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Machine‑learning‑based risk 
stratification for probability 
of dying in patients with basal 
ganglia hemorrhage
Lili Guo 1,2, Nuoyangfan Lei 3,4, Mou Gao 5, Wenqiao Qiu 1,2, Yunsen He 1,2, Qijun Zhao 3,4* & 
Ruxiang Xu 1,2*

To confirm whether machine learning algorithms (MLA) can achieve an effective risk stratification of 
dying within 7 days after basal ganglia hemorrhage (BGH). We collected patients with BGH admitted 
to Sichuan Provincial People’s Hospital between August 2005 and August 2021. We developed 
standard ML‑supervised models and fusion models to assess the prognostic risk of patients with BGH 
and compared them with the classical logistic regression model. We also use the SHAP algorithm 
to provide clinical interpretability. 1383 patients with BGH were included and divided into the 
conservative treatment group (CTG) and surgical treatment group (STG). In CTG, the Stack model has 
the highest sensitivity (78.5%). In STG, Weight‑Stack model achieves 58.6% sensitivity and 85.1% 
specificity, and XGBoost achieves 61.4% sensitivity and 82.4% specificity. The SHAP algorithm shows 
that the predicted preferred characteristics of the CTG are consciousness, hemorrhage volume, 
prehospital time, break into ventricles, brain herniation, intraoperative blood loss, and hsCRP were 
also added to the STG. XGBoost, Stack, and Weight‑Stack models combined with easily available 
clinical data enable risk stratification of BGH patients with high performance. These ML classifiers 
could assist clinicians and families to identify risk states timely when emergency admission and offer 
medical care and nursing information.

Abbreviations
ICH  Intracerebral hemorrhage
BGH  Basal ganglia hemorrhage
MLA  Machine learning algorithms
APACHE  Acute physiology and chronic health evaluation
GCS  Glasgow Coma Scale
SAH  Subarachnoid hemorrhage
HBV  Hemorrhage breaking into ventricles
hsCRP  High-sensitivity C-reactive protein
CTG   Conservative treatment group
STG  Surgical treatment group
LR  Logistic regression
RF  Random forest

Intracerebral hemorrhage (ICH) is a devastating neurosurgical emergency with significant morbidity and mor-
tality, among which basal ganglia is the most common site, accounting for 50–70%1. Less than 50% of patients 
die within 30 days after hemorrhage, 30% of survivors have disabilities to varying degrees, and only 12–39% are 
capable of living independently 6 months after  surgery2,3. At present, the main treatment options for BGH are 
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conservative and surgical treatment. The selection of which treatment to be used urgently need to be done by the 
entire team ideally, while numerous factors include transient or permanent neurological deficits, the potential 
risk for surgery and the patient or their family’s wishes impact the final therapeutic option. Moreover, there is 
no unified standard treatment scheme for BGH.

Risk stratification is at the core of the medical practice, and providers need to risk stratify and identify patients 
at high risk. To date, typically, accurate decisions are time-consuming, while fast decisions are often inaccurate. 
Cutting time off the decision-making process ultimately means that life-saving and prognosis-improving inter-
ventions can get to the need much faster than has been seen historically.

Machine learning algorithms (MLA) based on big data are increasingly applied for the development of predic-
tion models, disease diagnosis, and identification of risk  factors4–6. Like other traditional clinical modules, neu-
rologists have developed some traditional scoring systems according to the basic characteristics of patients with 
intracerebral hemorrhages, such as the ICH  Score7, acute physiology and chronic health evaluation (APACHE) 
 system8, and even the Glasgow Coma Scale (GCS)  score9 to estimate hospital mortality. But the scoring results 
need to be evaluated by more experienced radiologists and/or neurologists, and as a consequence, they are 
affected by physicians’ clinical experience. Predictions based on data mining and MLA have continued to be 
focal points for over half a century. Various machine learning (ML) models have been applied to cerebrovascular 
 disorders10, neurodegenerative  disorders11,  seizure12, cancer  metastasis13, and COVID-19  prediction14. At present, 
a large number of studies have used MLA to construct and verify disease prediction models and proved that MLA 
plays a positive auxiliary role in clinical disease management and decision-making. Yet, there is a paucity of lit-
erature focused on stratifying prognosis in patients with BGH by examining the clinic characteristics using MLA.

