
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22451  | https://doi.org/10.1038/s41598-022-25682-5

www.nature.com/scientificreports

A machine‑learned spin‑lattice 
potential for dynamic simulations 
of defective magnetic iron
Jacob B. J. Chapman * & Pui‑Wai Ma 

A machine‑learned spin‑lattice interatomic potential (MSLP) for magnetic iron is developed and 
applied to mesoscopic scale defects. It is achieved by augmenting a spin‑lattice Hamiltonian with 
a neural network term trained to descriptors representing a mix of local atomic configuration and 
magnetic environments. It reproduces the cohesive energy of BCC and FCC phases with various 
magnetic states. It predicts the formation energy and complex magnetic structure of point defects in 
quantitative agreement with density functional theory (DFT) including the reversal and quenching of 
magnetic moments near the core of defects. The Curie temperature is calculated through spin‑lattice 
dynamics showing good computational stability at high temperature. The potential is applied to study 
magnetic fluctuations near sizable dislocation loops. The MSLP transcends current treatments using 
DFT and molecular dynamics, and surpasses other spin‑lattice potentials that only treat near‑perfect 
crystal cases.

The success of density functional theory (DFT)1,2 has drastically advanced the scientific and technological aspects 
of materials development due to its unprecedented predictive power at a modest computational cost. However, 
the order O(n3) scalability of DFT calculations, where n is the number of electrons, has severely limited the 
simulation box size and time scale. Machine-learned potentials have demonstrated their ability to perform scal-
able atomic scale simulations with DFT accuracy using only a fraction of its computational  requirements3. Since 
the seminal work of Behler and  Parrinello4, who introduced the concept of invariant descriptors to represent 
local chemical environment, a range of machine-learned potentials based on kernel  methods5,6 and network 
 networks7–10 have been developed and applied to investigate real physical problems.

Spin-polarized and non-collinear magnetism are well established extensions of DFT for magnetic materials 
but their results are valid only for the electronic ground state. Attempts to mimic magnetic excitation by coupling 
spin dynamics to constrained non-collinear calculations have been  made11,12. However, the limitations of the 
DFT method on the simulation box size has yet to be overcome. In addition the effects of magnetic excitation 
and their interaction with atomic trajectories are irreconcilable within the framework of classical molecular 
dynamics (MD)13.

Nevertheless, magnetic effects cannot be ignored in many situations. In magnetic iron, the bcc-fcc and fcc-
bcc phase transitions at 1185K and 1667K, respectively, are due to the competing phonon and magnon free 
 energies14–18. The softening of tetragonal shear modulus C′ near the Curie temperature TC

19,20 and stability of 
anomalous 〈110〉 dumbbell self-interstitial atom (SIA)  configurations21–23 are also believed to be magnetically 
driven. Itinerant ferromagnetism, in the form of increased magnitudes of magnetic moment, have been linked 
to the stability of grain boundaries and intergranular  cohesion24.

Spin-lattice  dynamics25 was developed to treat both spin (magnetic) and lattice degrees of freedom within a 
unified framework. Spin-lattice dynamics is a general framework similar to molecular dynamics and applicable 
to any arbitrary atomic scale Hamiltonian. The latest development on the Langevin spin equation of  motion26 
allows simultaneous treatment of both the rotational (direction) and longitudinal fluctuations (magnitude) of 
magnetic moments. In most other studies the magnitudes of magnetic moments are assumed to be  fixed27–29 or 
have been performed on a fixed  lattice30,31. Whilst spin-lattice dynamics has been used to investigate a variety of 
microscopic dynamic effects in  iron14,25,27–29,32,33, there is still not a spin-lattice potential capable of simultaneously 
modelling mechanical deformations, magnetic fluctuations and defect  properties13.

The difficulty of developing spin-lattice potentials are two-fold. First, a spin-lattice potential has double the 
degrees of freedoms (6N) of a conventional MD potential (3N), where N is the number of atoms. A substantial 
amount of extra data is required for potential fitting for each extra degree of freedom, drastically expending the 
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representable phase space. Recent data-driven techniques can aid in parameter optimisation for such  cases33. 
Second, potentials that adopt the Heisenberg or Heisenberg-Landau functional form in various  studies23 are 
shown to be too restrictive to near-perfect crystal cases. A good functional form that is applicable to both perfect 
and defective configurations is yet to be derived.

Machine-learned potentials for spin-lattice dynamics that go beyond the need of a well defined functional 
form could be a viable  solution10,34. While the number of machine-learned potentials for iron has rapidly 
increased over the past  decade3,35–37, applications including explicit spin degrees of freedoms are very limited. 
Recently, Nikolov et al.33 produced a machine-learned spectral neighbor analysis potential. Since they kept 
using the Heisenberg functional form, the potential does not consider the change of the magnitudes of mag-
netic moments due to thermal excitation or the change of local atomic environment. Novikov et al.38 developed 
a moment tensor spin-lattice potential that includes longitudinal fluctuation, but they limited their approach 
to collinear configurations near perfect crystal structures. Domina et al.34 extended the spectral-neighbour 
representation to be applicable to non-unit vector fields such as spin. Whilst no dynamics was performed, their 
approach shows an excellent ability to predict the energies of non-collinear states relative to a prototype model 
of iron for configurations with small atomic displacements from the perfect BCC lattice.

In this work, an alternative approach is taken. We built on a conventional spin-lattice model known to work 
well near equilibrium conditions for BCC iron. Then, an additional neural network term is trained to reduce 
the error of the conventional spin-lattice model near equilibrium and to learn the missing physics as the envi-
ronment deforms. Such an approach is distinct from the method by  Nikolov33 which trained a SNAP potential 
and converted into a spin-lattice model by adding a pairwise Heisenberg potential. However, bilinear exchange 
interactions between different phases of iron are  incompatible14 and non-Heisenberg exchange interactions 
become important in defect  states23,39,40. In the presented work, the magnetic interactions are trained to provide 
complex interactions beyond conventional functional forms.

