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Transcriptomic changes underlying 
EGFR inhibitor resistance in human 
and mouse models of basal‑like 
breast cancer
Narmeen S. Rashid 1,2,10, David C. Boyd 1,3,10, Amy L. Olex 4, Jacqueline M. Grible 1, 
Alex K. Duong 1, Mohammad A. Alzubi 1,5, Julia E. Altman 1, Tess J. Leftwich 1, 
Aaron D. Valentine 1, Nicole S. Hairr 1, Emily K. Zboril 1, Timothy M. Smith Jr. 1, 
Adam D. Pfefferle 6,7, Mikhail G. Dozmorov 1,8 & J. Chuck Harrell 1,9*

The goals of this study were to identify transcriptomic changes that arise in basal‑like breast cancer 
cells during the development of resistance to epidermal growth factor receptor inhibitors (EGFRi) and 
to identify drugs that are cytotoxic once EGFRi resistance occurs. Human patient‑derived xenografts 
(PDXs) were grown in immunodeficient mice and treated with a set of EGFRi; the EGFRi erlotinib was 
selected for more expansive in vivo studies. Single‑cell RNA sequencing was performed on mammary 
tumors from the basal‑like PDX WHIM2 that was treated with vehicle or erlotinib for 9 weeks. 
The PDX was then subjected to long‑term erlotinib treatment in vivo. Through serial passaging, 
an erlotinib‑resistant subline of WHIM2 was generated. Bulk RNA‑sequencing was performed on 
parental and erlotinib‑resistant tumors. In vitro high‑throughput drug screening with > 500 clinically 
used compounds was performed on parental and erlotinib‑resistant cells. Previously published bulk 
gene expression microarray data from MMTV‑Wnt1 tumors were contrasted with the WHIM2 PDX 
data. Erlotinib effectively inhibited WHIM2 tumor growth for approximately 4 weeks. Compared to 
untreated cells, single‑cell RNA sequencing revealed that a greater proportion of erlotinib‑treated 
cells were in the G1 phase of the cell cycle. Comparison of WHIM2 and MMTV‑Wnt1 gene expression 
data revealed a set of 38 overlapping genes that were differentially expressed in the erlotinib‑resistant 
WHIM2 and MMTV‑Wnt1 tumors. Comparison of all three data types revealed five genes that were 
upregulated across all erlotinib‑resistant samples: IL19, KLK7, LCN2, SAA1, and SAA2. Of these five 
genes, LCN2 was most abundantly expressed in triple‑negative breast cancers, and its knockdown 
restored erlotinib sensitivity in vitro. Despite transcriptomic differences, parental and erlotinib‑
resistant WHIM2 displayed similar responses to the majority of drugs assessed for cytotoxicity in vitro. 
This study identified transcriptomic changes arising in erlotinib‑resistant basal‑like breast cancer. 
These data could be used to identify a biomarker or develop a gene signature predictive of patient 
response to EGFRi. Future studies should explore the predictive capacity of these gene signatures as 
well as how LCN2 contributes to the development of EGFRi resistance.

Triple negative breast cancer (TNBC) is an aggressive, highly metastatic breast cancer subtype that is character-
ized by a lack of hormone receptors and human epidermal growth factor receptor 2 (HER2)1,2. Thus, TNBC 
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patients are not candidates for endocrine therapies or targeted therapy with anti-HER2 agents. TNBC patients 
face limited therapeutic options; chemotherapy is standard of care. TNBCs are a heterogeneous class and can be 
categorized into distinct subtypes: basal-like (1 and 2), claudin-low, immunomodulatory, mesenchymal-like, mes-
enchymal stem-like, and luminal androgen receptor  positive3,4. These subtypes are transcriptionally distinct and 
display unique biology, immune composition, and sensitivity to  chemotherapy5. Basal-like TNBCs are associated 
with the worst prognoses of all TNBC subtypes, indicating a need to identify efficacious treatment strategies for 
basal-like  TNBC6. Drug resistance is a major clinical problem in basal-like TNBCs; we were interested in iden-
tifying strategies to overcome this clinical deficit by using targeted drugs, particularly EGFR inhibitors (EGFRi).