The study of prognostic factors has important clinical guiding significance, and evaluating the risk of early 
death is the first step to deciding on therapeutic options and judging the prognosis. For the existing clinical 
decisions, our study aims to develop conservative treatment models and surgical treatment models to stratify 
the risk of dying within 7 days in patients with BGH, providing a promising early prediction method compared 
with other scoring systems in clinical practice.

Methods
Data source and clinical outcomes. Data source. 1383 cases with BGH were first diagnosed by com-
puterized tomography in the neurosurgery and emergency department of our hospital and with complete clini-
cal data from 1 August, 2005 to 1 August 2021 were selected (Supplementary Table 1). The first issue to be con-
sidered in this study was how to select the time point of death to classify the high-risk group from the low-risk 
group. By observing the survival time of all patients who met the inclusion criteria, we found that the mortality 
rate decreased suddenly on the 5th and 7th days after BGH (Fig. 1). We then divide the period according to these 
two-time points and perform a two-sample independent t-test, and the results showed a cut-off at day 5 after 
BGH (P < 0.001, t = 5.7789) versus day 7 after BGH (P < 0.001, t = 6.4059). Therefore, we used whether the sur-
vival time after BGH was greater than seven days as a criterion to classify low risk versus high risk (Fig. 2). Also, 
patients were assigned to the conservative treatment group (CTG) and surgical treatment group (STG) based 
on whether surgery was selected. All processes of this study conformed to the ethical standards of the institu-
tional and national medical ethics committees, as well as to the 1964 Declaration of Helsinki and similar ethical 
standards. This study was approved by the Medical Ethics Committee of Sichuan Provincial People’s Hospital 
(approval number: 2022-154), and the committee waived the requirement for written informed consent because 
of the retrospective nature of this study.

Evaluation of clinical outcomes. The demographic data and clinical information were carefully gathered ret-
rospectively from medical records, including gender, age, body type, prehospital time, smoking history, stroke 
history, complications (hypertension, hyperlipidemia, diabetes mellitus, epilepsy, brain edema, brain hernia-

Figure 1.  Distribution of time to death in patients with basal ganglia hemorrhage. The upper right corner 
shows deaths within 30 days of study subjects.
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tion, subarachnoid hemorrhage (SAH), lobar hemorrhage, fracture), pupil, hemorrhage breaking into ventricles 
(HBIV), hematoma volume measured by CT and laboratory examination indexes (hemoglobin, high-sensitivity 
C-reactive protein [hsCRP], consciousness at admission, blood pressure, pulse, and body temperature, intra-
operative hematoma volume, bleeding volume, blood transfusion/fluid volume, operation time). Laboratory 
indexes are measured based on the data collected for the first time at admission; hematoma volume was calcu-
lated by applying the ABC/2 method, whereas A is the longest diameter (cm), B is the widest diameter (cm) and 
C represents the sum of the thickness of slides of hematoma in the CT  scans15. The patients were dichotomized 
into two groups, the “high-risk” group with brain death declared within 7 days after admission and the “low-
risk” group with survival longer than 7 days. Also, patients were assigned to CTG and STG based on whether 
surgical decisions (including decompressive craniectomy, external ventricular drainage, craniotomy evacuation 
of hematoma, and micro-invasive hematoma removal) were made. The relevant prognostic risk factors were 
analyzed.

Hypertension is defined as having a clear history of hypertension in the past or having multiple blood pres-
sure measurements greater than 140/90 mmHg in this admission. According to the standard of the American 
Diabetes Association (2014), diabetes is diagnosed as follows: (1) fasting blood glucose is more than 7 mmol/L; 
(2) after oral glucose tolerance test, blood glucose is more than 11.1 mmol/L after 2 h; (3) patients with diabetes 
symptoms have random blood glucose equal to 11.1 mmol/L; (4) diabetes mellitus history or taking hypoglyce-
mic drugs. Alanine aminotransferase > 50 IU/L is defined as abnormal liver function. Triglyceride > 1.7 mmol/L 
or total cholesterol > 5.2 mmol/L, with or without LDL cholesterol > 3.1 mmol/L is defined as hyperlipidemia. 
Smoking history was defined as patients revealing a history of smoking for > two pack-years and current smok-
ing. Cardiovascular diseases include a history of myocardial blood deficiency, a history of myocardial infarction, 
arrhythmia (atrial fibrillation, ventricular fibrillation, bundle branch block above grade II, etc.), and heart failure. 
Renal insufficiency is defined as eGFR < 60 mL/min/1.73  m2 or serum creation clearance rate ≤ 104 mmol/L in 
the latest half-year. Infection includes pulmonary infection, urinary infection, HIV, HBV, and HCV.