We show that our newly developed machine-learned spin-lattice potential (MSLP) is capable of describing the 
complex magnetic states at highly deformed as well as near-perfect configurations. Our MSLP for iron has good 
quantitative agreement with DFT data and good computational stability at high temperature simulations. The 
calculated TC is also in good agreement with experimental value. We also apply the MSLP to study the magnetic 
effect of mesoscopic scale dislocation loops in iron at finite temperature, which cannot be achieved using DFT 
and MD, or using other available machine-learned spin-lattice potentials.

Results
Magnetic states in BCC and FCC structures. 
We investigated an essential feature being necessary for a MSLP for iron, which is the relative stability of vari-
ous magnetic states in BCC and FCC structures. We initialized the ferromagnetic (FM), single-layer antifer-
romagnetic (SL-AFM), and non-magnetic (NM) states in both BCC and FCC structures, and additionally the 
double-layer antiferromagnetic (DL-AFM) state in FCC. We relaxed the simulation box and magnetic moments 
using conjugate gradient method, but with a small mixing step, to ensure the relaxation would stop at a local 
minimum. Table 1 summarizes our results. It shows the equilibrium lattice constant a0 , the magnitude of spon-
taneous magnetic moment |M| , and the relative energy difference with respect to the BCC ground state �E . DFT 
data calculated using both  VASP41–44 and  OpenMX45 packages are shown for comparison.

FM BCC is the most stable state. There is small underestimation of the a0 (-0.5%) and |M| (-1.4%) compared 
to VASP data. The DL-AFM is the lowest energy collinear state in FCC, which is 80 meV/atom higher than the 
FM BCC phase. The energy of other magnetic states are also in quantitative agreement with DFT data. The NM 
FCC was shown to have free energy lower than NM BCC at all  temperatures14. Magnetism stabilizes the BCC 
 structure14–18. Our MSLP reproduces this phenomenon.

In BCC iron, the formation of spontaneous magnetic moment reduces the energy by 0.42 eV/atom. By 
varying the magnitude of magnetic moment, we can plot the Landau-functional-like energy well (Supplemen-
tary Materials). The position and depth of the minimum for FM state is well reproduced resulting in accurate 

Table 1.  The equilibrium lattice constant a0 , the magnitude of spontaneous magnetic moment |M| , and the 
relative energy difference with respect to the BCC ground state �E calculated using our machine-learned spin-
lattice potential (MSLP) for iron at non-magnetic (NM), ferromagnetic (FM), single layer antiferromagnetic 
(SL-AFM), and double layer antiferromagnetic (DL-AFM) states in BCC and FCC structures. DFT calculations 
using VASP and OpenMX are shown for comparison. Details are in Supplementary Materials.

MSLP DFT (VASP) DFT (OpenMX)

a0    (Å)      |M| ( µB) �E  (eV/atom) a0    (Å)     |M| ( µB) �E  (eV/atom) a0    (Å)     |M|  ( µB) �E  (eV/atom)

BCC

FM 2.817 2.16 2.831 2.19 2.842 2.25

SL-AFM 2.824 1.54 0.36 2.800 1.34 0.46

NM 2.753 0.00 0.42 2.764 0.00 0.47 2.766 0.00 0.56

FCC

DL-AFM 3.470 2.08 0.08 3.466 2.04 0.08 3.476 2.38 0.10

SL-AFM 3.494 0.96 0.16 3.494 1.30 0.12 3.435 2.00 0.13

FM 3.47 1.03 0.15 3.50 1.00 0.16 3.648 2.63 0.12

NM 3.428 0.00 0.18 3.456 0.00 0.16 3.462 0.00 0.25
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properties of the FM BCC phase. However, a small discrepancy on the profile of the curve compared to DFT 
data can be observed for small magnetic moments. We note our MSLP predicts a different order of stability of 
the magnetic states in FCC relative to VASP data, where a low spin FM state has slightly lower energy than the 
SL-AFM. On the other hand, DFT data from OpenMX predicts the same order of stability as our potential. This 
highlights the complexity of the potential energy surface of iron where the relative stability of magnetic states 
is in the order of 0.01 eV.

Our MSLP produced various magnetic states quantitatively as good as the moment tensor spin-lattice poten-
tial developed recently by Novikov et al.38, which is valid only near-perfect crystal collinear regime.

Whilst some perfect HCP configurations were included in the database to help smooth the trained potential 
energy surface, we would not expect the current parameterisation to perform well for HCP structures since the 
data was limited and weakly weighted. More details on the comparison of energies, forces, stresses and effective 
magnetic fields with respect to DFT data are in Supplementary Materials.

Finite temperature properties: lattice constant and Curie temperature. The main purpose of 
developing a MSLP is to perform dynamic simulations at finite temperature and observe the time evolution of 
a system. We implemented our MSLP into  SPILADY46. It allows spin-lattice dynamics to be performed with 
longitudinal fluctuations of magnetic  moments25,26,47 which is a unique feature of the code and a fundamental 
concept built into the MSLP.

