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AS‑CMC: a pan‑cancer database 
of alternative splicing for molecular 
classification of cancer
Jiyeon Park 1,2,3,6, Jin‑Ok Lee 3,6, Minho Lee 4 & Yeun‑Jun Chung 1,2,5*

Alternative splicing (AS) is a post‑transcriptional regulation that leads to the complexity of the 
transcriptome. Despite the growing importance of AS in cancer research, the role of AS has not 
been systematically studied, especially in understanding cancer molecular classification. Herein, we 
analyzed the molecular subtype‑specific regulation of AS using The Cancer Genome Atlas data and 
constructed a web‑based database, named Alternative Splicing for Cancer Molecular Classification 
(AS‑CMC). Our system harbors three analysis modules for exploring subtype‑specific AS events, 
evaluating their phenotype association, and performing pan‑cancer comparison. The number of 
subtype‑specific AS events was found to be diverse across cancer types, and some differentially 
regulated AS events were recurrently found in multiple cancer types. We analyzed a subtype‑specific 
AS in exon 11 of mitogen‑activated protein kinase kinase 7 (MAP3K7) as an example of a pan‑cancer 
AS biomarker. This AS marker showed significant association with the survival of patients with 
stomach adenocarcinoma. Our analysis revealed AS as an important determinant for cancer molecular 
classification. AS‑CMC is the first web‑based resource that provides a comprehensive tool to explore 
the biological implications of AS events, facilitating the discovery of novel AS biomarkers.

Integrated clustering of The Cancer Genome Atlas (TCGA) has identified distinct molecular subtypes of diverse 
human  cancers1. The molecular subtypes are known to be associated with distinct drug responses and prognosis 
of  cancers2–4. Therefore, precise molecular classification is important for better understanding of tumorigenesis 
as well as improving treatment outcomes for patients with cancer. The molecular subtypes have been mainly 
established based on DNA methylation, copy number alteration, mRNA, and microRNA genomics data. However, 
the role of post-transcriptional regulation in these molecular classifications has not been extensively studied due 
to the technical constraints encountered during the analysis and interpretation of post-transcriptional processes.

Alternative splicing (AS) is an important post-transcriptional process that generates RNA isoforms, leading 
to transcriptome diversity. AS refers to alternative usage of exons and introns, thus consequently altering the 
protein structure or  abundance5. The role of AS in organ development and tumorigenesis has been increasingly 
realized with the recent advances in RNA-sequencing6,7. Previous AS-related studies in cancer have identified 
cancer-specific and clinically relevant AS  events8–10. Indeed, a number of AS events have been reported to be 
associated with the prognosis of diverse  cancers11–14, suggesting their clinical implications. Recently, cancer-
specific AS events have emerged as a source of neoantigens, thus raising the possibility of using AS in clinical 
 settings15,16. Studies have shown that pharmacological splicing modulation can generate neoantigens, which can 
be effectively employed in  immunotherapy17,18.

With the growing interest in the role of AS in cancer, several splicing-related databases have been devel-
oped using TCGA RNA-sequencing data. TCGASpliceSeq has provided percent spliced in (PSI) values for AS 
events, which has allowed users to compare changes in AS across cancer  types19. ExonSkipDB database can be 
used to understand AS events in the context of mutation and epigenetic  background20. The recently updated 
OncoSplicing database focuses on identifying clinically relevant AS events in cancer development by conduct-
ing survival and differential  analyses21. ASPN, a splicing-derived neoepitope database, has compiled a list of 
potential AS-derived neoepitopes found in 16 types of  cancers22. However, these databases have focused on 
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identifying cancer-specific alterations in AS, and the role of AS in cancer classification has not been systemati-
cally explored to date.