Model algorithms. Overview of the framework. We propose an analytical framework for the BGH risk 
stratification problem (Fig. 3). It includes three steps: data preprocessing, model construction, and interpret-
ability analysis. Data cleaning, vector coding, and data resampling were the first to be applied to the raw data. 
We used the pre-processed balanced data as training input for model construction. The dataset was divided into 
training and testing sets in the ratio of 7:3. We built standard ML models using  Boosting16 and  Bagging17 meth-
ods, and fusion ML models integrated with standard ML models to improve the performance of risk stratifica-
tion and provide effective clinical guidance. Finally, we chose the two models with better performance for the 
interpretability analysis of risk stratification.

Data preprocessing. We first performed data cleaning based on clinical a priori knowledge, removed conflicting 
or commonsense violating samples, and excluded some features irrelevant to the results and very small sample 
sizes. We also standardized coding on some variables: binary features such as gender, smoking, and brain hernia-

Figure 2.  Flow diagram of study recruitment and exclusion.
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tion were coded 0–1, with 0 for negative and 1 for positive; among multiple categorical features, blood type was 
coded 1–5 (4 conventional blood types versus unchecked), and pupils were coded 1–6 according to whether they 
were equilibrated and normal/reduced/dilated, etc. In addition, prehospital time and operative time units were 
standardized to days or hours. In addition, we use the K-nearest neighbor (KNN) algorithm to fill some missing 
value  features18. A total of 40 features were selected and the sample was classified as CTG or STG according to 
whether surgery was performed. finally, we built the model and implemented a binary classification to predict 
patient risk. After data preprocessing, we obtain a dataset of 1383 records, 743 and 640 records belonging to the 
CTG and STG, respectively.

ML models. We chose traditional statistical methods: logistic regression (LR) for performance reference, 
three standard machine learning models based on Bagging or Boosting, Bagging: Random Forest (RF)19, Boost-
ing:  XGBoost20 and  LightGBM21, and three fusion ML methods: Weight,  Stack22, and Weight-Stack models for 
Electronic Health Records (EHR) data.

1. Weight The Averaging-like approach is used to assign different weights to the prediction results of multiple 
models to aggregate their prediction probabilities and improve the comprehensive performance. We need 
to take into account both the detection rate of high-risk patients and the misclassification rate, and finally, 
choose the F1 score as the weight of the model.

2. Stack A model layering approach is used. The prediction probability vectors based on each training and test 
set are first obtained using multiple lower-layer models, which are then integrated separately and input to the 
upper-layer model for retraining to obtain the final prediction labels. The upper-layer model in Stack takes 
the prediction probabilities as input instead of the original data and uses K-fold cross-validation internally 
to address possible overfitting problems.

3. Weight-Stack Combining the use of Weight and Stack methods, the better performing model is selected from 
the base models and weighted again with the Stack model using the F1 score as weight.

Weight and Stack use different approaches to integrate the advantages of heterogeneous models and improve 
predictive performance.

Figure 3.  Overall workflow summarizing model algorithm.
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We used the following three points to avoid over-fitting situations: (1) the parallel generation of the prediction 
function in our chosen Bagging model can reduce the variance of the model prediction. (2) we perform cross-
validation in the training set, giving the Bagging and Boosting models a restricted hyperparameter (number of 
base learners). (3) appropriate data cleaning to improve the volume and comprehensiveness of data distribution 
can effectively prevent overfitting. We use a combination of under-sampling and over-sampling to balance the 
training set data and perform data augmentation to get an accurate training model.

Imbalanced data. In the dataset, the incidence of death within 7 days (high-risk) is low at 10.3%. This indi-
cates that there is a category imbalance in our data, meaning an extremely significant difference in the sample 
size between the different  categories23. By training on an unbalanced dataset, the model will focus more on most 
categories, leading to reduce the overall performance of the  model24. To decrease the cost of misclassification, we 
must address the problem of misclassification of high-risk categories. We use the following methods to deal with 
imbalanced data: 1. add hyperparameters to provide higher class weights for small sample classes. 2. introduce 
the SMOTEEN algorithm based on the EE algorithm and the SMOTE algorithm, which uses a combination of 
oversampling and undersampling to solve the problem of lack of minority class samples and noise  interference25. 
We load the SMOTEEN algorithm on the training set so that the model learns from balanced data and copes 
with the challenges posed by an imbalanced testing set. Ultimately, the training set samples rose from 520 to 737 
in CTG and from 448 to 601 in STG. In addition, it was ensured that the ratio of high-risk to low-risk patients 
was approximately 1:1.