The initial calculations prove dynamic stability. In spin-lattice dynamics it is important that the potential 
energy surface is smooth and continuous because both atomic forces and effective magnetic fields are derivatives 
of the Hamiltonian. A small abnormality may generate unexpected artefacts such as large forces or magnetic fields 
that destroy the system. Figure 1a shows the total energies of 2,000 and 128,000 atom FM BCC Fe spin-lattice 
dynamics simulations in NPT ensembles. The magnitude of energy fluctuation is inversely proportional to the 
number of particles. The average energy of both size runs are equivalent with no evidence of drift. Figure 1b 
shows the lattice parameters of the same calculations confirming the consistency of the potential with simulation 

Figure 1.  Dynamic stability and properties of the machine-learned spin-lattice dynamics potential (MSLP) for 
iron. Comparison of instantaneous (a) total energies per atom and (b) lattice parameter per unit cell between 
2000 atom ( 10× 10× 10 ) and 128,000 atom ( 40× 40× 40 ) simulation cells at 10 K and 100 K. (c) Lattice 
constants and (d) magnetization ( |M| = |

∑
i Mi|/N ) calculated using our MSLP for iron using a simulation 

boxes containing 2000 and 16,000 atoms. Standard deviation of data are shown as error bars. Details are in 
Supplementary materials. Subfigures in (c) show snapshots of the ferromagnetic arrangement of magnetic 
moments at 10 K and the paramagnetic state at 1300 K.
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size. Scalability is important since simulations of the order 105 and larger are beyond the current capability of 
DFT studies of metallic systems.

We examined the change of lattice constants and TC of our MSLP for BCC iron. We created cubic simulation 
boxes containing 2,000 and 16,000 atoms. Figure 1c shows the lattice constant, which is calculated from the time 
average of the linear dimension of a varying simulation box with pressure set to zero. The lattice constant mono-
tonically increases with a smooth slope as temperature increases. It is generally underestimated but comparable 
to other MD  potentials48. The standard deviation, which is shown as the error bar, remains small even at high 
temperature showing good stability of our potential.

TC is an unique indicator of a spin-lattice potential. BCC iron undergoes ferromagnetic to paramagnetic 
phase transition at  1043K49. Figure 1d shows the calculated magnetization |M| = |

∑
i Mi|/N  . Calculations 

were performed in a smaller step of 25K near the TC . The calculated TC is around 900K, which is in reasonable 
agreement with experiment.

We also tried to quench a system from 1000 K, which is in the paramagnetic regime for the parameterisa-
tion, to temperatures below TC . A ferromagnetic monodomain is recovered. However, since spin-orbit coupling 
has not been considered in the model, there is no magnetic easy axis, so the magnetisation may align along any 
orientation.

Upon thermalisation an unexpected and unphysical drop in the magnetisation is observed ( T < 100 K). 
This artifact of the current parameterisation arises due to the poor reproduction in the curvature of the mag-
netisation energy (SM-Fig 4) when defect states were included in the training data. As a further consequence, 
the reduction in the magnitude of the excited magnetic moments reduces their interaction strength, reducing 
correlation at high temperatures and can partially account for the underestimation of the Curie temperature. 
Tailoring the Curie temperature during the fitting process is limited as it is not a directly trainable quantity and 
relates to the curvature of the exchange interactions. Improvements could be made by training future models 
using more complete feature representations such as spectral neighbours for vector fields derived recently by 
Domina et al.34. One may also observe our model produces the classical profile of the magnetisation curve despite 
careful training to accurate quantum mechanical data from DFT calculations. This is due to the mapping of the 
fluctuation-dissipation terms to the Gibbs distribution in the generalised Langevin spin dynamics approach used 
to evolve our equations of  motion26,47. Qunatisation of the vibrational thermodynamics could be considered by 
using the quantum fluctuation-dissipation relations which incorporate Bose-Einstein  statistics50.

Point defects: self‑interstitial atom and vacancy. DFT calculations show that in highly distorted lat-
tice structures, complex magnetic configurations can be observed. Existing spin-lattice  potentials14,25,33,38 remain 
incapable of capturing such phenomena even for point defects. The magnitudes of magnetic moments near the 
defect core can be suppressed or even in reverse alignment with respect to the  bulk51. Models that only adopt the 
Heisenberg Hamiltonian cannot produce physically correct point defect migration as the model does not allow 
change of magnitudes of magnetic moments according to the change of local electronic  structure23. Additional 
Landau terms in the Hamiltonian which are functions of local environment may be a solution, but correct treat-
ment of itinerant properties remain  unresolved23.

In BCC iron, the most stable SIA configuration is a 〈110〉 dumbbell  configuration21,22. Using our MSLP, we 
performed annealing simulations with initial configurations including either a 〈110〉 or 〈111〉 dumbbell, in a cell 
with 2001 atoms. The cells were initially thermalised to 10K and gradually decreased to 0K for 5ps. Both SIA 
configurations relaxed to maintain/form a 〈110〉 dumbbell. We can understand this through nudged elastic band 
DFT calculations which show no intermediary energy barriers across the migration pathway between the 〈111〉 
and 〈110〉 SIA configurations (see Supplementary Materials). A 〈111〉 SIA configuration will inevitably relax to 
a 〈110〉 dumbbell when small perturbations exist. A snapshot of a spin-lattice dynamics simulation of the 〈110〉 
configuration at 10K is shown in Fig. 2a. The magnetic moments were plotted with unit magnitude for ease of 
viewing. Their magnitudes are represented by colour.

We examined the magnetic configuration in the core of a 〈110〉 dumbbell. The magnetic moments in and sur-
rounding the core are listed in Table 2. It shows very good agreement in comparison to DFT calculations: VASP 
with PAW pseudopotentials (current work), VASP with ultrasoft pseudopotentials (USPP)51, and  OpenMX23. The 
magnitude of the magnetic moments within the defect core are larger than the VASP-PAW data that the potential 
was trained to, but is similar to those produced by OpenMX. Likewise, for the tensile site the magnetic moments 

Table 2.  Magnetic moments in the vicinity of a 〈110〉 dumbbell self-interstitial atom and vacancy 
configurations. The core, compressive and tensile sites refer to the positions defined in the inset of Fig. 2. They 
are all in unit of Bohr magneton ( µB ). Bulk-like refers to atoms far from the defect core.

