ︸

ℓ terms

.

(2.11)�t−t0 = �
(0)
t−t0

+�
(0)
t−t0

∗� ◦�
(0)
t−t0

+�
(0)
t−t0

∗� ◦�
(0)
t−t0

∗� ◦�
(0)
t−t0

+ · · · ,

(2.12)At−t0 ∗ Bt−t0 :=

∫ t

t0

At−τ ◦ Bτ−t0dτ =

∫ t−t0

0
At−τ ◦ Bτdτ ,

(2.13)�t = id + Lt +
t2

2
L
2 +

t3

3!
L
3 + · · · = id + t(�− Z)+

t2

2
(�− Z)2 +

t3

3!
(�− Z)3 + · · · .

(2.14)

�
(0)
t ∗� ◦�

(0)
t ∗ . . . ∗� ◦�

(0)
t

︸ ︷︷ ︸

ℓ terms

=

∫ t

0
dtℓ �

(0)
t−tℓ

◦� ◦

∫ tℓ

0
dtℓ−1 �

(0)
tℓ−tℓ−1

◦� . . . ◦� ◦

∫ t2

0
dt1 �

(0)
t2−t1

◦� ◦�
(0)
t1
,

(2.15)
�t =�

(0)
t +�

(0)
t ∗

(

Qt + Qt ∗ Qt + Qt ∗ Qt ∗ Qt + · · ·

)

=�
(0)
t +

(

Pt + Pt ∗ Pt + Pt ∗ Pt ∗ Pt + · · ·

)

∗�
(0)
t .

(2.16)∂t�
(0)
t = −Zt ∗�

(0)
t ,
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that is, Zt is a time non-nonlocal generator of �(0)
t  . Note, that �(0)

t  defines a semigroup if and only if Zt = δ(t)Z . 
Consider a family of jump operators represented by completely positive maps {�t}t≥0 . Define now the following 
generalization of (2.4)

that is, one replaces � ◦�
(0)
t  by the convolution �t ∗�

(0)
t  . By construction (2.17) represents a completely posi-

tive map being an infinite sum of completely positive maps

Also a similar quantum jump interpretation still remains true. One finds

Between jumps the system evolves according to (unperturbed) completely positive maps 
�

(0)
t2−t1

,�
(0)
t3−t2

, . . . ,�
(0)
tℓ−tℓ−1

 which are no longer semigroups.

Proposition 2  The map represented by (2.17) satisfies the following memory kernel master equation

where

The map �t is trace-preserving if and only if Kt is trace annihilating.

Proof  the proof goes the same lines as that of Proposition 1. Introducing

and inserting (2.7) into

one obtains the following infinite hierarchy of equations

with initial conditions (2.9). We show that �(ℓ)
t = �

(0)
t ∗�

(ℓ−1)
t  is a solution to (2.24) which immediately implies 

(2.18). Indeed, one has

and hence using ∂t�(0)
t = −Zt ∗�

(0)
t  , one obtains

which proves the claim. 	�  �

Remark 1  Usually on solves the time homogeneous differential equations using the technique of Laplace trans-
form. We provide the alternative proof of Proposition 2 in the Supplementary Information. Here, we provided 
the proof which can be easily generalized to inhomogeneous case where the Laplace transform technique can 
not be directly applied.

Remark 2  It is clear that if �(0)
t = e−Zt is a semigroup, i.e. Zt = δ(t)Z , then �t = δ(t)� , and hence

(2.17)�t = �
(0)
t +�

(0)
t ∗�t ∗�

(0)
t +�

(0)
t ∗�t ∗�

(0)
t ∗�t ∗�

(0)
t + · · · ,

(2.18)�
(ℓ)
t = �

(0)
t ∗�t ∗�

(0)
t ∗ . . . ∗�t ∗�

(0)
t

︸ ︷︷ ︸

ℓ terms

, ℓ = 1, 2, . . . .

(2.19)�
(ℓ)
t =

∫ t

0
dtℓ�

(0)
t−tℓ

◦ . . . ◦

∫ t3

0
dt2 �t3−t2 ◦

∫ t2

0
dt1 �

(0)
t2−t1

◦

∫ t1

0
dτ �t1−τ ◦�

(0)
τ .

(2.20)∂t�t = Kt ∗�t , �t=0 = id,

(2.21)Kt = �t − Zt .

(2.22)K
(�)
t = ��t − Zt ,

(2.23)∂t�t = K
(�)
t ∗�t , �t=0 = id,

(2.24)

∂t�
(0)
t =− Zt ∗�

(0)
t ,

∂t�
(1)
t =− Zt ∗�

(1)
t +�t ∗�

(0)
t ,

...