Features and interpretability. ML is a "black box" in which clinical managers can only see the prediction 
results of a model, but not the origin of the results, making it difficult to be accepted by physicians in clinical 
practice. To address the problem of poor feature referencing and interpretability, we use the SHAP algorithm to 
interpret the risk stratification results and provide feature importance and correlation analysis for the whole or 
 individual26. Avoiding the generalization problem of a certain model, we piggyback the SHAP algorithm on a 
standard ML model together with a fusion model to provide interpretability.

Statistical analysis. We use receiver operating characteristic curves (ROC) and precision-recall curves 
(PR) to evaluate the performance of each model. The ROC curves do not reflect true model binary classifica-
tion performance when the data are unbalanced, so we combine them with the results of the PR curves analysis 
to analyze the results more comprehensively for a small number of categories of  samples27. The area under the 
ROC curves (AUC/ROC) is presented as a measure of the ROC curves’ performance, as well as the area under 
the PR curves (AUC/PR) using the average precision score as an approximation of the PR curve’s performance 
 measure28. We also report the sensitivity (Recall), specificity, accuracy, precision (PPV), negative predictive value 
(NPV), and F1 score for each model. All reports were obtained by using the recommended hyperparameters 
from the fivefold cross-validation and by repeating the experiments. Descriptive statistics were performed on 
categorical and numerical variables. Numerical variables were presented with means (standard deviation [SD]), 
while numbers (%) were used for categorical variables. Two groups were compared by the Wilcoxon rank sum 
test for paired data in non-normal distribution, and by a t-test of paired samples in a normal distribution. The 
significance level was set at P < 0.05.

Results
Patients characteristics. Overall 1383 patients with BGH in 41,491 patients fitting the inclusion criteria 
were enrolled in the study. The baseline characteristics of the data were shown in Supplementary Table 1. Among 
them, the overall mortality rate was 16.41% (195/1383), (CTG, 114/743[15.34%]; STG, 81/640, [12.66%]); the 
median age was 57 years (interquartile range, 48–66), and the majority of patients were male (913/1383, 66%). 
The median length of stay was 13 days.

Model performance. Table  1 shows the AUC/ROC and AUC/PR for all models in CTG and STG. In 
parameter optimization, to ensure generalization, all models were adjusted for the maximum number of itera-
tions hyperparameter by the grid search method only (Supplementary Data 1). In the testing result, regard-
ing the risk stratification of STG, the risk stratification performance of the models (AUC/ROC: 0.696–0.820, 
AUC/PR: 0.231–0.361) was generally lower than that of CTG (AUC/ROC: 0.906–0.925, AUC/PR: 0.576–0.662) 
(Table 1). The commonly used AUC/ROC model performance evaluation methods have a low ability to cap-
ture low accuracy problems in unbalanced binary classification. This can lead to the actual performance of the 
model being exaggerated and it is difficult to reflect the  difference29. We need to pay attention to both the AUC/
PR curves’ performanceandr other metrics under the optimal classification threshold selected by the model to 
reflect the model performance comprehensively.

Table 2 gives the model performance for CTG and STG risk stratification at a 95% confidence interval (CI). 
In ensuring the overall accuracy of the model, we intend to shed more light on the high-risk category samples, 
especially the misclassified high-risk samples. In the ability to detect high-risk patients, the Stack model in CTG 
had the highest sensitivity rate of 78.5%. And in STG, even though we need to focus on high-risk class samples 
and LR has a high sensitivity (69.1%) compared to XGBoost (61.4%), its poor performance in specificity (48.4%) 
and accuracy (50%) compared to XGBoost (specificity: 82.4%, accuracy: 80.5%). Based on the above report, we 
chose XGBoost in standard models with Stack model in fusion models loaded with SHAP algorithm for risk-
stratified binary classification prediction for interpretability analysis.

Figure 4 reports the ROC vs. PR curves based on CTG vs. STG in the testing (see Supplementary Fig. 1 for 
training). As shown in Fig. 4. First, the ROC and PR curves of CTG perform significantly better than STG; in 
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Table 1.  AUC/ROC and AUC/PR in conservative versus surgical treatment groups (from s.d.).

