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Heterogeneous graph construction 
and HinSAGE learning 
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Graph representation learning is a method for introducing how to effectively construct and learn 
patient embeddings using electronic medical records. Adapting the integration will support and 
advance the previous methods to predict the prognosis of patients in network models. This study aims 
to address the challenge of implementing a complex and highly heterogeneous dataset, including the 
following: (1) demonstrating how to build a multi‑attributed and multi‑relational graph model (2) and 
applying a downstream disease prediction task of a patient’s prognosis using the HinSAGE algorithm. 
We present a bipartite graph schema and a graph database construction in detail. The first constructed 
graph database illustrates a query of a predictive network that provides analytical insights using a 
graph representation of a patient’s journey. Moreover, we demonstrate an alternative bipartite model 
where we apply the model to the HinSAGE to perform the link prediction task for predicting the event 
occurrence. Consequently, the performance evaluation indicated that our heterogeneous graph model 
was successfully predicted as a baseline model. Overall, our graph database successfully demonstrated 
efficient real‑time query performance and showed HinSAGE implementation to predict cardiovascular 
disease event outcomes on supervised link prediction learning.

The management of healthcare data is constantly transforming to assist the healthcare industry in increasingly 
productive  ways1–3. In traditional electronic medical record (EMR) systems, data are organized and managed in 
relational database systems, where there is no association between the data  stored4. To illustrate, multiple tables 
are linked to each other with foreign keys attached in a column where the relation is not focused on the data 
points but between the data tables. Contrastingly, graph databases link the data records to organize data features 
more effectively by focusing more on the data points providing emphasis on the  relationships5,6. In these, entities 
and links are used to increase space efficiency and provide a faster querying period for large datasets compared 
to relational  mapping7. There are three major advantages to applying graph databases: Firstly, a graph allows the 
total visualization of the full picture, which delivers simplified or alternative perspectives to otherwise complex 
problems. Secondly, a graph enables a deeper understanding of abstract relationships. Lastly, a graph facilitates 
the understanding of the information flow and applies to improve the details.

A substantial number of studies have been performed on constructing graph representation learning in 
 biomedicine8–13. However, EMR data currently include four characteristics that make it difficult to be converted 
into a network formation: (1) EMR has many different types of datasets, creating separate entity types. (2) Diver-
gent datasets of node types have non-identical sizes and types of property sets. (3) Multiple types of edges are 
needed to correlate with the following entity types. (4) Multiple datasets are inherently linked by unique IDs. 
Due to the aforementioned reasons, applying the combined mechanism of multi-modal, multi-attributed, and 
multi-relational aspects of the EMR into the representation is still in development to fully convey the necessities 
of datasets into a graph structure.

Recently, considerable studies have been conducted in medicine focusing on building a knowledge graph or 
graph representations in  medicine14–18. Indeed, a bipartite network database was constructed from electronic 
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health records with heart failure  patients19, and the network analysis of the relationships between patients and 
providers was demonstrated by calculating the network statistics. However, this study has shortcomings in spend-
ing a significant amount of time during the query. Moreover, a highly granular semantic knowledge graph built 
on rare diseases from  EMR20 emphasized the importance of semi-automation schema creating more granular 
semantic relationships. The study produced increased concept correlations, nevertheless, the dataset includes 
less than a thousand tumor cases that lack validation. Alternatively, an embedding method of medical knowledge 
graphs using probability values was implemented for quadruplet  structures21. Although this study proved that 
the prediction task performs better when the entity types are indicated, the evaluation dataset contained limited 
relationship types due to non-automatic labor-intensive works. Contrastingly, to supplement the effortful task, 
we created a graph-building process automated for labeling diverse link types alongside solved memory storage 
issues.