Basal-like breast cancers express relatively high levels of epidermal growth factor receptor (EGFR) compared 
to other breast cancer  subtypes7. The EGFR family is composed of four categories of transmembrane tyros-
ine kinase receptors (ERBB1-4)8. Upon ligand binding, the inactive EGFR monomers dimerize to form active 
heterodimers. Dimerization is necessary for phosphorylation of the intracellular receptor kinase domain and 
activation of downstream  pathways8. Once phosphorylated, EGFR can activate the PI3K/AKT and RAS signaling 
pathways. EGFRs are overexpressed and/or mutated in many cancers, including breast  cancer9. EGFR overexpres-
sion or mutation can lead to aberrant signaling and promotion of uncontrolled cell growth and proliferation. 
EGFR overactivation in cancers is associated with poorer  prognoses9. Currently, EGFRi are standard of care for 
patients with EGFR mutation-positive non-small cell lung cancer (NSCLC)10. However, the majority of patients 
treated with EGFRi for EGFR mutation-positive NSCLC will develop resistance to  EGFRi10. Secondary mutations 
to the EGFR ligand binding domain, activation of compensatory pathways, and impairment of EGFR-EGFRi 
mediated apoptotic pathways are all mechanisms of  resistance11–13. HGF overexpression, low BIM expression, 
PIK3CA mutations, and PTEN deletions have been associated with primary resistance to  EGFRi14. In TNBC 
clinical trials, EGFRi have exhibited a modest response in combination with platinum compounds in a subset 
of patients, highlighting the need for predictors of therapeutic  selection15,16.

PDXs have been shown to largely maintain the properties of the patient tumors from which they were 
 derived17. Previous studies have found that basal-like PDXs have transcriptional profiles and metastasis pat-
terns similar to patient samples within The Cancer Genome Atlas (TCGA) breast cancer cohort  dataset18. In 
addition, several of these models have been found to be insensitive to  chemotherapeutics19,20. In this study, we 
sought to identify a basal-like patient-derived xenograft (PDX) that was sensitive to EGFRi treatment, develop 
an EGFRi-resistant subline, and then, identify transcriptomic alterations underlying acquired resistance through 
bulk and single-cell RNA sequencing. Parallel analyses of transcriptomic data from isogenic transgenic mouse 
models of basal-like disease were incorporated to identify shared transcriptomic characters underlying EGFRi 
resistance. We also sought to identify drugs that demonstrate high levels of cytotoxicity in erlotinib-resistant 
basal-like PDXs via high-throughput drug screening. We hypothesize that these insights could be beneficial for 
(1) stratification of patients that could be responsive to EGFRi and (2) identification of effective therapies for 
patients with EGFRi-resistant disease.

Methods
In vivo growth of breast cancer PDX models. The following basal-like triple-negative breast cancer 
PDX models were used in this study: (HCI-001, UCD52, WHIM2). HCI-001 was obtained from the Huntsman 
Cancer Institute, University of Utah; WHIM2 was obtained from Washington University, St. Louis; UCD52 was 
obtained from the University of Colorado. All studies involving mice were approved by the Virginia Common-
wealth University (VCU) Institutional Animal Care and Use Committee (IACUC) (Protocol# AD10001247), 
and all experiments were performed in accordance with IACUC guidelines and regulations, as well as the 
ARRIVE guidelines 2.0. Tumor fragments were grown in the mammary fat pads of female non-obese diabetic 
severe combined immunodeficient gamma (NSG) mice (The Jackson Laboratory, strain #005557). When tumors 
reached approximately 10 mm × 10 mm, the mice were euthanized with isoflurane anesthesia, cervical disloca-
tion and thoracotomy, and the tumors were excised. Tumors were prepared into single-cell suspensions using a 
previously described  protocol21. Single-cell suspensions were used for serial passaging by suspending tumor cells 
1:1 in Matrigel (Corning) or Cultrex (Bio-Teche) and injecting tumor cells (500,000 cells per injection) into the 
mammary fat pads of mice. Single-cell suspensions were also used for in vitro drug screens.

In vivo drug treatments. For the study in Supplementary Fig. 1, all drugs were dissolved in a solution 
of 1% methylcellulose + 0.1% Tween-80 and administered via oral gavage. Drugs were administered daily for 
10 days: CO-1686 [100 mg/kg], erlotinib [100 mg/kg], gefitinib [200 mg/kg], dacomitinib [10 mg/kg], lapatinib 
[100 mg/kg], and afatinib [50 mg/kg]. For longer-term erlotinib treatment, mice received 367 ppm erlotinib-
incorporated mouse chow (Envigo) ad libitum until a resistant phenotype arose.