To expand the molecular determinants for cancer classification, herein we have analyzed differentially regu-
lated AS events in molecular subtypes of cancer using TCGA data. To promote the discovery of AS events as bio-
markers, we have developed a pan-cancer database named AS-CMC (Alternative Splicing for Cancer Molecular 
Classification). This is a novel database for allowing users to browse subtype-specific changes in AS along with 
phenotypic associations for each cancer type as well as compare the regulation pattern across diverse cancer 
types. As an example, we have provided a potential AS event as a pan-cancer biomarker that can distinguish 
among molecular subtypes.

Results
AS‑CMC analysis modules. AS-CMC is comprised of the following three analysis modules: “Subtype-
specific AS,” “Phenotype association,” and “Pan-cancer comparison” (Fig. 1). The “Subtype-specific AS” module 
allows users to identify AS events with significant differences between molecular subtypes in each cancer type. 
The “Phenotype association” module enables prioritization of AS events by relevance in terms of clinical out-
comes (patient-level), cancer microenvironment scores (tissue-level), and gene expression levels (gene-level). 

Figure 1.  AS-CMC workflow. AS-CMC provides three analysis modules. In the “Subtype-specific AS” 
module (top left), differential regulation of AS PSI values was tested among molecular subtypes provided by 
TCGAbiolinks. We used AS events in five splice types (ES, RI, AA, AD, and ME). In the “Phenotype association” 
module (bottom left), each AS event was evaluated in association with patient-level (clinical outcomes), tissue-
level (microenvironment), and gene-level (gene-expression) data. In the “Pan-cancer comparison” module 
(right), the analyzed data pertaining to each AS event is displayed in a panoramic view across cancer types. 
In the pan-cancer view, users can access plots summarizing subtype-specificity, clinical implications, and 
correlations with gene expression. The figure was created with BioRender.com.
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The “Pan-cancer comparison” module can be used to compare the statistical significance of an AS event across 
cancer types.

For constructing the “Subtype-specific AS” module, we used PSI values of AS events based on 
 TCGASpliceSeq19 and molecular subtype information provided by TCGA marker papers (Table S1) through 
the TCGAbiolinks R  package23. We performed analysis of variance (ANOVA) and selected subtype-specific AS 
events if they had p < 0.001 and could explain at least 10% of the variation (adjusted  R2). AS events were catego-
rized into the following five types: exon skip (ES), retained intron (RI), alternate acceptor sites (AA), alternate 
donor sites (AD), and mutually exclusive exons (ME).

For the “Phenotype association” module, we utilized patient clinical data, molecular scores reflecting the can-
cer microenvironment, and gene-level expression data. For assessing the association with patient survival, users 
can compare patient survival rates between high- and low-PSI groups for a given AS. In the cancer microenviron-
ment part, users can investigate the correlations between the changes in AS and predefined scores indicating the 
status of immune and stromal cells, epithelial-to-mesenchymal transition (EMT), and  hypoxia24–27. Users can also 
examine the correlations of each AS event with expression levels of all genes. The gene expression levels correlated 
with AS PSI values enables determination of biological pathways underlying AS changes. The relationship of the 
host gene with AS helps in assessing the dependency of the AS event on transcriptional regulation. If the AS is 
independent of gene expression, it is likely regulated solely by splicing machinery.

“Pan-cancer comparison” module can be used to determine whether the subtype-specific AS regulation is 
cancer-specific. The module provides panoramic views summarizing the analysis results across cancer types. 
Users can check whether the biological and clinical association of an AS event is observed in multiple cancer 
types, which can promote the discovery of pan-cancer AS markers.

Landscape of subtype‑specific AS in TCGA . We focused on 24 TCGA cancer types with available 
molecular subtype information among 33 types (Fig. 2a). The sample size for each cancer type varied from 57 
to 1094. Details of the molecular subtypes of the selected 24 cancers are listed in Table S2. Of the five AS types, 
ES was observed to be the most common event, followed by RI (Fig. 2b). We found that the number of subtype-
specific AS events are diverse across cancers. Kidney renal clear cell carcinoma (KIRC) was observed to have 
the highest number of subtype-specific AS events (n = 1838), and 74% of them were found to be associated with 
patient survival (Fig. 2b,c; Tables S3 and S4; average p-value of three survival tests < 0.05). Skin cutaneous mela-
noma (SKCM) showed the lowest number (n = 24) of subtype-specific AS events, and none of them were found 
to be associated with survival. Since the difference in sample size can affect the selection of subtype-specific AS 
event, we checked the relationship between the number of samples and the number of significant AS events 
(Supplementary Fig. 1). The degree of correlation was generally not high but varies in cancer types or splicing 
types. Users should be aware that some cancer types with small sample size may have fewer AS events than they 
actually do.