Defect Site MSLP VASP-PAW OpenMX23 VASP-USSP51

〈110〉DB

Core −0.28 −0.21 −0.30 −0.18

Compressive 1.70 1.66 1.87 1.52

Tensile 2.31 2.37 2.45 2.30

Vacancy

1NN 2.23 2.43 2.53 2.70

2NN 2.08 2.08 2.13 2.41

3NN 2.10 2.21 2.24

Bulk-like 2.11 2.19 2.22 2.52
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predicted by the MSLP are smaller than VASP-PAW data but are comparable to VASP-USSP data. Generally, the 
magnetic moments are reproduced in quantitative agreement with DFT calculations. In the core of the interstitial 
defect, magnitudes of magnetic moments are approximately 1/10th of bulk and in anti-alignment to the bulk. 
Enhanced magnitudes can be observed on the tensile sites and slightly reduced magnitudes on the compressed 
sites. In additional to the most stable configuration, our MSLP reproduced the correct order of stability of SIA, 
i.e. the formation energy of 〈110〉 < tetrahedral < 〈111〉 < 〈100〉 < octhahedral (see Supplementary Materials).

Another point defect that we explored is the mono-vacancy ( VFe ). Annealing simulations were performed 
using a 1999 atoms cell containing a single vacancy. Table 2 shows the calculated values of magnetic moments 
in the vicinity of the defect site. Figure 2b shows a snapshot of the system near the vacancy during dynamics. 
DFT calculations indicate that the magnetic moments directly adjacent to a vacancy are larger. This occurs due 
to the increased volume to which their moments can relax. The magnitude of the magnetic moments in the 1 st 
nearest neighbour (NN) sites are approximately 11%, 14% and 6.7% larger for the VASP-PAW, OpenMX and 
VASP-USSP calculations. The increase is only 5.6% using the MSLP. Conversely, the magnetic moments of the 
2 nd NN to the vacancy have reduced magnitudes. Our potential predicts a reduced magnetic moment relative to 
bulk in line with DFT calculations, but the proportion is diminished. By the 3 rd NN sites, the magnetic moments 
are bulk-like in all cases. Our MSLP predicted the correct trend of the changes, but generally gives a smaller value.

Extended defects: prismatic dislocation loops. We applied our MSLP to sizable systems that cannot 
be addressed by DFT. We constructed two simulation cells which are pre-relaxed using the Malerba 2010 Fe 
 potential52 through the conjugate gradient implementation in LAMMPS. In the first cell we created a square SIA 
loop with b = a0[001] consisting of 265 atoms in a box containing 128,265 atoms. In the second, a circular SIA 
loop with b = a0

2 [111] was constructed with 261 atoms in a box containing 139,287 atoms. The relaxed prismatic 

Figure 2.  A snapshot of (a) a 〈110〉 dumbbell self-interstitial atom configuration and (b) a mono-vacancy in 
iron at 10 K. Magnitudes of magnetic moments are indicated according to the colour bar. The insets shows the 
schematic configurations. For the SIA, the schematic indicates the core (blue), compressive (green) and tensile 
(red) sites.
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dislocation loops identified using the dislocation extraction algorithm (DXA) are shown in Fig. 3(i)a for the 
〈100〉 loop and Fig. 3(ii)a for the 12 〈111〉 loop.

We chose these dislocation loops as representative examples because both kinds of loop can be experimentally 
observed in α-iron. Iron is known to be anomalous, forming 〈100〉-type prismatic edge dislocations at tempera-
tures above 550◦C53,54 despite the isotropic elasticity favoring dislocation loops with smaller Burgers vectors such 
as 12 〈111〉 . Analytic linear elasticity solution suggests the softening of C′ , which is a magnetic effect, accounts for 
the observation of square 〈100〉 loops at high  temperature55,56.

The MSLP offers analysis of magnetic excitation in the vicinity of these extended defects for the first time. 
As such, we performed spin-lattice dynamics calculations in NPT ensembles at both 10K and 800K using the 
MSLP, evaluating the local stress and magnetic configurations of both loop types. Data for the 〈100〉 prismatic 
loop at 10 K are shown in Fig. 3(i) whereas the 12 〈111〉 loop results are in Fig. 3(ii). For both loop types we present 
positive and negative isosurfaces of the stress field introduced by the defects. Specifically, we evaluated Tr(σ k

ij ) , 
where σ k

ij  is the Virial stress tensor of atom k computed using our MSLP.
Yellow/blue isosurfaces show the compressed/tensile regions where atoms contribute Tr(σ k

ij )=±0.017 GPa 
to the stress for the 〈100〉 loop and Tr(σ k

ij )=±0.024 GPa for the 12 〈111〉 loop. (c) and (d) show the contour maps 
of Tr(σ k

ij ) and magnetic moment magnitudes on a (100) or (1̄21̄) plane intersecting the centre of the disloca-
tion loops. (e) shows the magnetic moment vectors of atoms near the loop superimposed on the contour map. 
To visually compare the stress and magnetic configuration, we present an overlay of the stress isosurface with 
a snapshot of the non-collinear magnetic moments. The magnetic moments are coloured according to their 
magnitude, with red/orange hues representing oversized moments, blue/dark-green hues for small and green 
moments for bulk-like magnitudes ( |M| ≈ 2.0µB ). Vector fields of the time averaged moments with the same 
colour scheme are presented in (g) highlighting the magnetic moments in the core region of the dislocation. A 
strong correlation is evident between the local stress and the magnetic moments. Regions under tension, which 
have a comparatively larger volumes per atom, cause magnetic moments to increase relative to their bulk value. 
On the other hand, regions which are compressed result in reduced magnitudes of the magnetic moments. This 
is most evident in the core of the dislocation line.