High‑throughput drug screens. Single-cell suspensions of PDX cells were plated in 96-well plates at 
16,000 cells per well in M87 medium and treated with 516 drugs (ApexBio DiscoveryProbe FDA-approved Drug 
Library) at 10 µM22. After 72 h, the CellTiter-Glo Luminescent Viability Assay (Promega) was used according to 
the manufacturer’s protocol. Cell viability was quantified by normalizing treated wells to vehicle (0.1% DMSO) 
wells to produce a percent of vehicle value. Drug cytotoxicity was compared between the parental WHIM2 and 
erlotinib-resistant WHIM2 PDXs. Three separate tumors were tested in duplicate, and replicates were then aver-
aged for each PDX.

Single‑cell RNA sequencing. Single-cell transcriptomes were obtained from 1,314 parental tumor 
cells and 844 erlotinib-resistant tumor cells with a 10× Genomics Chromium single-cell controller utilizing a 
10× Genomics Single Cell 3′Reagent kit standard protocol. Libraries were then sequenced on an Illumina Next-



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21248  | https://doi.org/10.1038/s41598-022-25541-3

www.nature.com/scientificreports/

seq500/550 with 42-bp paired end reads, or a HiSeq2500 v4 with 125-bp paired end reads. The 10X Genomics 
CellRanger v6 software suite of tools was used to align samples and calculate gene expression. An in-house R 
script utilizing the Seurat v3.1.5 package was used to remove poor quality or dead cells. Additional filtering and 
realignment were performed to remove mouse cells. A final merged dataset containing only human cells was 
created using CellRanger. 10X Loupe Cell Browser v6.0.0 was used to visualize cell clusters and perform differ-
ential gene expression analyses across  clusters23. Chi-squared test was performed using GraphPad Prism v.9.2.0 
to identify if differences in the proportion of cells in each phase of the cell cycle were statistically significant 
between parental and erlotinib-treated tumors.

Bulk RNA‑sequencing. Parental WHIM2 (n = 4) and erlotinib-resistant WHIM2 (n = 3) mammary tumors 
tissues were excised and flash frozen. RNA was prepared with the Qiagen RNeasy mini kit. Sequencing librar-
ies were prepared with NEBNext Ultra II RNA Library Prep Kit for Illumina using manufacturer’s instructions 
(New England Biolabs). The sequencing libraries were multiplexed and clustered onto a flowcell. After cluster-
ing, the flowcell was loaded onto the Illumina HiSeq instrument according to manufacturer’s instructions. The 
samples were sequenced using a 2 × 150 bp Paired End (PE) configuration. Image analysis and base calling were 
conducted by the HiSeq Control Software (HCS). Raw sequence data (.bcl files) generated from Illumina HiSeq 
was converted into fastq files and de-multiplexed using Illumina bcl2fastq 2.17 software. One mismatch was 
allowed for index sequence identification. Approximately 30 M reads were obtained per sample. Reads were 
aligned to a hg38 human reference genome. DEseq2 was utilized to identify fold change in gene expression 
and genes significantly differentially expressed in erlotinib-resistant WHIM2 tumors; P < 0.05 was considered 
statistically  significant24. Gene Set Enrichment Analysis (GSEA) was performed to identify upregulated and 
downregulated genetic  programs25,26.

Ingenuity pathway analysis. Qiagen Ingenuity Pathway Analysis (IPA) was used to perform network 
 analyses27. False discovery rate adjusted p-values (q-values) were calculated for bulk RNA-sequencing data to 
identify significantly differentially expressed genes in parental and erlotinib-resistant WHIM2 samples. IPA was 
performed on 228 genes meeting the following parameters: log experimental fold change > 2.0 and q-value < 0.05. 
Pathway analyses revealed upregulated and downregulated gene expression programs between samples.

Immunohistochemistry. Immunohistochemical staining was performed on formalin-fixed, paraffin-
embedded WHIM2 tumors. Heat-induced antigen retrieval was performed in pH 9 Tris–EDTA using a Dako-
cytomatin Pascal Pressure Chamber. EGFR (Cell Signaling Technology, 2232S) antibody was diluted 1:50 in 
SignalStain Antibody Diluent (Cell Signaling Technology) and was applied to sections from parental and erlo-
tinib-resistant WHIM2 tumors. Detection was performed using the Rabbit Dako EnVision System (Agilent 
K406511–2). Slides were imaged using Zeiss Axio Observer with Zen software. Quantification of immunohisto-
chemical staining was performed using ImageJ plugins IHC Toolbox and IHC  Profiler28. T-tests were performed 
on GraphPad Prism v.9.2.0 to determine if differences in staining were statistically significant between groups.