Random forest XGBoost LightGBM LR Weight Stack Weight-stack

Training

Conservative treatment

 AUC/ROC 0.990 (0.985–
0.994)

0.969 (0.964–
0.975)

0.974 (0.970–
0.977)

0.937 (0.928–
0.945)

0.989 (0.984–
0.993)

0.990 (0.985–
0.994)

0.984 (0.979–
0.988)

 AUC/PR 0.917 (0.888–
0.946)

0.732 (0.684–
0.780)

0.754 (0.697–
0.810)

0.701 (0.673–
0.729)

0.908 (0.878–
0.938)

0.915 (0.877–
0.952)

0.869 (0.836–
0.901)

Surgical treatment

 AUC/ROC 0.981 (0.975–
0.987)

0.966 (0.957–
0.976)

0.977 (0.970–
0.984)

0.765 (0.755–
0.775)

0.980 (0.973–
0.987)

0.981 (0.974–
0.987)

0.977 (0.969–
0.985)

 AUC/PR 0.893 (0.883–
0.903)

0.696 (0.647–
0.745)

0.782 (0.751–
0.813)

0.265 (0.223–
0.306)

0.885 (0.874–
0.896)

0.876 (0.864–
0.888)

0.838 (0.812–
0.864)

Testing

Conservative treatment

 AUC/ROC 0.925 (0.909–
0.941)

0.906 (0.886–
0.925)

0.913 (0.899–
0.926)

0.923 (0.899–
0.948)

0.921 (0.904–
0.938)

0.923 (0.905–
0.941)

0.918 (0.900–
0.936)

 AUC/PR 0.601 (0.510–
0.691)

0.585 (0.502–
0.669)

0.576 (0.514–
0.639)

0.662 (0.605–
0.720)

0.602 (0.526–
0.678)

0.621 (0.529–
0.713)

0.609 (0.525–
0.693)

Surgical treatment

 AUC/ROC 0.820 (0.802–
0.838)

0.798 (0.777–
0.819)

0.787 (0.764–
0.809)

0.696 (0.654–
0.737)

0.811 (0.784–
0.837)

0.820 (0.793–
0.846)

0.805 (0.783–
0.828)

 AUC/PR 0.334 (0.270–
0.398)

0.341 (0.268–
0.413)

0.341 (0.244–
0.439)

0.231 (0.186–
0.276)

0.348 (0.271–
0.425)

0.361 (0.276–
0.447)

0.361 (0.296–
0.427)

Table 2.  Assessment metrics for the conservative versus surgical treatment groups on the testing set, 
including: F1, sensitivity (recall), precision (PPV), specificity, NPV and accuracy (from s.d.).

Fl
Sensitivity 
(recall) Precision (PPV) Specificity NPV Accuracy

Conservative treatment

Random forest 0.559 (0.509–
0.608)

0.691 (0.619–
0.764)

0.472 (0.416–
0.529)

0.902 (0.882–
0.923)

0.959 (0.948–
0.970)

0.879 (0.864–
0.895)

XGBoost 0.548 (0.517–
0.579)

0.744 (0.667–
0.820)

0.438 (0.395–
0.481)

0.880 (0.859–
0.902)

0.965 (0.952–
0.977)

0.865 (0.853–
0.877)

LightGBM 0.546 (0.505–
0.588)

0.735 (0.631–
0.839)

0.442 (0.390–
0.494)

0.882 (0.846–
0.917)

0.964 (0.948–
0.980)

0.865 (0.841–
0.890)

LR 0.546 (0.470–
0.622)

0.462 (0.382–
0.542)

0.678 (0.568–
0.788)

0.972 (0.960–
0.983)

0.935 (0.919–
0.950)

0.914 (0.895–
0.934)

Weight 0.556 (0.523–
0.590)

0.736 (0.650–
0.821)

0.454 (0.403–
0.505)

0.887 (0.858–
0.916)

0.964 (0.951–
0.977)

0.870 (0.852–
0.889)

Stack 0.572 (0.528–
0.617)

0.785 (0.707–
0.863)

0.457 (0.396–
0.517)

0.880 (0.848–
0.913)

0.970 (0.957–
0.983)

0.869 (0.845–
0.893)

Weight-stack 0.568 (0.535–
0.602)

0.742 (0.648–
0.837)

0.467 (0.416–
0.518)

0.892 (0.865–
0.919)

0.965 (0.951–
0.979)

0.876 (0.860–
0.891)

Surgical treatment

Random forest 0.352 (0.322–
0.382)

0.537 (0.479–
0.595)

0.267 (0.226–
0.307)