Moreover, to utilize the valuable assets from medical datasets, applications in a graph neural network are 
gaining popularity in personalized health and predictive medicine. For example, heterogeneous similarity graph 
neural network was used to analyze health records in terms of temporal structure aspects by forming multiple 
subgraphs as input for  prediction22. Similarly, ME2Vec hierarchical graph predicts patients’ clinical outcomes 
on the interactions of calculated  entities23. However, to ease the graph learning process, we instead handled all 
hierarchical sequences during the pre-processing step and enabled its implementation regardless of data types and 
sizes. Moreover, In a graph model for population diagnosis, individual feature information was learned in binary 
classification tasks using graph convolutional  networks24. To further extend the potential for applying attributes 
to the nodes, classification was performed at higher precision when distinct node attributes were added to each 
partition of a bipartite  network25–27. Nonetheless, these researches used data source specific to claims data, which 
generally contain simple datasets compared to EMR data, thereby, limiting the data inclusion for reliable estima-
tion in predictions. Additionally, studies have tackled integrating heterogeneous structured graphs combined 
with the attribute  aspects28–32. Yet, the methods depicted in these studies do not fit well with the properties of the 
EMR in network integration. To elaborate, the EMR dataset has a unique structure that various types of datasets 
(medication, laboratory, physical, visits, etc.) are associated with each other to represent patients’ medical status 
and also connected by the anonymous key. However, previously mentioned graphs use genomics, proteomics, 
molecular biology, or movie review dataset that does not necessarily require the interconnection between the 
nodes, thereby, generating a network where attributes need no special linkage.

Here, we suggest the methodologies for the integration of heterogeneous medical entities and relationships 
to predict a patient’s outcome from a graph constructed based solely on the EMR dataset. Our main contribu-
tions are.

• The proposal of a novel approach to construct a heterogeneous bipartite graph model from EMR with attrib-
utes on nodes and edges. Using an effective visualization, in conjunction with a patient-centered graph 
method allows the latent associations among the population to be fully investigated and analyzed.

• We established applied downstream link prediction tasks based on the HinSAGE algorithm to demonstrate 
the efficient disease predictive model. This framework shows that the performance gained from EMR sup-
ports a sufficient significance to predict the outcome of an event within the patients and advocates for overall 
healthcare.

Furthermore, we proposed the method to build a graph database integrating EMR data. The EMR-embedded 
graph model was then applied to network learning using the HinSAGE algorithm. In this study, we illustrated 
the structure of the graph database and showed the query results to demonstrate the efficiency of the model. 
This research provides insights into physicians’ decision-making by predicting disease occurrence based on the 
performance of our implementation.

Methods
An overview of the study methods are illustrated in Fig. 1. The datasets are mapped with the International Clas-
sification of Diseases, 10th Revision (ICD-10) code of the subject and imported with comma-separated value 
files. The extracted files were preprocessed using Python, then implemented for further analysis using Neo4j 
and the Stellar graph library. The graph network on Neo4j was based on Cypher query language. We used Stellar 
graph33 version 0.11.1 and Neo4j34 version 4.2.5.

In this study, two types of graph models were built based on different structures and analyzing purposes. The 
first graph was created on Neo4j for embedding patient records on EMR, which can then be used to efficiently 
visualize the patient journey and to find the associated data points with relatively easy query input. Our property 
graph was built with semantic mappings on shallow network embedding. Alternatively, the Stellar graph was 
used to create the second graph, where neural network prediction was performed.

Data sources and the study cohort. The CardioNet database was composed of EMR data from a total of 
53,841 patients with various cardiovascular diseases (CVD) within Seoul Asan Medical Center in South Korea. 
A patient population that had previously been admitted to the cardiology department, diagnosed with angina 
(ICD-10 code: I20), who never had been diagnosed with myocardial infarction (MI), stroke, and heart fail-
ure were selected. Inpatients alongside data from emergency-room encounters between January 1st, 2000, and 
December 31st, 2016 were included in the patient cohort; Outpatients were excluded.

Diagnosis, laboratory, echocardiography, physical, medication, surgery, visit and smoke datasets were 
extracted from CardioNet (Supplementary Fig. 1). The ICD-1035 was used to identify each patient’s health con-
dition at admission. All patients are de-identified to the hospital’s privacy rules, hence the individuals are given 
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a unique patient ID which acts as a key linkage between the datasets. Individuals who were admitted with angina 
were observed for five years following an event to examine whether the patient suffered from further situations 
including death, MI, stroke, or heart failure as shown in Fig. 2. This study obtained approval and waived the 
written informed consent from the Institutional Review Boards of Asan Medical Center (No. 2021-0303). All 
experiments were performed in accordance with relevant guidelines and regulations.