Wnt1‑Early vs Wnt1‑Late gene expression analysis. Gene expression microarray data from 37 
untreated, FVB MMTV-Wnt1 tumors were downloaded from the UNC Microarray Database as log2 Cy5/Cy3 
ratios, filtering for probes with Lowess normalized intensity values greater than ten in both channels and for 
probes with data on greater than 70% of the  microarrays29,30. After median centering the expression of each 
probe and imputing via the ten-nearest neighbor gene values, the dataset was collapsed by averaging the expres-
sion of probes corresponding to the same gene symbol. A two-class (Wnt1-Early vs Wnt1-Late) Significance 
Analysis of Microarrays (SAM) analysis was performed to identify differentially expressed  genes31.

Identification of 38 overlapping differentially expressed genes in basal‑like erlotinib‑resistant 
samples. DEseq2 identified 1641 significantly differentially expressed genes in erlotinib-resistant WHIM2 
compared to parental WHIM2 (Padj < 0.05). Of these genes, 521 had a fold change greater than or equal to 1.5. 
SAM analysis identified 9424 significantly differentially expressed genes in Wnt-Late compared to Wnt-Early 
(SAM q-value < 5%). Of these genes, 2833 genes had a fold change greater than or equal to 1.5. Significantly dif-
ferentially expressed genes with a fold change ≥ 1.5 in erlotinib-resistant WHIM2 and Wnt-Late were compared. 
There were 92 overlapping genes. Of these genes, 38 were upregulated or downregulated in the same direction in 
erlotinib-resistant WHIM2 and Wnt-late samples. Heatmaps depicting differential gene expression were created 
using Morpheus (https:// softw are. broad insti tute. org/ morph eus/). Data were hierarchically clustered by both 
samples (erlotinib-sensitive vs resistant) and genes using the one minus Pearson correlation metric and average 
linkage method. Boxplots of TCGA data were generated with http:// ualcan. path. uab. edu/ index. html32,33.

Transient knock‑down of LCN2 using siRNA lipofection. WHIM2 erlotinib-resistant cells were har-
vested and transfected per the manufacturer’s protocol. For the experimental group, siGENOME Human LCN2 
siRNA SMARTPool (Dharmacon) was utilized, which contained four targeting siRNAs for the LCN2 transcript. 
For the control group, a non-targeting siGENOME siRNA control pool (Dharmacon) of four siRNAs were used. 
Both siRNAs and DharmaFECT 1, a lipo-based transfection reagent, were diluted into serum-free, antibiotic-
free media separately and shortly incubated. Then, for each group, the siRNA and DharmaFECT media were 
plated together in 100 mm dishes for another incubation period. Cells were suspended in antibiotic-free media 
containing serum, plated on top of the siRNA and DharmaFECT media solution, and gently mixed. Optimiza-

https://software.broadinstitute.org/morpheus/
http://ualcan.path.uab.edu/index.html
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tion led to a transfection period of 1 day. Transfection was ended by replacing transfection media with M87 
media. Knock down was confirmed via western blot analysis.

Ethical approval and consent to participate. All animal and cell line work were done according to 
VCU Institutional Animal Care and Use Committee protocols.

Results
Select EGFR inhibitors reduced the growth of the WHIM2 PDX. In previous studies, the WHIM2 
basal-like PDX was not responsive to the chemotherapeutic  carboplatin19,20; however, several different EGFRi 
demonstrated cytotoxic activity in  vitro21. To identify EGFRi that were effective in  vivo, NSG mice bearing 
palpable WHIM2 mammary tumors were treated daily with one of six different EGFRi: CO-1686, erlotinib, 
gefitinib, dacomitinib, lapatinib, or afatinib. At the concentrations tested, erlotinib, gefitinib, dacomitinib, and 
afatinib each prevented tumor growth over a 10-day period (Supplementary Fig.  1). Since erlotinib is FDA-
approved for clinical use and has a well-characterized side effect profile, it was chosen as the EGFRi to be used for 
the remainder of the study. A separate cohort of WHIM2 tumor-bearing mice was then treated with erlotinib-
incorporated mouse chow, which also successfully inhibited tumor growth (Supplementary Fig. 1).