0.862 (0.831–
0.892)

0.952 (0.940–
0.964)

0.834 (0.807–
0.860)

XGBoost 0.347 (0.303–
0.392)

0.614 (0.536–
0.692)

0.245 (0.200–
0.289)

0.824 (0.795–
0.852)

0.957 (0.944–
0.971)

0.805 (0.777–
0.834)

LightGBM 0.353 (0.288–
0.419)

0.550 (0.482–
0.619)

0.264 (0.203–
0.325)

0.850 (0.801–
0.899)

0.952 (0.939–
0.965)

0.824 (0.775–
0.873)

LR 0.189 (0.165–
0.213)

0.691 (0.593–
0.789)

0.111 (0.093–
0.128)

0.484 (0.398–
0.570)

0.942 (0.921–
0.964)

0.500 (0.425–
0.576)

Weight 0.353 (0.308–
0.398)

0.556 (0.532–
0.580)

0.260 (0.213–
0.307)

0.851 (0.822–
0.880)

0.954 (0.945–
0.962)

0.826 (0.797–
0.856)

Stack 0.377 (0.324–
0.430)

0.562 (0.506–
0.619)

0.287 (0.232–
0.342)

0.867 (0.834–
0.901)

0.954 (0.943–
0.966)

0.841 (0.807–
0.875)

Weight-stack 0.367 (0.326–
0.408)

0.586 (0.536–
0.636)

0.269 (0.226–
0.311)

0.851 (0.824–
0.878)

0.956 (0.944–
0.968)

0.828 (0.799–
0.858)
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the ROC curve, all models show similar trends, but in the PR curve, the different models show more trend dif-
ferences. In addition, we report the calibration curves of CTG and STG in separate training and testing (Sup-
plementary Fig. 2).

Interpretability analysis. Group-level analysis. Figure 5a and b provide a detailed view of the CTG risk 
stratification features reported with the XGBoost and Stack model. At the population level, both models identi-
fied poor patient awareness on admission, high hematoma volume by the ABC/2 method, a short time from 
onset to admission, hematoma breaking into the ventricle, and the presence of brain herniation as the most 
influential features determining high-risk stratification (Fig. 5a and b). Characteristics such as age, hsCPR, pulse, 
and blood pressure were relatively weak factors influencing risk stratification (Fig. 5a).

Figure 4.  Receiver operating characteristic curves versus precision-recall curves for the conservative treatment 
group and the surgical treatment group. (a) Receiver operating characteristic curves for all models in the 
conservative treatment group. (b) Receiver operating characteristic curves for all models in the surgical 
treatment group. (c) Precision-recall curves for all models in the conservative treatment group. (d) Precision-
recall curves for all models in the surgical treatment group.
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For the group of patients who underwent surgical treatment, Fig. 5c and d show partially different perspec-
tives. First, the XGBoost and Stack model consider increased intraoperative blood loss, high level of hsCRP, 
poor consciousness, and high blood pressure as the most influential features that predict increased risk, while 
intraoperative transfusion volume, brain herniation, and hematoma volume obtained by the ABC/2 method also 
play an important role (Fig. 5d). Notably, there is a tendency for low-risk stratification in the pulmonary infection 
group (Fig. 5b,d), and this would depend on the combination with other characteristics.

Individual-level analysis. On a holistic basis, we can also provide explanations for risk stratification at the indi-
vidual level. For example, in the high-risk example of the CTG, enlarged hematoma volume and a coma level 
of consciousness on admission increased the predicted risk significantly, although hemoglobin at normal levels 
and without brain herniation could not stop the trend (Fig. 6a). In contrast, in the high-risk instances in STG, 
hematoma break into the ventricles, high blood pressure, and escalated intraoperative blood loss could increase 
the dying within 7 days risk (Fig. 6b). This allows for a clinical interpretation of the risk prediction for individual 
patients.