Graph construction with Neo4j. Graph schema construction. Several different schemas were considered 
during the design phase, which included a process of trial and error of the structures until the most compre-
hensive schema was produced. To evaluate the best fit schema, we considered factors such as, whether the graph 
would be able to integrate different types of attributes that belonged to individual nodes and to represent dif-
ferent nodes. Also, every node has to somewhat relate to the patient to provide the attributes of each patient’s 
medical information. Consequently, the current model was able to satisfy the aforementioned criteria. During 
the designing process, we observed the following graph schemas: linear and circular, directed and undirect-
ed, fully connected and not fully connected, bipartite and non-bipartite, attributed and non-attributed, and 
weighted and unweighted graphs (Supplementary Data 2). A finalized version of the graph schema is illustrated 
in Fig. 3. Our graph model was constructed in a patient-centric method and multi-attributed. Further, it was 
multi-relational in terms of a heterogeneous set of edges, which form interactions within the network with its 
own edge labels. The graph was also created as a bipartite type, representing a not fully connected model. The 
relationship between the person node to other nodes were decided based on the consideration that a connec-
tion was made from the patient to every medical attribute the one received; your suggested bipartite schema is 
the optimal representation to retrieve the heterogeneous electronic medical records. See detailed information in 
Supplementary Data 2.

Entity and attribute selection. Ten types of entities were specified (Supplementary Data 3). All entity types con-
tain two different forms of ID. Firstly, the unique patient ID was used for connecting the entities. Secondly, the 
default internal ID is generated by the Neo4j database. Supplementary Table 1 summarizes the node and node 

Figure 1.  A pipeline for graph construction and graph neural network. The overall process was identical until 
the editing and manuscript step of the datasets. At this point, the graph schema production step differentiates.

Figure 2.  Flow chart of the patients included in the study.
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properties along with the data types of the properties for the graph model on Neo4j. The data types of the proper-
ties were decided based upon to achieve the maximum level of efficiency for visualization.

Relationships. To connect these entities, a total of nine different types of relationships were built for connect-
ing the entities described in the previous section. The relationships were labeled according to the association 
between the entities, where the edge is destined. The starting node and ending node of the linkage were named 
with head and tail entities, respectively. All the node types, except the person node, begin from the person and 
are subsequently dispersed (Supplementary Table 2).

Building a graph database using cypher language. After cleaning the raw datasets and creating the schematic 
representation, the initiation of the graph building began with writing the code to import and represent the EMR 
datasets. The constraints of all node and edge types were applied to assert whether the patient ID property is 
unique among the node types. Indexes were then created with the following attributes to support the prediction 
of the node labels as a form of look-up method. Next, the nodes alongside their corresponding properties were 
imported with the dataset. The transactions with the periodic commit commander notably solved the deficiency 
in memory storage issues.

Graph visualization. While constructing the graph database, several factors relating to visualization were con-
sidered. The main purpose of the graph modeling on EMR was to detail the patient’s journey through the graph 
in an effective, but simple method. The model patterns should therefore be able to provide insights at a quicker 
rate (please see Supplementary Fig. 2 for an example of a patient’s medical journey). Firstly, the colors and sizes 
of each entity were independently chosen so that each node type matched the corresponding edge types. Sec-
ondly, the thickness of the relationships connecting the data components was considered. A powerful benefit of 
graphs is the ability to show the linkages between the entities in the areas of interest. Lastly, the types of illus-
trated data attributes were carefully chosen to enhance the viewers’ instinctive visual understanding.

Figure 3.  A finalized version of the schema for the patient entity graph. The solid line represents the bipartite 
relationship between the person and other nodes. In contrast, the dotted line between the nodes represents the 
possible connection that could be made during the query based on the user’s inquiry on the graph database.
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Application: graph neural network with Stellar graph. Graph schema construction. It was decided 
that a heterogeneous, bipartite graph should be constructed with both node and edge attributes. Therefore two-
node types were selected to represent each partition. Further types of datasets were integrated into the form of 
node attributes on each side. The outcome was included as the edge attribute separately which was specifically 
coded to define as an outcome column when formatting the edge table in the form of binary type. The outcome 
value was coded as 1 if the patient was admitted with angina, followed by the occurrence of death, MI, stroke, 
or heart failure for five years. On the other hand, if the angina patient was not diagnosed with either death, MI, 
stroke, or heart failure during the five years of follow-up, then the patient outcome was coded with 0. Therefore, 
the edge indicated 1 for a positive outcome, otherwise, 0 was displayed. Although the naming of two super nodes 
indicated patient and diagnosis, the tangible information portraying the data points in the graph indicated more 
than just the patient and their diagnosis.