Data pertaining to the 〈100〉 and 12 〈111〉 prismatic loops at 800 K are presented in Fig. 4i and ii, respectively. 
Despite the simulations operating at high temperature on structures far from the training data, the simulations 
remain stable and well behaved. To smooth variations due to thermodynamic perturbations, the isosurfaces 
presented in (a) represent Tr(〈σ k

ij (t)〉) , where 〈σ k
ij (t)〉 is the time averaged Virial stress over the simulation. (b) 

and (c) present contour maps of the time averaged stress ( Tr(〈σ k
ij (t)〉) ) and magnitudes of the magnetic moments 

on a (100) or (1̄21̄) plane cross section through the dislocation loops. Snapshots of the non-collinear magnetic 
moments in and near the dislocation loops during dynamics at 800 K are shown in (d). The magnetic moments 
near the defects become highly disordered relative to the bulk-like atoms. Importantly, the time averaged mag-
netic moments shown in (e) for the tensile region of the dislocation are already acting paramagnetic despite the 
sample being below the Curie temperature.

Discussion
A new machine-learned spin-lattice potential (MSLP) for iron that can simultaneously simulate the mechani-
cal and magnetic responses at finite temperature for both near-perfect and highly distorted configurations is 
developed. It is achieved through combining the knowledge of a conventional spin-lattice potential and a neural 
network term implemented using both local atomic and magnetic descriptors. Each magnetic moment is a three 
dimensional vector, where both the direction and magnitude depend on the local atomic environment and can 
be perturbed by thermal excitation.

Our MSLP shows near DFT accuracy on perfect crystals and point defect configurations. It produces quan-
titatively accurate predictions of various magnetic states in both BCC and FCC phases. The complex magnetic 
configurations in the vicinity of the core of vacancy and self-interstitial atom configurations, including the 
magnetic moment reversal and quenching at the core, were correctly reproduced. The order of stability of SIA 
configurations is compatible with DFT, where the 〈110〉 dumbbell is most stable.

Spin-lattice dynamics is performed to calculate the Curie temperature, which is in good agreement with 
 experiment49. We apply our potential to study the magnetism of mesoscopic scale dislocation loops at finite 
temperature. Non-collinear magnetic moments about prismatic dislocation loops are investigated for the first 
time. We show moment magnitudes are suppressed in regions of compressive stress and are enhanced in regions 
of tensile stress. This transcends the capability of DFT and MD methods, as well as currently available MSLPs for 
iron. These simulations show good numerical stability at high temperature. Whilst the current MSLP is tailored 
to iron, the framework is flexible and can be applied to a large class of magnetic materials and alloys.

Methods
Hamiltonian of machine‑learned spin‑lattice potential. In many other developments of machine-
learned  potentials4,9,33,38, the potential energy is defined as the output of a machine-learned machinery without 
any presumptions. The difference in the energy landscape can be up to the order of several eV, whilst requiring 
the accuracy and precision to be within at least 10−3 eV. Smoothness of the energy landscape is also a require-
ment of machine-learned potentials because atomic forces are calculated as the derivative of the potential energy. 
It necessitates a broad coverage of training data, especially near extrema. One can optimize their machine-
learned potential by supplying sufficient data to cover important parts of the phase  space38 or generate massive 
amount of data in brute-force to cover the whole phase  space33.
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Figure 3.  Spin-lattice dynamics simulations performed at 10 K for the (i) 〈100〉 and (ii) 1
2
〈111〉 interstitial 

dislocation loops. (a) Dislocation identified using the dislocation extraction algorithm (DXA). (b) The 
compressive and tensile stresses caused by the dislocations are shown via the isosurface of Tr(σ k

ij ) , where σ k
ij is 

the Virial stress tensor of atom k. (c) 2D contour plot of Tr(σ k
ij ) through the (010) or (1̄21̄) plane bisecting the 

centre of loop. (d) 2D contour plot of the magnetic moment magnitudes on the same plane as (d). (e) Contour 
plot of magnetic moment magnitudes overlayed with a sample of the instantaneous magnetic moment vectors 
for atoms near the loop. (f) Overlay of magnetic moments near the loop with the stress tensor isosurface 
showing relation between compressive (blue) and tensile (yellow) regions with large (red/orange) and small 
(blue/green) magnetic moments (see colourbar). (g) Vector field of the magnetic moments near the dislocation 
loops highlighting the core of the dislocations with suppressed magnetic moments and the enhanced moments 
directly adjacent.
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On the other hand, if one can supply a mean function before performing the learning process, the machine-
learned machinery can then be used as a correction term. A properly chosen mean function can significantly 
reduce the amount of training  data57. We follow this logic and define our spin-lattice Hamiltonian as follows:

where

The Hamiltonian depends on the momenta P = {p1, p2, ..., pN } , atomic positions R = {r1, r2, ..., rN } and 
magnetic moments M = {M1,M2, ...,MN } . The potential energy V contains three terms. The non-magnetic 
term VNM , which adopts the embedded atom method (EAM) functional form, takes care of the non-magnetic 
contributions. The Heisenberg-Landau (HL) term VHL takes care part of the magnetic contribution. The neural 

(1)H(R ,P ,M) =
∑

i

p2i
2m

+ V(R ,M),

(2)V(R ,M) = VNM(R )+ VHL(R ,M)+ VNN(R ,M).