Development of an acquired erlotinib‑resistant PDX model. The tumor growth inhibitory activity 
of erlotinib was next assessed across two additional basal-like PDXs: UCD52 and HCI-001; however, no signifi-
cant effect on tumor growth was observed in these models (Fig. 1A,B). Longer-term treatment of the WHIM2 
PDX found that erlotinib effectively prevented tumor growth for at least 4 weeks before tumor growth resumed 
(Fig. 1C). Drug-resistant tumors were serially passaged into new recipient mice (2nd passage) which were then 
treated with erlotinib chow. This process was repeated a second time (3rd passage), and the tumor growth rate 
was similar to the parental WHIM2 (Fig. 1D). The erlotinib-resistant PDX was termed WHIM2/ErlR.

Identification of compounds that were cytotoxic to WHIM2/ErlR cells. When primary or sec-
ondary drug resistance occurs in the clinical setting, new therapeutic approaches are needed. Therefore, 516 
clinically-utilized compounds were individually tested for cytotoxic activity on single-cell suspensions obtained 
from WHIM2 or WHIM2/ErlR cells. Interestingly, the majority of compounds displayed similar efficacy on both 
the parental and WHIM2/ErlR cells (Fig. 2). Notable exceptions that demonstrated greater efficacy on WHIM2/
ErlR cells included elvitegravir (GS-9137), an integrase inhibitor used to treat human immunodeficiency virus 
infection, and atovaquone, a quinone antimicrobial. Conversely, several drugs demonstrated reduced efficacy on 
the WHIM2/ErlR cells, including birinapant, aprepitant, and imatinib. Importantly, most of the highly cytotoxic 
drugs resulted in cell death to both parental and WHIM2/ErlR cells. Examples include topoisomerase inhibitors 
(doxorubicin, idarubicin, epirubicin), proteasome inhibitors (MLN2238/Ixazomib, CEP-18770, carfilzomib), 
HDAC inhibitors (belinostat, PCI-24781), and other EGFR inhibitors (neratinib, dacomitinib, afatinib), among 
others.

Single‑cell transcriptional responses to erlotinib treatment. Single-cell RNA-sequencing (scRNA-
seq) was used to identify transcriptional changes that occurred at the single-cell level upon the development of 
erlotinib resistance in the WHIM2 PDX. Mice with palpable WHIM2 PDX tumors were treated with erlotinib 
until drug-resistance occurred (9 weeks). Treated and control tumors were prepared into single-cell suspensions, 
and scRNA-seq was performed. In total, 1,314 control cells and 844 treated cells were analyzed. Uniform Mani-
fold Approximation and Projection (UMAP) based images of all cells were developed based on transcriptomic 
data from all significantly differentially expressed genes (Fig.  3A). Cell cycle phase specific gene expression 
signatures were assessed for each cell to determine if there were differences in the proportion of cells in each 
phase of the cell cycle due to treatment (Fig. 3B). Chi-squared test revealed a significant association between 
erlotinib treatment status and proportion of cells in each phase of the cell cycle (Χ2 = 208.6, df = 2, P < 0.0001). In 
the erlotinib-treated sample, there was an increase in the proportion of cells that were identified in the G1 cell 
state compared to the untreated sample (Fig. 3C). Conversely, there was a decrease in the proportion of cells that 
were identified in the S and G2M cell state in the erlotinib-treated sample compared to the untreated sample. 
Next, we identified differentially expressed genes which could have mediated erlotinib-resistance. Gene expres-
sion was quantified as percentage of cells in the sample expressing the gene transcript. There were 713 unique 
gene transcripts that were more abundantly expressed in the WHIM2 erlotinib-treated cells than in the WHIM2 
parental cells; 390 other transcripts were more abundantly expressed in the parental cells than the erlotinib-
treated cells (Fig. 3D). The 25 most differentially upregulated genes in the erlotinib-treated or control cells are 
shown (Fig. 3E). Examples of genes with more expression per cell in the erlotinib-treated group are PLAAT3, 
LCN2, CEBPD, and SAA1; conversely, LDHB is shown as an example for transcripts more abundant in control 
tumor cells. MKI67 is shown as a marker of the proliferating-G2/M population (Fig. 3F).