Feature selection. The edge data frame for the Stellar graph embedding mechanisms was composed of three 
features: source, target, and outcome. Alternatively, the patient node’s data frame had 12 feature columns, while 
the diagnosis node’s data frame consisted of 147 feature columns. The details were recorded in Supplementary 
Data 4. Additionally, the data pre-processing step was identical to the pre-processing in Graph Construction 
with the Neo4j section.

Stellar graph construction. It is important that the index IDs that are unique to each row of the node’s data 
frame were used to connect the nodes in the graph with the edges. Therefore, in order to resolve the issues of 
duplicates forming, prefixes were added to all node indexes, against which the prefixed IDs of edges would even-
tually be matched. Subsequently, two different types of nodes that had been structured in data frames according 
to previously listed features were prepared. Eventually, the edge data will summarize each type of node relating 
to the relevant event outcome information. Overall, a graph model was built in combination with the nodes and 
edges data frame input.

Graph convolutional network: HinSAGE model. The advent of a relatively-new algorithm called, HinSAGE, a 
heterogeneous GraphSAGE36 algorithm, enables supervised graph embedding algorithms to maintain not only 
the topology of the dynamic graph but also the attributes of nodes and edges. GraphSAGE uses a generalized 
aggregation function inductively. In addition, the impact of applying features of nodes and edges plays a signifi-
cant role in neural networks since features are the predicates of the subject of the study and thus should not be 
ignored.

The HinSAGE37 mechanism employs a two-step process of aggregating the representation of a target node. 
Firstly, by the neighboring node feature representations and by updating the embeddings on the final output of 
the nodes or graphs produced. To elaborate, we specifically chose HinSAGE because it was the optimal algorithm 
for applying datasets enriched in multi-attributed node features and relational heterogeneous large datasets. 
Additionally, the HinSAGE efficiently operates better than other multi-attributed algorithms, particularly for 
the outcome prediction with the outcome objective attached to the edge attributes.

Initially, in our development process, a graph object was created for a graph topology input. The two-node 
data frames and one-edge data frames were similarly embedded for heterogeneous graphs. The HinSAGE algo-
rithm performed its samplings on the node neighbors in the graph structure. Following the creation of the graph, 
the resulting embeddings were input and split into the train and test sets, where the source, target, and labels 
were trained distinctively. Then, generators were created with specified node types and batch sizes for mapping 
the samplings. The two-layer HinSAGE model was then built with the input and output tensors exposing the 
sockets. Moreover, the estimator layer was added on top. Lastly, the Keras model was built for predictions and 
compiled by the custom optimizer, loss function for the minimization to fit the model, and metrics for evalua-
tion (please see Supplementary Data 5 for full information on the model parameters in the experiment setting).

Results
Baseline characteristics of participants. Baseline clinical characteristics of 53,841 total patients 
between January 1st, 2000, and December 31st, 2016 were presented in Supplementary Table 3 as a result of the 
patient exclusion/inclusion process in Fig. 2. The total population was stratified by the event positive and the 
event negative (the event outcome was coded as 1 for death, MI, or heart failure occurrence and 0 for no occur-
rence). In these cases, the mean age was slightly older for the positive population compared to the negatives. 
Also, regarding the underlying symptoms, higher rates were observed in the positive group than in the negative 
group (Supplementary Table 3).

Network findings and visualization with queries. The CardioNet database was used to build a patient-
centric graph database. After the preprocessing steps on the cohort, as previously described a total of 53,841 
patients was obtained from 572,811 CVD patients and used to build two types of networks alongside learning 
the graph neural network. The entities and quadruplets counted on the Neo4j graph database were 492,886 and 
439,045 respectively for displaying 10 node types and 9 edge types, respectively (Supplementary Fig. 4). Alterna-
tively, the nodes and relationship figures on the Stellar graph were 107,682 for nodes and 53,841 for edges (Sup-
plementary Fig. 3). The node types for representing patients and diagnosis showed feature information that the 
vector type is float 32 with lengths of 12 and 147, respectively. However, because there is a weight added to the 
edges in the graph model, the feature length shows 1 under the edge information. The final constructed version 
of the Stellar graph was an undirected multigraph type. The numbers of the Stellar graph nodes and edges are 
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smaller compared to the Neo4j network because there is limited target outcome information available relating to 
both the node and edge types. Additionally, the size of the feature input was different between the two networks 
considering the objective of each network.