AS‑CMC user interface. AS-CMC has a user-friendly interface that allows researchers to explore AS 
events in TCGA molecular subtypes. The brief introduction and summary statistics are shown on the home page 
(https:// www. pmrc. re. kr/ ASCMC/). Our web service consists of two parts, viz., “Single-cancer AS” and “Pan-
cancer AS.” In the “Single-cancer AS” part, users can browse subtype-specific AS events for each cancer type 
(Fig. 3a). Users can get basic statistics from ANOVA and correlation analysis in tabular form. The subtype-spe-
cific regulation and relationship with phenotypes can be visualized in a pop-up window (Fig. 3b). In the survival 
plot section, AS-CMC provides three plots representing the survival difference between the groups for an AS 
event according to the following PSI cut-offs: 50% (upper 50% vs. lower 50%), 25% (upper 25% vs. lower 25%), 
and 10% (upper 10% vs. lower 10%); for example, the survival difference between the groups with an upper 25% 
PSI value and the ones with a lower 25% PSI value is provided. The log rank p-value is shown for each plot. At 
the tissue level, AS-CMC provides the following plots showing the relevance of the cancer microenvironment: 
association with immune infiltration, hypoxia, and EMT scores. AS-CMC provides the distribution plot of AS 
PSI values and gene expression levels among molecular subtypes, and the correlation coefficient plot of the AS 
event with all genes in a cancer type is also provided.

The other part, viz., “Pan-cancer AS”, provides pan-cancer views for a selected AS event (Fig. 4a). For the 
queried AS event, users can compare subtype-specificity, clinical association, and correlation with genes in a 
heatmap. Users can prioritize AS events by choosing the AS event type, the minimum p-value across cancer 
types, or relevant biological pathways. Each AS event is displayed with cancer types showing subtype-specificity. 
Pan-cancer plot for subtype-specificity shows both ANOVA p-values and adjusted  R2 values across cancer types 
(Fig. 4b). In the pan-cancer survival plot, each cancer type is allotted three data points, which are derived from 
three survival tests based on PSI cutoff in creating patient groups (Fig. 4c). The correlations between the AS event 
and host gene expression can be compared in a heatmap (Fig. 4d). The correlations between the AS event and all 
genes can also be visualized using a heatmap (Fig. 4e). Users can download the analyzed data.

Case study: an AS event in exon 11 of MAP3K7 gene. Using AS-CMC, we selected a notable sub-
type-specific AS event that can serve as a pan-cancer AS biomarker as an example. An ES event in exon 11 of 
MAP3K7 (mitogen-activated protein kinase kinase kinase 7) gene (Supplementary Fig. 2a) was chosen as this 
marker showed significant subtype-specificity in 10 cancer types (marked by red on x-axis in Fig. 4b). In the 
survival analysis, the skipping of the exon was found to be strongly associated with poor clinical outcome in 
stomach adenocarcinoma (STAD), which was the most significant across all cancer types (log-rank p = 0.0002 
between upper 10% and lower 10% groups) (marked by the darkest red in Fig. 4c). The survival difference was 
found to be the largest in the most stringent cut-off (upper 10% vs lower 10%) (Supplementary Fig. 2d). This 

https://www.pmrc.re.kr/ASCMC/
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AS was observed to be likely independent of the transcriptional regulation based on the correlation with the 
MAP3K7 gene (|r|< 0.25) (Fig. 4d). Notably, the PSI values were correlated with the expression levels of many 
genes encoding EMT markers (VIM, ZEB1, and ZEB2) and EMT-related RNA binding proteins (QKI, RBFOX2, 
RBM47, and ESRP1) (Fig. 4e). Intriguingly, 17 out of 24 cancer types shared the correlation pattern, indicating 
that they have a common mechanism underlying the AS of MAP3K7.