Bulk RNA‑seq analysis of erlotinib‑resistant WHIM2 tumor cells. After the WHIM2/ErlR subline 
was generated via serial passaging of erlotinib-treated tumors, immunohistochemical staining for EGFR was 
performed on parental WHIM2 and WHIM2 Erl/R tumors. Both were found to heterogeneously express EGFR 
(Fig. 4A). This suggests that selection for EGFR-negative cells was not the mechanism of resistance, nor was the 
gross upregulation of EGFR to compensate for its inhibition. Bulk RNA-sequencing data was then generated 
from the parental and WHIM2/ErlR PDXs. There were 521 transcripts identified as differentially expressed in the 
WHIM2/ErlR compared to WHIM2 parental (P < 0.05) (Fig. 4B). GSEA found that hallmark genetic programs 
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Figure 1.  Development of acquired erlotinib-resistance in an erlotinib-sensitive PDX. (A) UCD52; (B) HCI-001; and (C) 
WHIM2 PDXs were treated with erlotinib-incorporated mouse chow ad libitum once tumors were palpable; (D) WHIM2 
tumors were treated with erlotinib chow until resistance arose (1st passage) (n = 2). The first cohort of resistant tumors were 
passaged into a second cohort of mice (2nd passage) (n = 4), and mice were treated with erlotinib chow once tumors were 
palpable. The second cohort’s tumors were then passaged into a third cohort of mice and treated with erlotinib chow. The third 
cohort’s tumors were considered erlotinib-resistant (n = 10).
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of hypoxia, TNF-α signaling via NFκB, and epithelial mesenchymal transition were activated (Fig. 4C). Ingenu-
ity Pathway Analysis was used to perform network analyses. Activation at p-value < 0.001 and z-score > 2.0 was 
predicted in 40 functions related to cellular movement in the WHIM2/ErlR (Fig. 4D). This suggests that cellular 
movement gene expression programs were upregulated in the development of erlotinib resistance in WHIM2.

Comparison of the WHIM2 and MMTV‑Wnt1 transgenic models. The MMTV-Wnt1 transgenic 
basal-like mouse model spontaneously generates mammary tumors in a bi-modal distribution, either early 
(6.5 weeks) or late (22.5 weeks). Interestingly, the Wnt1-Early and Wnt1-Late tumors are transcriptionally dis-
tinct and respond differently to  erlotinib29.Genomic differences between these isogenic tumors were contrasted 
with the WHIM2 parental and WHIM2/ErlR tumors. In total, 38 shared genes were found to be upregulated or 
downregulated during the development of erlotinib-resistance in the WHIM2 PDX; each of these genes was also 
increased or decreased in the same direction in the Wnt1-Late (erlotinib-resistant) and WHIM2/ErlR models 
(Fig. 5A,B). Five of these genes were also found to be significantly differentially expressed in the same direction 
in the scRNA-seq data (Fig. 5C). Analysis of TCGA breast cancer cohort dataset found that three of the genes 
were expressed in triple-negative breast  cancers33 (Fig. 5D–F); LCN2 showed high transcriptional expression 
level in some tumors, similar to the above transcriptomic analyses.

Differential LCN2 protein expression between parental and erlotinib‑resistant tumors. Since 
LCN2 was found to be highly expressed in a subset of TNBCs, immunohistochemical staining for LCN2 was 
performed on parental (erlotinib-sensitive) and Erl/R WHIM2 tumors to assess differential LCN2 protein 
expression. Compared to staining for EGFR, LCN2 expression appeared bimodal and less diffuse, in that each 
cell either expressed or did not express LCN2 protein. Consistent with the transcriptomic data, immunohis-
tochemical staining of parental and Erl/R WHIM2 tumors found a significantly greater proportion of LCN2 
positive cells in Erl/R tumors compared to parental tumors (P < 0.05) (Fig. 6A–H). To investigate LCN2’s role in 
erlotinib resistance, LCN2 siRNA transfection was used to knock down LCN2 expression in WHIM Erl/R PDX 
cells using non-targeting siRNAs for a control. Relative LCN2 protein was visualized via western blot (Fig. 6I). 
Transiently transfected cells were treated with 1, 3, 5, 7, and 9 µM of erlotinib in vitro. At 5, 7, and 9 µM, erlo-
tinib demonstrated significantly greater cytotoxicity towards LCN2 siRNA transfected cells compared to non-
targeting siRNA transfected cells (Fig. 6J).

Discussion
In these studies, we sought to identify transcriptomic changes that accompany the development of EGFRi resist-
ance in basal-like TNBC PDXs in order to identify biomarkers and gene signatures predictive of EGFRi response. 
In pilot studies, we identified an EGFRi that demonstrated in vivo antitumor activity in the WHIM2 basal-like 
TNBC PDX. Of these EGFRi, erlotinib was chosen for further study. We derived an erlotinib-resistant WHIM2 
PDX from the parental PDX. ScRNA-seq and bulk-RNA sequencing were performed to identify transcriptomic 
changes underlying the development of erlotinib resistance. GSEA and IPA utilizing bulk-RNA sequencing data 
identified increased epithelial-to-mesenchymal transition (EMT) and cell movement, respectively, in WHIM2 
Erl/R compared to parental WHIM2. This suggests that EGFRi resistance may be associated with genomic pro-
grams that are also increased during metastasis. Furthermore, drugs targeting EMT and cell movement may be 
effective in the restoring EGFRi sensitivity.