Figure 4.  Spin-lattice dynamics simulations performed at 800 K for the (i) 〈100〉 and (ii) 1
2
〈111〉 interstitial 

dislocation loops. (a) The compressive and tensile stresses caused by the dislocations are shown via the 
isosurface of Tr(〈σ k

ij (t)〉) , where 〈σ k
ij (t)〉 is the time averaged Virial stress tensor of atom k. (b) 2D contour 

plot of Tr(〈σ k
ij (t)〉) through the (010) or (1̄21̄) plane bisecting the centre of loop. (c) 2D contour plot of the 

magnetic moment magnitudes on the same plane as (b). (d) Sample of the instantaneous magnetic moments 
during dynamics of atoms in and near the dislocation loop. (e) Vector field representing the averaged magnetic 
moments near the loop.
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network (NN) term VNN takes care of contributions missed in VNM and VHL . We may think of its application as 
a correction term. The functional form of the first two terms follow conventional spin-lattice  potentials14,26 that 
performs well near perfect crystal, but not in highly deformed configurations.

The NN term is defined as a sum of local contributions:

where VNN
0  is a fitting parameter to correct the energy unit. The neural network N is trained by adjusting the 

weight W and bias b parameters. The translation, rotation and permutation invariant atom centred symmetry 
(ACS) descriptors x0i  of atom i are extended to depend on both the local atomic and magnetic environments. 
This follows the usual assumption that the local environment is sufficient to determine the atomic  energy6, where 
a cutoff distance rcut is adopted.

Details of each term in the Hamiltonian are defined below. The potential energy surface V of our MSLP was 
trained to a large amount of DFT data consisting of energies, forces, stresses and effective fields from 4,601 non-
polarised, 5,827 collinear and 2,245 non-collinear configurations. A more detailed audit of the training data is 
available in the Supplementary Materials (Section 1). The choice of Loss function, training data, training proce-
dure, and final parameters are provided in the Supplementary Materials. In short, we developed a non-magnetic 
potential VNM , followed by fitting parameters in VHL and VNN . Finally, we optimized the whole potential V. One 
may consider VNM and VHL are used to construct a temporary mean function. On the contrary, each function in 
the NM and HL terms may be considered as a descriptor. As such, we can treat the V as a special kind of machine-
learned machinery that flexibly combines the known and unknown physics when trained to good quality data.

The non‑magnetic term. The Hamiltonian being adopted contains several terms, the non-magnetic term 
is chosen to have the same functional form of the embedded atom method (EAM)58,59:

F(ρi) is a many-body term depending on the effective electron density ρi . Vij is a pairwise potential depending 
on rij = |ri − rj| , which is the distance between atom i and j. The many-body term follows the functional form 
proposed by  Mendelev60 and  Ackland61:

where φ is a fitting parameter. The effective electron density ρi is defined as a sum of the square of a pairwise 
function tij which has the physical meaning corresponding to the hopping integral in tight binding  model14:

and

where tn are fitting parameters, rtn are knot points, and � is Heaviside function. The pairwise potential Vij is split 
into three parts:

where r1 = 1.3 Å and r2 = 1.8 Å. The short-range part is ZBL  potential62. The middle-range part is a 5 th order 
polynomial which ensures the function Vij being continuous up to second derivatives at r1 and r2 . The longer-
range part is a cubic spline, where Vn are fitting parameters and rVn  are knot points. Numerical values of fitting 
parameters are mentioned in Supplementary Materials.

The Heisenberg‑Landau term. The Heisenberg-Landau term is a sum of a Heisenberg term VH and a 
Landau term VL , such that

Conventional Heisenberg Hamiltonian assumes localised electron model with fixed magnitudes of magnetic 
moments or  spins25,27,33,63. However, even for perfect crystalline configurations it has been observed that the 
adiabatic magnetic exchange-energy hypersurface parameterized by the bilinear Heisenberg Hamiltonian is 
 insufficient64–67. An accurate representation necessitates longitudinal fluctuations to be  considered26,66,68, due to 
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the itinerant nature of electrons. First, we write the Heisenberg Hamiltonian in a form that allows the change 
of  magnitude23,69:

The pairwise exchange coupling parameter Jij can be calculated through DFT according to the magnetic force 
theorem (MFT)70. We adopt a 5th order polynomial here that fits well to perfect BCC  cases14:

Second, the Heisenberg term can be improved by introducing higher order terms that describe longitudinal 
 fluctuations23,26,68,71. By using a Landau expansion, we introduce self-energy terms which create an energy well 
for a finite magnetic moment such that a spontaneous moment is formed and whose length can be variably 
controlled. We write the Landau term:

One can find more details regarding the philosophy of the Landau coefficients and how one may extract them 
directly from DFT calculations in Ref.14,23. Here, we simply treat them as fitting parameters. We assume an 
underlying quadratic polynomial functional form for both A and B coefficients, parameterised with respect to 
ρi used in the EAM potential (Eqn. 6):

The coefficient for the 6th order term is independent of the local environment and serves to prevent a divergence 
in the Landau energy well. It has been shown that such functional form is sufficient for strained on-lattice con-
figurations, but is insufficient when lattice distortions are  introduced23. Further, DFT calculations have shown 
the magnitude of Landau coefficients in the core of defects can change by several orders of magnitude due to 
the suppression of the magnetic  moments23. As such, these terms provide an initial approximation. The neural 
network term serves as a necessary adjustment allowing the potential to move away from near-perfect crystal.

It is necessary to note that the inclusion of self-interactions terms is not solely sufficient to include longitudinal 
fluctuations in a spin-lattice dynamics model when using Langevin dynamics. One cannot use the stochastic 
Landau-Lifshitz equations to evolve the system, as is typically employed in most available codes, since the 
magnitudes of magnetic moments are assumed constant. Instead, the fluctuation-dissipation relations must be 
re-derived from the Fokker-Planck equation to correctly account for the longitudinal fluctuations. A generalised 
Langevin spin dynamics approach and an expression for the dynamic spin temperature have been derived in 
Ref.26 valid for any spin Hamiltonian with longitudinal fluctuations.