∂t�
(ℓ)
t =− Zt ∗�

(ℓ)
t +�t ∗�

(ℓ−1)
t ,

...

(2.25)∂t�
(ℓ)
t = ∂t [�

(0)
t ∗�t ∗�

(ℓ−1)
t ] = �

(0)
t=0 ◦ [�t ∗�

(ℓ−1)
t ] + [∂t�

(0)
t ] ∗�t ∗�

(ℓ−1)
t ,

(2.26)∂t�
(ℓ)
t = �t ∗�

(ℓ−1)
t − Zt ∗�

(0)
t ∗�t ∗�

(ℓ−1)
t = �t ∗�

(ℓ−1)
t − Zt ∗�

(ℓ)
t ,

(2.27)Kt = δ(t)(�− Z) = δ(t)L.
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Corollary 2  Introducing two completely positive maps Qt := �t ∗�
(0)
t

 and Pt := �
(0)
t ∗�t a series (2.17) can be 

rewritten as follows

or, equivalently,

that is, one has exactly the same representation as in the case of semigroup (2.15). The only difference is the defini-
tion of Qt and Pt in terms of �t and �(0)

t  . Note, however, that if �t = δ(t)� , then �t ∗�
(0)
t = � ◦�

(0)
t  , i.e. one 

recovers the same relation as in Corollary 1.

Remark 3  It should be stressed that even when �t is not completely positive, but Qt = �t ∗�
(0)
t  is completely 

positive, then (2.28) is completely positive. Similarly, when Pt := �
(0)
t ∗�t is completely positive, then (2.29) 

is completely positive. Hence, complete positivity of �t is sufficient but not necessary for complete positivity of 
the dynamical map �t . Note, however, if �t is not completely positive the intuitive interpretation of the series 
(2.17) in terms of quantum jumps is no longer valid.

Time inhomogeneous evolution
Time inhomogeneous semigroup.  Consider now the dynamical map {�t,t0 }t≥t0 governed by the time 
dependent master equation

where Lt stands for the time dependent GKLS generator, and t0 is an arbitrary initial time. The corresponding 
solution has the well known structure

where T  stands for chronological time ordering. The two-parameter family of maps {�t,t0 }t≥t0 satisfies the fol-
lowing composition law

for any triple {t1, t2, t3} . Such evolution is evidently CP-divisible. This very property is a generalization of the 
standard (homogeneous) semigroup property

and hence one often calls such maps an inhomogeneous semigroup.
Let us represent the time dependent generator as follows

where now

with C(t) = iH(t)+ 1
2

∑

k γk(t)L
†
k(t)Lk(t) . To find the corresponding jump representation of �t,t0 let us intro-

duce the following (inhomogeneous) generalization of the convolution.

Definition 1  For any two families of maps At,t0 and Bt,t0

Note, that when At,t0 = At−t0 and Bt,t0 = Bt−t0 , then

Proposition 3  The convolution (3.7) is associative

for any three families At,t0 , Bt,t0 and Ct,t0.

(2.28)�t = �
(0)
t +�

(0)
t ∗

(

Qt + Qt ∗ Qt + Qt ∗ Qt ∗ Qt + · · ·

)

,

(2.29)�t = �
(0)
t +

(

Pt + Pt ∗ Pt + Pt ∗ Pt ∗ Pt + · · ·

)

∗�
(0)
t ,

(3.1)∂t�t,t0 = Lt ◦�t,t0 , �t0,t0 = id,

(3.2)�t,t0 = T exp

(∫ t

t0

Lτdτ

)

,

(3.3)�t3,t2 ◦�t2,t1 = �t3,t1 ,

(3.4)�t3−t2 ◦�t2−t1 = �t3−t1 ,

(3.5)Lt = �t − Zt ,

(3.6)�t(ρ) =
∑

k

γk(t)Lk(t)ρL
†
k(t), Zt(ρ) = C(t)ρ + ρC†(t),

(3.7)(A⊛ B)t,t0 ≡ At,t0 ⊛ Bt,t0 :=

∫ t

t0

At,τ ◦ Bτ ,t0 dτ .

(3.8)(A⊛ B)t,t0 =

∫ t

t0

At−τ ◦ Bτ−t0 dτ =

∫ t−t0

0
At−u ◦ Bu du = (A ∗ B)t−t0 .

(3.9)([A⊛ B]⊛ C)t,t0 = (A⊛ [B⊛ C])t,t0 ,
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See Supplementary Information for the proof.