Figure 2.  Assessment of 516 FDA-approved and clinically used drugs on parental and erlotinib-resistant 
WHIM2 PDXs. Tumors were excised from mice, prepped into single cell suspensions, plated in 96-well dishes, 
and treated with 10 μM of drug. Cell viability was assessed with CellTiter-Glo after 72 h of treatment and 
normalized to DMSO vehicle control. Parental (n = 3) and erlotinib-resistant (n = 3) tumors were treated in 
triplicate.
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Further analysis of bulk-RNA sequencing data from WHIM2 and MMTV-Wnt1 transgenic mouse models 
identified 38 genes that were differentially expressed in erlotinib-resistant strains. Of the upregulated genes, five 
genes were also significantly upregulated in scRNA-seq. These genes included: SAA1, SAA2, KLK7, LCN2, and 
IL19. These genes could potentially serve as predictive biomarkers of erlotinib response. Interestingly, López-
Ayllón et al. (2015) identified sixteen genes that were upregulated in erlotinib-resistant NSCLC tumors compared 
to erlotinib-sensitive  tumors34. These genes included LCN2, MET, PIGR, and SAA1, all of which were found to 
be upregulated in WHIM2/ErlR and Wnt-late tumors compared to WHIM2 parental and Wnt-early tumors. 
Interestingly, many of the activated genes found within the model system presented herein and in these previous 
studies encode for proteins within inflammatory and natural immunity processes, suggesting that these biological 
processes are contributing to drug resistance. Krysan et al. also found that LCN2 overexpression was associated 
with erlotinib-resistance in  NSCLC35.

Of the five genes found to be upregulated in all three data types analyzed, LCN2 was the only gene found to 
be overexpressed in TNBC. Previous studies have found a correlation between LCN2 expression and disease 
aggression. For example, LCN2 has been positively associated with tumorigenesis, invasiveness, migration, 
 metastasis36–39. Interestingly, LCN2 was included in several IPA cell movement gene signatures found to be 

Figure 3.  Single-Cell RNA sequencing identified subpopulations that mediate erlotinib resistance. Uniform 
Manifold Approximation and Projection (UMAP) plots of scRNA-seq data from vehicle or erlotinib-treated 
WHIM2 tumors. UMAP plots are two-dimensional plots depicting clusters of specific cell types (e.g. vehicle 
vs erlotinib-treated). UMAP plots are colored based on (A) treatment status or; (B) cell cycle status as assessed 
through cell cycle phase-specific gene signatures; (C) The proportion of cells from the vehicle tumor and 
erlotinib-treated tumor in each phase of the cell cycle, as shown in plot B; (D) Plotted are 1,103 transcripts 
identified as significantly differentially expressed between treatment conditions. Each axis shows the percentage 
of cells in each treatment condition that expressed the RNA transcript; (E) Plot depicting the 25 most 
differentially upregulated genes each treatment condition, as determined by the percentage of cells in the sample 
expressing each transcript; (F) UMAP plots depicting examples of genes that were differentially expressed 
following erlotinib treatment; MKI67 is shown to label G2/M cells.
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Figure 4.  Assessment of erlotinib-resistance mechanisms in the WHIM2 PDX. (A) Immunohistochemical 
staining for EGFR on formalin-fixed, paraffin-embedded parental and erlotinib-resistant WHIM2 tumors and 
comparison of mean staining intensity of parental and erlotinib-resistant WHIM2 tumors (P = 0.41); (B) Each 
point represents a single gene. Plot depicts fold change in gene expression in erlotinib-resistant tumors relative 
to vehicle tumors. Blue points represent genes that were significantly differentially expressed in the erlotinib-
resistant WHIM2 tumor (P < 0.05); (C) Examples of gene signatures upregulated in erlotinib-resistant tumors 
as determined by gene set enrichment analysis. Hallmark gene signatures for hypoxia, TNF-α via NFκB, and 
epithelial to mesenchymal transition are depicted; (D) Ingenuity Pathway Analysis identified significantly up- 
and down-regulated cellular gene expression programs in the WHIM2 erlotinib resistant cells.
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Figure 5.  An overlapping set of 38 differentially expressed genes correlated with erlotinib response was 
identified within the Wnt1 transgenic model and the WHIM2 PDX model. Heat maps depicting the set of 
38 overlapping genes within the (A) Wnt1 tumors and; (B) WHIM2 PDX tumors; (C) Five genes that were 
upregulated in all 3 types of data analyzed; (D–F) Plots depicting expression of the five genes found to be 
upregulated in all 3 data types were created using The Cancer Genome Atlas and UALCAN. Plots depict gene 
expression by major breast cancer subtype; plots depicting the three genes that were expressed in TNBC are 
shown.
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upregulated in the EGFRi resistant setting. This suggests that LCN2 may contribute to observed increases in 
EMT, cell movement, and metastasis observed in the EGFRi resistant setting.