The neural network term. Conventional spin-lattice potentials are insufficient to reproduce the relative 
stability of BCC and FCC phases. The magnetic force theorem reveals the exchange coupling parameter Jij has 
completely different functional form for each crystal  structures14,23. Previous  work14 defined two different set of 
Jij and Landau coefficients for each phase, such that the phase must be labelled a priori, allowing free energy dif-
ferences between the BCC and FCC phase to be extracted. It means such approach cannot be applied to arbitrary 
systems. A possible alternative is to calculate the Jij and Landau coefficients by DFT on the spot, but it is not fea-
sible for large-scale atomic scale simulation. Besides, calculation of atomic Landau coefficient requires knowing 
the atomic energy, which is not a well defined quantity in most DFT implementations.

To overcome the limitation imposed by the functional form, aiming at simulating arbitrary crystal structures, 
we apply machine learning techniques to develop a new potential. We choose artificial neural network (ANN) 
which abstractions between layers ensure magnetic interactions go beyond the bilinear form of the Heisenberg 
potential and local fluctuation of the Landau potential.

Behler and  Parinello72 and  others4,73 successfully applied the ANN for atomic simulation based on feed-
forward multilayer perceptrons. It composes of multiple layers of Threshold Logic Units (TLUs). They are fully 
connected between adjacent layers. It is a feed forward ANN in which data provided to the input nodes are 
transmitted through one or more hidden layers until producing an output signal at the final layer. Unlike other 
architectures such as recurrent NN, cyclical connections between layers are not used. When two or more hidden 
layers are used, it is often referred to as a deep-ANN (DNN)74. We simply call it NN in this work.

In some works of machine-learned potentials for  MD3,35–37 a single machine-learned machinery, such as 
Gaussian process or NN, is used to predict the total energy, or more precisely the energy of an atom depending 
on the local atomic environment. Instead, we use NN to predict the contribution that cannot be captured by the 
non-magnetic term and Heisenberg-Landau term. In addition to the VNM and VHL term, the potential energy 
contains a NN term:
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where VNN
0  is a fitting parameter to match the scale and unit of the NN contribution to the MSLP Hamiltonian. 

x0i ∈ R
N0 is a vector of descriptors with N0 elements being supplied to the input layer of NN. Descriptors are 

functions depending on the atomic positions and magnetic moments within a cutoff distance rcut from atom i, 
representing the local atomic environment. The NN with n layers is a mapping:

where the operator ◦ represents the composition of functions. P k is the mathematical description of a percep-
tron at layer k. It acts as a mapping from layer k − 1 to the adjacent layer indexed k ( 0 ≤ k ≤ n ) which includes 
the composition of a linear transformation, followed by a non-linear transformation using a component-wise 
activation function fka :

where

xk ∈ R
Nk is a vector representation of the input signals from each of the Nk nodes (neurons) in the k th layer of 

the NN. The weight matrix Wk ∈ R
Nk×Nk−1 controls the strength of the signal transferred from each node in 

the k − 1 th layer to each node in the k th layer. bk ∈ R
Nk is a bias vector. The vector zk is an intermediate quantity 

referred to as the weighted input.
The activation function acts to abstractify the signals from the k th layer by adding non-linearity (since a 

linear combination of linear operations can itself be transformed into a single linear operation). It performs a 
component-wise operation on the weighted input zk produced from the linear transformation of xk−1 , such that

We have chosen to use an unconventional unbounded activation function defined as:

for all TLUs, except the output layer. The functional form of the activation function was chosen since the pro-
file of z/(1+ |z|) is qualitatively similar to tanh(z) for small z (approximately linear), but it is computationally 
cheaper than the hyperbolic tangent. Linear twisting is included to help prevent saturation for large values of z, 
which would result in a vanishing gradient of the Loss function, as originally proposed for the tanh  function75. 
The mapping of the final layer performs a linear transformation only, that is xn = f na (z

n) = zn and produces a 
scalar output. Therefore, for n th layer the weight and bias terms have dimension R1×Nn−1 and R1 , respectively.

The power of ANNs are due to their universality. For instance, a two-layer feed forward ANN with non-linear 
activation functions have been shown to be an universal function approximator. As such, for a given continuous 
function there exists a neural network which can approximate it on a compact set of RN arbitrarily  well76. Fur-
thermore, the universal approximator theorem has been shown to hold true for unbounded non-linear activation 
 functions77. If linear activation functions were to be chosen, a DNN with any number of hidden layers may be 
represented as a single linear transformation and therefore cannot be a universal approximator.

Local atomic and magnetic descriptors. In our MSLP, descriptors are functions representing the 6N 
coordinate and spin space, where N is the number of atoms. The purpose of the NN term is to map descriptors 
to part of the atomic energy. Since atomic energy is a scalar, descriptors should be translational, rotational and 
permutational invariant. We defined four sets of descriptors. The first set depends only on atomic positions. The 
other three depend on both atomic positions and magnetic moments.

Our atomic descriptors are based on the G(2) radial basis functions within the Atom Centred Symmetry class 
of effective  coordinates4,72. We drop the (2) superscript for brevity and refer to the descriptor as G2 in-text. It 
has been successfully used for a variety of materials including  water78,79, aluminium and its  alloys80, germanium 
 telluride81 as well as carbon  allotropes82. It is written as:

where

and h is a compound index representing a unique triplet of hyperparameters {Rc ,Rs , η} . The G2 descriptors are 
Rs centred Gausssians spread according to η . wi and wj are weights which characterise different atomic species 
and are not uniquely defined. Often one maps a unique integer to each element type. Here we define them as 
the atomic mass (for iron w = 55.847 ). Use of a species weight is advantageous as it enables descriptors to be 
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defined which do not scale with the number of species. That is, the length of the input descriptor vector does 
not change with the number of chemical species.