MAP3K7 AS was analyzed in depth in STAD due to its significant association with survival (Fig. 4c). Among 
the five molecular subtypes of STAD, only GI.GS subtype showed significant distribution of PSI values compared 
to the other subtypes (Supplementary Fig. 2b). The PSI values were correlated with the molecular scores related 
to EMT scores (r = − 0.71) (Supplementary Fig. 2c). Taken together, these data support that an ES event in exon 
11 of MAP3K7 may play a role in regulating subtypes across diverse cancers, and that this event may particularly 
play a crucial role in STAD, where its function has not been reported earlier.

Discussion
Molecular classification of cancer is important for precision medicine as it represents the pathophysiology of 
cancers and can have prognostic value. In recent years, large-scale genomic studies have aided the molecular clas-
sification of cancers. Since 2011, the TCGA network has published marker papers providing molecular subtypes 
for 24 cancer types based on the integrated analysis of the multi-omics  data23. However, the role of AS in defining 
molecular subtypes and predicting progression of cancers has not been extensively studied.

AS enhances proteomic diversity by altering protein composition or abundance, which can provide a basis 
for studying underlying mechanisms of human  diseases5. In this study, we focused on AS events involved in the 

Figure 2.  Landscape of subtype-specific AS in TCGA. (a) The 24 cancer types included in AS-CMC and 
number of samples in each cancer type. The TCGA abbreviations and full names are displayed on the right side. 
(b) The number of subtype-specific AS events by splice types. The subtype-specific AS events were selected 
based on the ANOVA test (p < 0.001 and adjusted  R2 > 0.1). (c) The fraction of survival-associated AS events 
among subtype-specific AS events. The fraction is marked by dark red color and is also shown as percentage on 
the right side of each bar. X-axis indicates the number of AS events.
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molecular classification of cancer that can serve as cancer biomarkers for understanding the pathophysiology 
of cancers and prediction of the prognosis. Through a comprehensive analysis of AS events in 24 TCGA cancer 
types, we developed AS-CMC platform to evaluate each AS in association with clinical outcomes, cancer micro-
environment, and gene expression.

Compared to other AS  databases20,21, AS-CMC has distinct advantages. First, it enables the evaluation of 
the functionality of AS events by incorporating various molecular scores reflecting cancer microenvironment. 
Cancer microenvironment changes dynamically and contributes to the dynamic nature of events associated 
with tumor progression such as angiogenesis and metastasis. We collected various molecular scores from pub-
lished  data24–27. Extensive immunogenomic analyses provided cellular fraction estimates important for exploring 
 immunogenicity24,25. EMT, a biological process that promotes cancer metastasis, was measured in a cancer sample 
using gene expression  profiles26. Recent studies have developed hypoxia-associated signature to infer the level 
of molecular oxygen in tumor  tissues27.

Another advantage of AS-CMC is that it can be used to assess the utility of pan-cancer AS biomarkers by 
providing a pan-cancer view of their biological and clinical associations. It allows testing whether the subtype-
specific regulation is recurrent across diverse cancers. The ES event in MAP3K7 gene (exon 11) was represented 
in this study as a potential pan-cancer AS biomarker capable of discriminating molecular subtypes in 10 cancer 