Proposition 4  The solution to (3.1) can be represented via the following series

where �(0)
t,t0 = T exp

(

−
∫ t

t0
Zτdτ

)

.

Proof  the proof is a generalization of the proof of Proposition 1. Consider the family of generators

We find a solution to

as a perturbation series

Inserting the series (3.13) into (3.12) one finds the following hierarchy of dynamical equations:

with initial conditions

Clearly, the above hierarchy provides a generalization of (2.8) for the inhomogeneous scenario. Now,

defines an inhomogeneous semigroup which is completely positive (but not trace-preserving). As before it is 
sufficient to show that

solves (3.14). One finds

Using �(0)
t,t = id , and ∂t�(0)

t,t0 = −Zt ◦�
(0)
t,t0 , one gets

and finally, observing that

one completes the proof. 	�  �

For an alternative proof which does not use properties of the convolution ‘ ⊛ ’ cf. Supplementary Information.
Beyond an inhomogeneous semigroup.  Suppose now that for any initial time �(0)

t,t0 is an arbitrary com-
pletely positive and trace non-increasing map satisfying �(0)

t0,t0 = id . Let {Zt,t0 }t≥t0 be a family of maps such that

that is {Zt,t0 }t≥t0 is a inhomogeneous generalization of {Zt}t≥0 . Now, Zt,t0 does not only depends upon the cur-
rent time ‘t’ but also upon the initial time t0 . Define the following generalization of (3.10)

(3.10)�t,t0 = �
(0)
t,t0 +�

(0)
t,t0 ⊛ (�t ◦�

(0)
t,t0)+�

(0)
t,t0 ⊛ (�t ◦�

(0)
t,t0)⊛ (�t ◦�

(0)
t,t0)+ · · · ,

(3.11)L
(�)
t := ��t − Zt .

(3.12)∂t�t,t0 = L
(�)
t ◦�t,t0 , �t0,t0 = id,

(3.13)�t,t0 = �
(0)
t,t0 + ��

(1)
t,t0 + �

2�
(2)
t,t0 + · · · .

(3.14)

∂t�
(0)
t,t0 =− Zt ◦�

(0)
t,t0 ,

∂t�
(1)
t,t0 =− Zt ◦�

(1)
t,t0 +�t ◦�

(0)
t,t0 ,

...

∂t�
(ℓ)
t,t0 =− Zt ◦�

(ℓ)
t,t0 +�t ◦�

(ℓ−1)
t,t0 ,

...

(3.15)�
(0)
t0,t0 = id, �

(ℓ)
t0,t0 = 0 (ℓ > 0).

(3.16)�
(0)
t,t0 = T exp

(

−

∫ t

t0

Zτdτ

)

,

(3.17)�
(ℓ)
t,t0 = �

(0)
t,t0 ⊛ (�t ◦�

(ℓ−1)
t,t0 ),

(3.18)∂t�
(ℓ)
t,t0 = �

(0)
t,t ◦�t ◦�

(ℓ−1)
t,t0 + [∂t�

(0)
t,t0 ]⊛ (�t ◦�

(ℓ−1)
t,t0 ).

(3.19)∂t�
(ℓ)
t,t0 = �t ◦�

(ℓ−1)
t,t0 − [Zt ◦�

(0)
t,t0 ]⊛ (�t ◦�

(ℓ−1)
t,t0 )

(3.20)[Zt ◦�
(0)
t,t0 ]⊛ (�t ◦�

(ℓ−1)
t,t0 ) = Zt ◦

[

�
(0)
t,t0 ⊛ (�t ◦�

(ℓ−1)
t,t0 )

]

= Zt ◦�
(ℓ)
t,t0 ,

(3.21)∂t�
(0)
t,t0 = −Zt,t0 ⊛�

(0)
t,t0 ,
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where {�t,t0 }t≥t0 is a family of completely positive maps which reduces to {�t}t≥0 in the time homogeneous case. 
Hence, one replaces �t ◦�

(0)
t,t0 by the convolution �t,t0 ⊛�

(0)
t,t0 . By construction Eq. (3.22) represents a completely 

positive map being an infinite sum of completely positive maps

Clearly, quantum jump interpretation still remains true.

Proposition 5  The map represented by (3.22) satisfies the following memory kernel master equation

where

The map �t,t0 is trace-preserving if and only if Kt,t0 is trace annihilating.