Discussion
In this study, we aim to test whether the application of ML technology can improve the risk stratification perfor-
mance of the prognosis (dying within 7 days) of BGH. To the best of our knowledge, there has been no attempt 
to predict, stratify, and interpret the risk of dying in patients with BGH using ML approaches based on more-
than-ten-year clinical data. First, we collected a set of clinical samples of emergency admission related to patient 
prognosis derived from the Hospital Information System (HIS). A total of 40 features were selected from the 
original data based on clinical experience and correlation analysis, and the sample was divided into CTG and 
STG. These features are then fed into six different models, hyperparameters are tuned in the training set using 

Figure 5.  Overall SHAP interpretation of XGBoost and Stack model risk stratification. XGBoost uses the tree 
model interpretation method and the Stack model uses the Kernel interpretation method. (a, c): Ranking of all 
features in order of importance and showing the top 20 features. (b, d): Distribution showing the correlation of 
features with risk stratification results. Each point is a sample, red dots represent a high value of features, blue 
dots represent a low value of features, a negative SHAP value indicates a decrease in the probability of high risk 
and a positive one indicates an increase in the probability of high risk.
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the grid search method based on fivefold cross-validation. Training and testing performance were reported, 
including ROC, PR, calibration, AUC/ROC, AUC/PR, and statistical metrics. Finally, the SHAP algorithm pro-
vides interpretability for risk stratification of the model, including feature analysis from the whole to individual 
instances. Based on the model performance, we found that:

1. Standard and fusion ML models generally have higher risk stratification performance compared with the 
traditional analysis method of LR in statistics.

2. In terms of CTG sensitivity, the Stack model 0.785 (0.707–0.863) performed best. XGBoost was 0.744 (0.667–
0.820) (P < 0.001) and Weight-Stack model 0.742 (0.648–0.837) (p < 0.05). In addition, the Stack model had 
advantages in the F1 score and NPV. In conclusion, the Stack model performed best in CTG.

3. In STG, excluding LR with poor classification ability (F1 score: 18.9%, accuracy: 50%), the sensitivity of 
XGBoost was 0.614 (0.536–0.692), which was better than that of Stack model (0.562 [0.506–0.619], P < 0.05). 
However, it was not significantly different from the Weight-stack model (0.586 [0.536–0.636], P = 0.189). 
Combining the other performances of the Weight-Stack model, it can be concluded that XGBoost and 
Weight-Stack performed best in STG.

However, considering the practical needs, clinical managers can also choose from these models on their own, 
depending on the situation.

This mainly lies in three reasons: First, the technique of Bagging and Boosting methods to assemble weak 
classifiers into strong classifiers plays an important role in the standard ML selected for our study. Second, ML 
models have an advantage when dealing with large amounts of data (more inclined to complex sample distribu-
tions), and the ML model we use performs better than LR, which, due to its simple form (linear-like model), 
has difficulty fitting the true distribution of complex samples. Third, considering the differences in training and 
prediction principles of different models, the fusion model uses the prediction probabilities of multiple ML 
standard models as input, combining the advantages of each model to achieve improved model performance.

Fusion models derived from multiple standard ML models paired with interpretable analysis algorithms are 
indeed good candidates to guide clinical administrators in the early individualized risk stratification of BGH. 
At present, the main treatment options for BGH are conservative and surgical treatment. Research shows that 
secondary clinical neurological deterioration generally occurs about 12 h after the onset of intracerebral hem-
orrhage, and cerebral ischemia can occur about 24 h after the formation of hematoma, which may aggravate 
the degree of motor impairment in patients with intracerebral hemorrhage. As a consequence of a reduction in 
hematoma volume, the intracranial pressure eventually decreases, and blood perfusion of brain tissue  returns30. 
Furthermore, invasive hematoma removal may prevent secondary neurotoxicity and edema caused by thrombin 
and hemoglobin degradation  products31,32. Thus, theoretically, hematoma evacuation quickly can be beneficial. 

Figure 6.  SHAP force plots based on individual patient prediction scores. (a) Low- and high-risk instances in 
the CTG. (b) Low- and high-risk instances in the STG. the base value is the mean Shap values predicted by the 
model, and the red and blue directed bars indicate the risk and safety features, respectively; the length of the bars 
represents the importance of the feature, which together drive the prediction from the base to the final value. 
The Shap values shown in the graph are the log odds of the true predicted probability.
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The prognosis of patients with intracerebral hemorrhage is closely related to the location, volume, duration, and 
complications of intracerebral hemorrhage. Based on the ML classifier with the SHAP algorithm, we predict 
the 7-day outcome of patients by entering features that are quickly available at admission when conservative 
treatment is chosen; if surgical treatment is chosen based on guidelines, physician experience, or the patient’s 
family’s wishes, indicators that are easily available at admission and/or before surgery and some intraoperative 
features can together predict the 7-day postoperative outcome.

In conclusion, the ML classifier combining easily available routine clinical measurements with intraoperative 
information may create a new prognostic risk assessment strategy for BGH to identify high-risk patients under-
going surgery/conservative treatment. ML classifier will help clinical managers to pre-select high-risk patients 
and take necessary measures or monitoring to prolong their lives.