After creating the graph database, a single patient’s journey was sub-filtered (Supplementary Fig. 2). Firstly, 
a relationship type of interest was assigned before filters were set with specific medication names. These were 
filtered by applying the DISTINCT function to exclude any duplicated patient results, which provided the total 
query results. Each node type contains its associated edge types, which are illustrated by the matching colors. 
The graph contains patient data relating to a de-identified patient ID of 107411, who has been diagnosed with 
hypertension, operated on with diagnostic ultrasound, smoking level of 1, resulted in laboratory blood with 94.0, 
has echo result of − 1.0, and physical measurement of 53.55. Moreover, the patient has been prescribed statin 
medication; and suffered from an event at the age of 67 when visiting the hospital. The details of node proper-
ties are restricted, and the other properties are hidden within a network until the user either visualizes them or 
modify the display mode of the node’s property (Supplementary Fig. 2).

Next, several questions were queried in Cypher codes which were used to analyze the performance of the 
graph database. The query results are potentially either in the graph structure or tables, depending on the user’s 
query question. By utilizing the EMR network, the queries and their results, alongside the time taken to complete 
each query can be depicted in a table format (Supplementary Fig. 5). It depicts the speed and effectiveness of a 
graph database that can pull out the results from only a few lines of code. Moreover, Supplementary Figs. 6 and 
7 display the graphical query results gathered from query questions as 1 and 4 were depicted in Supplementary 
Fig. 5. Indeed, Supplementary Fig. 6 illustrates the zoomed-in result of the three filtered patients, who were 
treated with Statin medication. Moreover, we wanted to visualize the patients with a previous diagnosis and an 
event outcome of 1 (Supplementary Fig. 7).

HinSAGE model evaluation and comparisons. A supervised link attribute inference problem appeared 
on two different node types, the attributes, along with the edge binary attributes of 0 and 1 for the prediction tar-
gets. The performance of the training history from the finalized HinSAGE model selected was exhibited in Sup-
plementary Fig. 8. During 30 epochs of the model training, the accuracy plot shows comparable performance for 
both validation and training datasets. The accuracy plot reveals a training accuracy and a validation accuracy of 
0.73 and 0.67, respectively (Supplementary Fig. 8a). Moreover, the general trend for the training loss plot shows 
linearity beginning at epoch five, whereas there are up and down variations for validation loss resulting from 
occasions as the epoch reaches the end (Supplementary Fig. 8b). Further, the distribution of true and predicted 
outcomes for the test set is shown in Supplementary Fig. 8c. In this plot, the true outcome for zero has more 
than ten times the value of ones meaning there is much more than ten times greater the number of events that 
did not occur than events that occurred. Expectedly, the predicted values for the outcome follow the same trend, 
presenting an increased number of counts towards the event that did not happen than did. The plot was drawn 
using the Matplotlib library on python pandas.

We compared our HinSAGE model to three prominent machine learning methods: random  forest38 (RF), 
logistic  regression39,40 (LR), and artificial neural  network41 (ANN) models. The outcomes for comparative evalu-
ation are shown in Table 1. In this study, we used the AUROC and AUPRC scores alongside the 95 percent 
confidence interval range to evaluate the model performance in predicting the patient disease outcome. The 
result displays that the HinSAGE model outperforms the AUROC and AUPRC scores, achieving 0.72 and 0.15, 
respectively with 0.71 to 0.74 CI and 0.14 to 0.16 CI ranges. Further, AUROC scores demonstrate that there is 
no significant difference between the comparison models and the HinSAGE model. Figure 4 demonstrates the 
receiver operating characteristic curves for all prediction models, where the x-axis and y-axis represent the false 
positive rate (1-specificity) and true positive rate (sensitivity). The ROC curves clearly show that the prediction 
was successful of the models (Fig. 4).

Discussion
In this study, we provided the methodologies for building a patient-centric schema on highly heterogeneous and 
relational EMR datasets unique to 53,841 patient individuals. A total of ten types of entities and nine relationships 
with the node properties in particular for each node type were created. We then presented a multi-attributed 
graph database based on the schema, and the performance was shown with eight successful query results. Sec-
ond, we provided methodologies for building a downstream graph model for disease outcome prediction. We 
presented two node types, one with twelve features and another with one-hundred forty-seven features. We then 
applied the HinSAGE algorithm to evaluate the model as a supervised link prediction problem. As a result, the 
HinSAGE model’s performance led to 0.72 and 0.15 AUROC and AUPRC scores.