Proof  the proof goes the same lines as that of Propositions 2 and 4. One easily finds the following hierarchy of 
equations for maps �(ℓ)

t,t0 defining the series (3.13):

with initial conditions (3.15). Clearly, the above hierarchy provides a generalization of (2.24) for the inhomoge-
neous scenario. It is enough to prove that

One has

Using �(0)
t,t = id , and ∂t�(0)

t,t0 = −Zt,t0 ⊛�
(0)
t,t0 , one gets

and hence

which ends the proof. 	�  �

Corollary 3  Introducing two completely positive maps Qt,t0 := �t,t0 ⊛�
(0)
t,t0 and Pt,t0 := �

(0)
t,t0 ⊛�t,t0 a series (2.17) 

can be rewritten as follows

or, equivalently,

(3.22)�t,t0 = �
(0)
t,t0 +�

(0)
t,t0 ⊛�t,t0 ⊛�

(0)
t,t0 +�

(0)
t,t0 ⊛�t,t0 ⊛�

(0)
t,t0 ⊛�t,t0 ⊛�

(0)
t,t0 + · · · ,

(3.23)
�

(ℓ)
t,t0 = �

(0)
t,t0 ⊛�t,t0 ⊛�

(0)
t,t0 ⊛ . . .⊛�t,t0 ⊛�

(0)
t,t0

︸ ︷︷ ︸

ℓ terms

, ℓ = 1, 2, . . . .

(3.24)∂t�t,t0 = Kt,t0 ⊛�t,t0 , �t0,t0 = id,

(3.25)Kt,t0 = �t,t0 − Zt,t0 .

(3.26)

∂t�
(0)
t,t0 =− Zt,t0 ⊛�

(0)
t,t0 ,

∂t�
(1)
t,t0 =− Zt,t0 ⊛�

(1)
t,t0 +�t,t0 ⊛�

(0)
t,t0 ,

...

∂t�
(ℓ)
t,t0 =− Zt,t0 ⊛�

(ℓ)
t,t0 +�t,t0 ⊛�

(ℓ−1)
t,t0 ,

...

(3.27)�
(ℓ)
t,t0 = �

(0)
t,t0 ⊛�t,t0 ⊛�

(ℓ−1)
t,t0 .

(3.28)∂t�
(ℓ)
t,t0 = �

(0)
t,t ◦�t,t0 ⊛�

(ℓ−1)
t,t0 + [∂t�

(0)
t,t0 ]⊛�t,t0 ⊛�

(ℓ−1)
t,t0 .

(3.29)∂t�
(ℓ)
t,t0 = �t,t0 ⊛�

(ℓ−1)
t,t0 − Zt,t0 ⊛

(

�
(0)
t,t0 ⊛�t,t0 ⊛�

(ℓ−1)
t,t0

)

,

(3.30)∂t�
(ℓ)
t,t0 = �t,t0 ⊛�

(ℓ−1)
t,t0 − Zt,t0 ⊛ ∂t�

(ℓ)
t,t0 ,

(3.31)�t,t0 = �
(0)
t,t0 +�

(0)
t,t0 ⊛

(

Qt,t0 + Qt,t0 ⊛ Qt,t0 + Qt,t0 ⊛ Qt,t0 ⊛ Qt,t0 + · · ·

)

,

Table 1.   Representation of dynamical maps: time homogeneous versus inhomogeneous case

Time homogeneous Time inhomogeneous

General map �
(ℓ)
t−t0

= �
(0)
t−t0

∗�t−t0 ∗�
(ℓ−1)
t−t0

�
(ℓ)
t,t0

= �
(0)
t,t0

⊛�t,t0 ⊛�
(ℓ−1)
t,t0

Markovian semigroup �
(ℓ)
t−t0

= �
(0)
t−t0

∗ (� ◦�
(ℓ−1)
t−t0

) �
(ℓ)
t,t0

= �
(0)
t,t0

⊛ (�t ◦�
(ℓ−1)
t,t0

)
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They reduce to (2.28) and (2.29) in the time homogeneous case.

Table 1 summarizes the construction of time homogeneous versus time inhomogeneous dynamical maps.

Time local approach
Very often describing the evolution of an open system one prefers to use a time-local (or so-called convolutionless 
(TCL)) approach1. Formally, in the time homogeneous case given a dynamical map {�t}t≥0 one defines the cor-
responding time-local generator Lt := [∂t�t ] ◦�

−1
t  (assuming that �t is invertible). This way the map �t satisfies

This procedure might be a bit confusing since (4.1) coincides with (3.1) for the inhomogeneous map �t,t0 . To 
clarify this point let us introduce again an initial time and consider �t,t0 = �t−t0 . Now, the time-local generator 
reads

that is, the generator does depend upon the initial time40. It implies that the corresponding propagators

also does depend upon t0 . Clearly, fixing t0 = 0 this fact is completely hidden. The dependence upon t0 drops out 
only in the semigroup case when Lt−t0 = L.