Figure 3.  An example of “Single-cancer AS” part in AS-CMC. (a) List of subtype-specific AS events for a 
selected cancer type. Once a cancer type is selected, the subtype-specific AS events are shown with relevant 
statistics displayed in a tabular form. Users can filter the results using the defined cut-off in survival and 
correlation with the expression level of genes with the AS. (b) Visualization panel showing the analysis results of 
an AS event. Once an AS event is selected, a window with various plots pops up.
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types. Exon 11 is 81 bp in size, and encodes 27 amino acids between the kinase and regulatory  domains28. The 
function of this AS has been mainly reported in breast  cancer29. Our study has suggested a potential role of 
MAP3K7 AS in STAD due to its significant association with patient survival. The protein expression of MAP3K7 
gene was reported to be involved in gastric cancer  progression30; however, the role of AS is unknown. We also sug-
gest a potential function of MAP3K7 AS in EMT based on the coexpression pattern of genes with MAP3K7 AS. 
EMT marker genes were found to be consistently correlated with MAP3K7 AS across 17 cancer types (Fig. 4e), 
indicating that the regulation mechanism is common beyond breast cancer.

Despite the growing interest in AS in association with cancer, the functional investigation of AS events for 
biomarker development has not been completely explored due to insufficient data and analysis tools. AS-CMC 
can prove to be a valuable resource to identify and prioritize AS events for cancer classification. In the future, 
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we continue to update the AS-CMC by including more phenotype association data and using other AS tools to 
calculate PSI values differently.

Methods
Data. For TCGA data analysis, the information pertaining to cancer molecular subtypes was obtained from 
the TCGAbiolinks R  package23. We used the most prominent subtype classification for a given tumor, which was 
found in the column called “Selected subtype” (Table S1). TCGAbiolinks provided gene expression and patient 
survival data as well. For AS in TCGA samples, we used the per-cent-spliced-in index (PSI) value from the 
TCGASpliceSeq  database19. Even though seven AS types exist in the database, we selected the following five AS 
types: ES, RI, AA, AD, and ME. Alternative promoter and alternative termination types were excluded because 
they are regulated by transcription initiation and termination in addition to splicing.

Collection of tissue‑level molecular scores using TCGA data. We used various predefined scores to 
estimate the phenotype of cancer tissues in TCGA data. For immune cell infiltration, the fraction of leukocytes 
and CIBERSORT immune cells were downloaded from an immunogenomics analysis (https:// gdc. cancer. gov/ 
about- data/ publi catio ns/ panim mune)24. We also used molecular scores indicating immune and stemness signa-
tures based on the expression levels of their marker  genes25. For EMT, we used two scores based on the mRNA 
expression of EMT marker  genes31,32, which were obtained from a previous  report26. For the level of molecular 
oxygen in tumor samples, we used 8 types of hypoxia scores (Buffa, Winter, Ragnum, West, Sorensen, Elvidge, 
Hu, and Seigneuric) in 19 cancer types in TCGA  data27.

Statistical analysis. We selected subtype-specific AS events by analysis of variance (ANOVA) (p < 0.001 
and adjusted  R2 > 0.1) for each cancer type. To evaluate whether AS is related with transcriptional regulation, we 
calculated the correlation coefficient of the PSI values with the expression level of the host gene containing an AS 
event. For clinical association, we performed survival analysis between high- and low-PSI groups. The threshold 
to separate the two groups was defined as 10%, 25%, and 50% in the PSI value distribution. The significance of 
differential survival rates was evaluated by log rank test. Hazard ratio was calculated based on the Cox regression 
test. For each AS event, correlation analysis for various molecular scores was performed by calculating Spear-
man’s rank correlation coefficient in R.

Construction of web‑based database. The web interface was written in the R programming language 
using the shiny package. The Plotly R graphing library was used to generate interactive visualization. Our ana-
lyzed data can be accessed in two ways: “Single-cancer AS” and “Pan-cancer AS.” In the “Single-cancer AS,” users 
can select the cancer type first and get the list of AS events with the statistical analysis results. In the “Pan-cancer 
AS,” users can obtain pan-cancer views for a selected AS event. The result table can be sorted by clicking the 
column names of the table and can be filtered by selecting one of the predefined criteria.

Data availability
AS-CMC is available at http:// www. pmrc. re. kr/ ASCMC/.
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