Table 1.  Comparison of different model performances for baseline models and HinSAGE.

AUROC (95% CI) AUPRC (95% CI)

RF 0.67 [0.63, 0.70] 0.11 [0.09, 0.12]

ANN 0.64 [0.60, 0.68] 0.11 [0.09, 0.12]

HinSAGE 0.72 [0.71, 0.74] 0.15 [0.14, 0.16]

LR 0.71 [0.67, 0.74] 0.13 [0.12, 0.15]
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Firstly, the former type of patient-centric model offers a comprehensive analysis. Similarly, our graph database 
reveals the significance of the attributes attached to nodes or edges. Furthermore, by adopting various color pal-
ettes and sizes to the different node and edge types, the user’s adaptability in perceiving the information supplied 
in the network was increased. Moreover, the querying result effectively showed that a strategically designed graph 
database provides insights within a short period of time, for both the experts and all the non-experts. Next, for 
the latter type of graph model, HinSAGE was particularly chosen over other methods because it was effective for 
heterogeneous data with rich node attributes. Also, we developed a model in consideration of edge weights to 
provide a link inference task suited to a bipartite patient model with node and edge attributes. The result dem-
onstrates that the inclusion of outcome to edge weights increases the model accuracy since the attached stacked 
layers of outcomes link the full association information, which will support the overall prediction. Additionally, 
the HinSAGE model plot indicates that the learning process on the training data has been successful.

Lastly, during the evaluation process, the HinSAGE model achieved the highest performance scores compared 
to other methods. The AUC scores in Table 1 show no significant difference between the models, indicating the 
performance at distinguishing between the occurrence classes of the event is comparable to the baseline methods. 
To elaborate, because the problem itself of predicting the medical outcome is very difficult, we initially aimed at 
achieving a comparable score for the HinSAGE model as other baseline models’ performances. Hence, despite 
the formal reasons for achieving not much higher AUC, utilizing EMR data in research opportunities offers 
many other beneficial aspects.

Therefore, we demonstrate that the prediction is beneficial when graphical topology and attributes are learned 
together rather than solely obtaining the features. Clearly, these results verify the significance of the graph neural 
network, particularly indicating that the HinSAGE model is competent enough to learn patients’ data and analyze 
the disease prediction from the EMR data when compared to other fundamental learning methods. Importantly, 
the mechanisms exist for the conventional machine learning methods, which implement EMR records. However, 
it is vastly easier to utilize the built-in graph representation learning method, which enables nonprofessionals 
to understand the importing process for both the EMR structure and the deep learning steps. Therefore, despite 
the complex knowledge requirements for deep learning computation, our pipeline is easily manageable and 
will support the non-technical expertise throughout the overall processes, without requiring prior knowledge 
of the field. Consequently, this serves to provide a deeper understanding of predictive and precision medicine. 
For instance, our graph database is adequate to support efficient knowledge extraction for medical research, 
and self-diagnosis or self-education services for patients. It also provides graph learning along with the graph 
learning framework for supporting clinicians in decision-making. In regards to further developments, adding 
datasets from other countries may support the confirmation of universality, hence, various data sources can be 
applied in the framework to improve the model’s representation. Also, future works may integrate additional 
node types, node attributes, and edge weights to further increase the accuracy in the performance of the inpatient 
disease predictions.

Conclusions
Our study suggested a visualization method for EMR using two visualization frameworks and how they are built 
and applied. The graph database was performed to query at efficient runtime and is easily modifiable in real 
time. Further, benefiting from the graph neural network mechanisms, this work presented a favorable frame-
work compared to previous baseline methods: The HinSAGE was implemented to efficiently predict CVD event 
outcomes using supervised link prediction learning. Our work demonstrated that graph databases and graph 

Figure 4.  Receiver operating characteristic curves of comparison models in predicting patient disease 
occurrence.
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neural networks are great options for building high-dimensional models, for use in the predictive analysis of 
heart disease treatments.

Data availability
Supporting data are available from Asan Medical Center, and due to ethical concerns and confidentiality agree-
ments, data are available upon reasonable request.

Received: 15 September 2022; Accepted: 2 December 2022
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