The mechanism by which LCN2 may contribute to acquired EGFRi resistance requires further study, but it 
may be related to EGFR recycling. Yammine et al. demonstrated that LCN2 increases EGFR abundance on the cell 
 membrane40. They also found that LCN2 is involved in intracellular trafficking of EGFR and promotes recycling 
of EGFR to the plasma membrane. In this way, LCN2 upregulation may serve to salvage EGFR signaling in the 
presence of an EGFRi by returning EGFRs to the plasma membrane for further stimulation and activation of 
downstream pathways (Fig. 7). Previous analysis of MMTV-Wnt tumors revealed EGFR pathway amplification 
in Wnt-late tumors compared to Wnt-early  tumors29. LCN2 upregulation may allow for EGFR pathway amplifica-
tion via recycling of EGFRs and thereby promote resistance to EGFRi. When LCN2 was knocked down in Erl/R 
WHIM2 PDX cells in vitro, cells were more responsive to EGFRi. This suggests that LCN2 causally contributes 
to acquired EGFRi resistance, at least in the WHIM2 model of basal-like disease.

Despite transcriptomic differences, however, the WHIM2 parental and WHIM2/ErlR demonstrated similar 
responses to a panel of drugs including topoisomerase inhibitors, proteasome inhibitors, HDAC inhibitors, 
and other EGFR inhibitors. Notable exceptions were elvitegravir and atovaquone, both of which demonstrated 

Figure 6.  (A–F) Representative images of immunohistochemical staining for LCN2 on formalin-fixed, paraffin-
embedded WHIM2 parental and WHIM2 Erl/R mammary gland tumors; (G) Quantification of LCN2-negative 
cells and LCN2-positive cells in each image; (H) Percentage of total cells in the image that were LCN2-positive 
(P = 0.021). (I) Western blot of lysates from LCN2 siRNA and non-targeting siRNA transfected WHIM2 
erlotinib-resistant PDX cells. (J) Erlotinib treatment on WHIM2 erlotinib-resistant PDX cells with LCN2 siRNA 
or non-targeting siRNA transfection (P < 0.05 at 5 μM, P < 0.001 at 7 μM and 9 μM).
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greater cytotoxicity in WHIM2/ErlR than WHIM2 parental. Interestingly, several drugs demonstrated decreased 
efficacy in the WHIM2/ErlR line, including birinapant (SMAC inhibitor) and imatinib (ABL inhibitor). These 
data suggest that, in general, drugs that demonstrate high cytotoxicity in erlotinib-sensitive models are also 
cytotoxic towards erlotinib-resistant models.

Although basal-like tumors exhibit high levels of EGFR expression, EGFRis have only demonstrated mod-
est antitumor activity in a subset of TNBC  patients15,16. Through these studies, we found a set of genes that 
could potentially serve as predictive biomarkers of erlotinib response, and more generally, EGFRi response in 
basal-like TNBCs. This gene set could be used to identify patients that would best benefit from EGFRi. Future 
studies should evaluate the predictive capability of the described gene signatures, as well as how these genes 
contribute to the development of EGFRi resistance. Future studies should also focus on the identification of drugs 
that demonstrate increased cytotoxicity towards EGFRi-resistant models, as well as drugs that may re-sensitize 
EGFRi-resistant cells to EGFRi.

Data availability
Single-cell RNA-sequencing: GSE189324. WHIM2 bulk RNA-sequencing: GSE189257. SuperSeries (links to 
both of the above): GSE189325. Wnt1 gene expression microarray data: GEO GPL11383. Other data are available 
from the corresponding author upon reasonable request.
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