The smoothness criterion is satisfied by employing an envelope function which, as well as its first derivative, 
decays smoothly to zero at the cutoff radius:

In this work we fix Rc making it equals to the cutoff distance of the pair potential rcut . It reduces the num-
ber of hyperparameters to 2. We used 9 equally spaced G2 descriptors with Rs = 2.0+ x(Rc − 2.0)/8 where 
x = 0, 1, 2, ..., 9 . We set η = 5 Å −2 to provide a small overlap between the Gaussian basis functions. Often a large 
number of G2 descriptors (5-200) are used varying η from 10−2 to 1 Å −2 with Rs = 0 Å3. We opted to fix the 
Gaussian width and varying their centering, in order to reduce the correlation between the data encoded by each 
descriptor. Reducing the correlation can also be achieved using more advanced orthogonal descriptors such as 
 SOAP6 at the expense of greater computation time per descriptor. Since we consider 6N degrees of freedoms, we 
chose G2 descriptor as it is computationally less demanding.

The design of the magnetic descriptors is based on the G2 function. Inspired by the Heisenberg and Landau 
functional forms, we write three further sets of descriptors. The first set of magnetic descriptors is written as:

where the 2-body contributions are defined as:

The scalar product of the magnetic moments ensures the invariant properties are maintained. Smoothness is 
guaranteed by the G2 prefactor which contains the envelope function fc . By reusing the G2 in the magnetic 
descriptors we reduce the computational cost of the descriptor calculations which must be performed for every 
atom, at every timestep if dynamics is to be performed. Each G2 in the Heisenberg-like descriptors may be 
considered to be surrogate exchange parameters with different dependencies on the local environment as set by 
the chosen hyperparameters.

Similarly, we defined descriptors inspired by the Landau term up to the 4 th order. A 6 th order term is provided 
in the classical Landau expression to prevent divergences. As with the Heisenberg-like term, the Landau-like 
descriptors are built from a sum of two body contributions:

Each hidden layer of NN provides successively higher order representations of the exchange interactions beyond 
the original bilinear, quadratic and quartic input interactions.

We use nine G2 radial basis functions. The input of the NN has a dimension of RN0 , where N0 = 4× 9 = 36 . 
That is, nine structural descriptors {G(2)} , nine Heisenberg-like descriptors {GH } , nine Landau-A-like descriptors 
{GA} and nine Landau-B-like descriptors {GB} . Every descriptor has analytical derivatives with respect to both 
changes in position and magnetic moment (see Supplementary Materials). Whilst we opted to use two-body 
G2 as the basis of our magnetic descriptors, the principle is extendable to N-body descriptor representations.

Fitting procedure. Once the database has been constructed, the model parameters can be trained by mini-
mising the Loss function (see Supplementary Materials). Each component in the model Hamiltonian is moti-
vated by different physical properties. To reflect this our fitting workflow consisted of four distinct stages to allow 
each term to learn their respective physical behaviours. 

1 First, we introduce the underlying behaviour of metallic bonds for BCC, FCC and HCP iron in the absence of 
magnetic interactions by fitting the parameters of the non-magnetic potential VNM(pNM) to the configurations 
in the non-magnetic database. The non-magnetic parameters are the subset pNM = ({Vt}, {rt}, {tN }, {rt},φ) . 
We maintain the parameters of the ZBL potential. The coefficients of the interpolation potential Vit are not 
fit but are analytically derived to maintain continuity.

2 Next, the characteristic behaviour of band splitting (i.e. the spontaneous formation of a magnetic moment) 
and their itinerant magnetic interactions are added by fitting the Heisenberg-Landau parameters pHL to 
bulk-like BCC configurations in the magnetic database. During this process pNM are held constant such 
that the total energy considered by the Loss function is U → VNM + VMC(pHL ). The Heisenberg-Landau 
parameters are pHL = (J0, {a}, {b}, c).

4 Magnetic interactions beyond the parametric constraints of the Heisenberg-Landau formalism are produced 
by training the NN weights and biases pNN = ({W}, {b},V0) to all desired observables in the magnetic data-
base. This also introduces the magnetic behaviour of the FCC phase into the Hamiltonian. During this stage 
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the total energy is given by the full model U → VNM + VHL + VNN(pNN ), where the parameters pNM and 
pHL are fixed.

5 Finally, we make minor adjustments to the parameter space by enabling all variables p = (pNM, pHL, pNN) 
to be simultaneously adjusted with total energy: U → VNM(pNM)+ VHL(pHL)+ VNN(pNN ). In this stage 
the maximum step size of the minimization algorithm is reduced.

Once the Loss function has been minimised with respect to the training database its generalisation and stabil-
ity may be validated through dynamic simulations. This is usually performed using MD. However, our model 
Hamiltonian has coupled spin and lattice degrees of freedoms and is designed to incorporate itinerant behaviour. 
Consequently, in order to evolve with time and temperature we may use spin-lattice dynamics to treat atomic and 
magnetic interactions on equal footing which already incorporated both transverse and longitudinal magnetic 
fluctuations.

Data availibility
The data that supports the findings of this study are available from the corresponding author upon reasonable 
request.

Code availability
The spin-lattice dynamics SPILADY code is available under the Apache Licence version 2.0. One can download it 
from https:// ccfe. ukaea. uk/ resou rces/ spila dy/. Version 1.0.1 is suitable for single element simulation of molecular 
dynamics, spin dynamics, spin-lattice dynamics and spin-lattice-electron  dynamics46. It is capable of consider-
ing the longitudinal fluctuations of magnetic moments. The modified SPILADY code developed for this work, 
which includes the MSLP potential, is available upon request from the corresponding author and will be included 
in the next version release. The potential parameters used in the generation of results presented in this work 
are available in the Supplementary Data (mslp.in). Further details are available in the Supplementary Material.
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