Our study shows that compared with the conservative treatment model, the intraoperative characteristic vari-
ables including inpatients have a poor ability to stratify the prognosis, which might imply that the relationship 
between intraoperative eigenvalues and prognosis was weak, so the next work is to collect as many postoperative 
characteristics and data as possible and screen out more influential prognostic factors, such as swelling shown 
by postoperative MRI image and pro-brain natriuretic peptide (pro-BNP)33,34.

Our study suggests that consciousness, hemorrhage volume (ABC/2), prehospital time, and break into the 
ventricles were the most important features in CTG. This is well understood. Generally, the larger the hematoma 
volume, the more obvious the activation of nerve compression and pathological process, so that emergency hos-
pitalized patients are often accompanied by serious disorders of consciousness. The reaction time of the family 
is also shorter and more timely, which also explains that many risk stratification models focus on hematoma 
volume and level of consciousness, through E. Berkeveld found there was no association between prehospital 
time and  mortality35. Initial hematoma volume is the strongest predictor of 30-day  mortality36, and it is a threat 
to pre- and postoperative mortality  rates37,38. Some scholars aim at the impact of different specific locations of 
hematoma on prognosis. Their results are consistent with this study. In this study, 57.97% of cases broke into 
the ventricle, and some studies similarly found that more than 60%39 of BGH would break into the ventricle. 
The reason for the small difference is that this study did not limit the volume of bleeding in patients with BGH 
diagnosed by CT. Different from other studies, this study did not find that pulmonary infection is very related 
to the prognosis of BGH. The reasons maybe are as follows: 1. for acute, critical, and severe cases, doctors tend 
to pay attention to factors threatening life, such as increased intracranial pressure caused by ICH, and easy to 
ignore whether it is complicated with pulmonary infection, resulting in unrecorded cases. 2. even if a vicious 
circle is formed between lung infection and poor prognosis in BGH, this factor that should have existed cannot 
be displayed when the patient dies rapidly. STG showed that intraoperative bleeding and hsCRP were the strong-
est predictors. The average operative time was 3.40 h, the average blood loss was 255.93 cc, the average blood 
transfusion and infusion volume was 2145.86 ml, and the average hsCRP was 33.55 mg/L (> 10 mg/L, 82.67% 
[529/640]). Therefore, minimally invasive puncture treatment can decrease the fatality rate to 33.3% (7/21)40. The 
hsCRP is an indication of inflammation, a prospective, observational study from Huangfu XQ found statistically 
that high a level of hsCRP appeared to be an independent predictor for 90-day death, overall survival, and poor 
outcome in acute primary  BGH41.

Limitations
First, our single-center retrospective study cannot cover all the potential characteristics associated with survival 
outcomes during admission. 1. Since patients were enrolled within a time frame of more than 10 years, we can-
not rule out that specific changes in treatment philosophy or technology may affect the results; 2. errors from 
patients declining therapy or shortening their course of therapy and data records also affect their accuracy; and 
3. although the performance of the algorithm has good results, the sample size is relatively small and comes from 
single-center data. The research with larger samples may obtain higher prediction ability. Therefore, our results 
may not be directly applicable to other centers or countries.

Second, the exact causal relationship and causes between these predictive variables and 7-day survival out-
comes could not be determined. (1) This is an unavoidable disadvantage of cross-sectional research compared 
with prospective research, and (2) Our model cannot replace clinical judgment and result in risk stratification 
based on human long-term experience, and may still be better than the best algorithm. Therefore, the application 
of prognosis stratification in individual patients should be treated with caution.

Third, any model is bound to have some limitations. (1) The sample size for high prognostic risk is relatively 
small, accounting for only 10.2% of the total sample. Even though we use a data-balancing correlation algorithm, 
we could not fully improve the model’s low attention to high-risk samples, which affected the accuracy of the 
model; (2) in the STG, fewer intraoperative indicators are included due to the limitation of the surgical record 
file in the database, which may have contributed to the larger difference in the risk stratification performance of 
the model; (3) models requires external validation to verify applicability at the clinical level.

Data availability
The hyperparametric design of the model can be found in Supplementary Data 1. The code for the dataset is 
available in Supplementary Data 2. In addition, Prof Ruxiang Xu can be contacted (rxiangxu@163.com) regard-
ing the availability of data and materials.
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