Similar analysis may be applied to inhomogeneous scenario as well. Now, instead of convolution (3.21) one 
may define a time-local generator

such that �t,t0 satisfies the following inhomogeneous TCL master equation

Again, the corresponding propagator

also does depend upon t0 . Hence, the local composition law

holds only if the above propagators are defined w.r.t. the same initial time. Otherwise, composing the propaga-
tors does not have any sense. Equation (4.5) reduces to (3.1) only if Lt,t0 does not depend upon t0 . In this case 
one recovers an inhomogeneous semigroup and Lt,t0 = Lt.

Conclusions
We have constructed a family of time inhomogeneous dynamical maps {�t,t0 }t≥0 represented by the following 
infinite series

where each single map �(ℓ)
t,t0 is completely positive. Moreover, the construction does guarantee that �t,t0 is trace-

preserving. Each map �(ℓ)
t,t0 represents a process with ℓ quantum jumps occurring in the interval [t0, t] . The ‘free’ 

(3.32)�t,t0 = �
(0)
t,t0 +

(

Pt,t0 + Pt,t0 ⊛ Pt,t0 + Pt,t0 ⊛ Pt,t0 ⊛ Pt,t0 + · · ·

)

⊛�
(0)
t,t0 .

(4.1)∂t�t = Lt ◦�t .

(4.2)Lt−t0 := [∂t�t−t0 ] ◦�
−1
t−t0

,

(4.3)Vt,s := �t−t0 ◦�
−1
s−t0

= T exp

(∫ t

s

Lτ−t0dτ

)

= T exp

(∫ t−t0

s−t0

Lτdτ

)

,

(4.4)Lt,t0 := [∂t�t,t0 ] ◦�
−1
t,t0

,

(4.5)∂t�t,t0 = Lt,t0 ◦�t,t0 .

(4.6)Vt,s := �t,t0 ◦�
−1
s,t0

= T exp

(∫ t

s

Lτ ,t0dτ

)

,

(4.7)Vt,s ◦ Vs,u = Vt,u,

(5.1)�t,t0 = �
(0)
t,t0 +�

(1)
t,t0 +�

(2)
t,t0 + · · · ,

Table 2.   Dynamical equations: time homogeneous versus inhomogeneous case

Time homogeneous Time inhomogeneous

Memory kernel ME ∂t�t−t0 = Kt−t0 ∗�t−t0 ∂t�t,t0 = Kt,t0 ⊛�t,t0

Markovian semigroup Kt−t0 = δ(t − t0)L Kt,τ = δ(t − τ)Lt

TCL ME ∂t�t−t0 = Lt−t0 ◦�t−t0 ∂t�t,t0 = Lt,t0 ◦�t,t0

TCL generator Lt−t0 = [∂t�t−t0 ] ◦�
−1
t−t0

Lt,t0 = [∂t�t,t0 ] ◦�
−1
t,t0

New ME ∂t�t−t0 = Kt−t0 ∗�t−t0 + ∂t�
(0)
t−t0

∂t�t,t0 = Kt,t0 ⊛�t,t0 + ∂t�
(0)
t,t0
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evolution (no jumps) corresponds to �(0)
t,t0 . Quantum jumps are represented by a family of completely positive 

maps {�t,t0 }t≥t0 such that �(ℓ)
t,t0 is represented as in the Table 1.

In the time-homogeneous case the above representation simplifies to

with a similar interpretation. The dynamical map �t,t0 satisfies the corresponding Nakajima-Zwanzig memory 
kernel master equation or equivalently time-local (TCL) master equation displayed in the Table 2.

Interestingly, apart from Nakajima-Zwanzing memory kernel master equation the map �t,t0 satisfies the 
following dynamical equation

where the new kernel Kt,t0 is defined by

that is, it is constructed in terms of the ‘free’ evolution represented by �(0)
t,t0 and the jump operators �t,t0 (the 

details of the derivation are presented in the Supplementary Information).
This is very general class of legitimate quantum evolutions and corresponding dynamical equations. It would 

be interesting to apply the above scheme to discuss time inhomogeneous semi-Markov processes28,29,33,41 and 
collision models (cf.42 for the recent review).

Data availibility
All data generated or analysed during this study are included in this published article and its supplementary 
information file.
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