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Challenges in selecting admixture 
models and marker sets to infer 
genetic ancestry in a Brazilian 
admixed population
Luciana Maia Escher 1, Michel S. Naslavsky 2,3, Marília O. Scliar 3, Yeda A. O. Duarte 4,5, 
Mayana Zatz 2,3, Kelly Nunes 2,6* & Silviene F. Oliveira 1,6*

The inference of genetic ancestry plays an increasingly prominent role in clinical, population, and 
forensic genetics studies. Several genotyping strategies and analytical methodologies have been 
developed over the last few decades to assign individuals to specific biogeographic regions. However, 
despite these efforts, ancestry inference in populations with a recent history of admixture, such as 
those in Brazil, remains a challenge. In admixed populations, proportion and components of genetic 
ancestry vary on different levels: (i) between populations; (ii) between individuals of the same 
population, and (iii) throughout the individual’s genome. The present study evaluated 1171 admixed 
Brazilian samples to compare the genetic ancestry inferred by tri-/tetra-hybrid admixture models and 
evaluated different marker sets from those with small numbers of ancestry informative markers panels 
(AIMs), to high-density SNPs (HDSNP) and whole-genome-sequence (WGS) data. Analyses revealed 
greater variation in the correlation coefficient of ancestry components within and between admixed 
populations, especially for minority ancestral components. We also observed positive correlation 
between the number of markers in the AIMs panel and HDSNP/WGS. Furthermore, the greater the 
number of markers, the more accurate the tri-/tetra-hybrid admixture models.

Understanding how human genetic diversity is distributed and its implications has been a recurrent focus in 
clinical, population, and forensic genetics  studies1–3. Since the 1970s, owing to the pioneering work by Richard 
Lewontin, it has been understood that most human genetic variation occurs between individuals of the same 
population group, while genetic variation between individuals of distant populations is restricted to a small pro-
portion of the human genome. This study is one of the first to refute the use of social races in biological studies 
and draw attention to the fact that genetic information is more accurate for biological issues than social groups 
or ethno-racial self-declaration4.

Since then, several studies have subsequently confirmed these observations and revealed that the distribution 
of genetic diversity and population differentiation is a continuous gradient within and between populations across 
 continents5,6. Therefore, the categorization of human groups by current geo-political regions are arbitrary choices 
and not true biological clusters. Thus, these studies clarify, that there is only a small set of genetic polymorphisms 
with a distinct allelic frequency between human populations or continents.

As such, these small genetic differences have been widely studied to address specific biological issues. For 
example, in clinical genetics, some diseases are recognized as having different incidences among population 
groups, for example: chronic kidney  disease7,  hypertension8, and inflammatory bowel  disease9. Identifying asso-
ciated genetic variants and the correct assignment of individuals in these groups helps in the development of 
personalized medical  care10. In forensic genetics, when identifying the individual via CODIS (the Combined 
DNA Index System), it is often necessary to provide additional information such as phenotypic characteristics 
(eye, hair, and skin color) and/or the most probable continental  origin11.
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Over the last few decades, several methods and strategies have been developed in an attempt to assign an 
individual´s geographical origin based on DNA variations. This is what geneticists often refer to as genetic 
 ancestry12. One of the first strategic approaches applied was to identify sets with a few dozen ancestry informative 
markers (AIMs—genetic markers which exhibit substantially different frequencies between different popula-
tions) in order to compose informative ancestry panels with the purpose of clustering individuals into conti-
nental and subcontinental population  groups13–15. The development of AIM panels attempts to select a group 
of genetic markers that compose a small, accurate, low-cost, and highly informative set. In general, AIM panels 
vary in some characteristics, including: specific loci, number of loci, genotyping strategies, and parental ref-
erence  populations16–18. Studies usually use only one AIM panel or even a complementary set, for example: 
PIMA + 34-plex19, Pacifiplex and 34-plex20, and KiddLab + Seldin + 34-plex21.

On the other hand, the emergence of high-throughput genotyping technologies, such as high-density SNPs 
array (HDSNPs), whole-exome-sequence (WES) and whole-genome-sequence (WGS) enabled high horizontal 
genome coverage studies for genomic ancestry  inference22,23. In this scenario, there is not only a significant 
increase in the number of genetic markers evaluated, the number of genotyped individuals per study grows 
from hundreds to  thousands24–26. Consequently, some analytical approaches have been adapted, in addition to 
the development of new analytical  strategies27–29.

Additionally, in both the AIM and high-throughput genotyping strategies, proper genetic ancestry inference 
is dependent on the existence of a reference population panel for each ancestral component under study. Genetic 
ancestry inference remains deficient in some population subgroups due to lack of reference data collection, in 
addition to some inconclusive or non-validated studies. For example, there is an effort to develop reference 
panels for Asians and Native Americans, in addition to increasing reference genome data for Latin  Americans30.

Admixed populations, such as those in America, pose a peculiar case for genetic ancestry inference as, they 
originated over the last 500 years through a complex admixture process with population sources of individu-
als from different continents: Native Americans, Europeans,  Africans31,32 and more recently East  Asians33. The 
genomes of admixed individuals are a redistribution of genetic variation observed in parental populations, which 
produces new genomic combinations of pre-existing genetic variants. This leads to a paradigm shift, in which the 
geographic origin of the admixed individual becomes a secondary issue, the primary objective being to identify 
each ancestral component, its distribution and proportion in the individual’s admixed genome.

Furthermore, in admixed populations, the proportion and components of genetic ancestry vary at differ-
ent levels: (i) between populations; (ii) between individuals of the same population, and (iii) throughout the 
individual’s  genome34. This has a direct impact on the reproducibility and transposition of study results in these 
populations. Thus, nowadays, genetic ancestry inference in an admixed population is an essential tool to control 
the effect of population stratification in association  studies35, for the identification of disease-associated  genes36, 
precision medical  care11 and to reveal population  history37,38.

Therefore, the correct assignment of each genetic ancestral component is essential for studies with admixed 
populations. Concerning this issue, some studies compared AIM panels in American admixed populations, 
observing differences in ancestry proportion inference between panels, which may be related to both the number 
of markers and parental reference populations of each  panel19,39,40.

Of the Latin American countries, Brazil was the only Portuguese colony, which resulted in peculiarities in the 
admixture process. Brazil received more than 4.5 million African slaves whose origin in the African continent 
may differ in terms of place and time from those of non-Portuguese colonies in Latin  America37. Approximately 
3 million Native Americans (indigenous people) lived in the current Brazilian territory in the fifteenth century 
who, after contact with Europeans, declined in number by at least 90%41. Recently, in the twentieth century, Brazil 
continues to receive millions of immigrants, especially from East  Asia33.

Today Brazil is the most populous country in Latin America and the seventh most populated country in the 
world, with more than 215 million inhabitants. Understanding how different marker sets are assigned to Brazilian 
genetic ancestry is of extreme relevance to both historical and public health issues. The first comparative studies 
to address this issue were only performed with AIMs or pharmacogenomic high-density SNP array panels and are 
based on the tri-hybrid admixture model (Native American, European and African)19,39,40. Herein, we present for 
the first time a comparison of ancestry estimates between different genetic marks sets—AIMs, high-density array 
of SNPs and Whole Genome Sequencing—in the Brazilian population using the tri-hybrid (African, European 
and Native American) and tetra-hybrid admixture models (African, European, Native American and East Asian).

This study analyzed 1,171 admixed samples from  Brazil23, which we compared to (i) 5 AIMs panels: 
 34AISNP42 +  PIMA19;  55AISNP18;  128AISNP43;  170AISNP44, and  446AISNP45, selected by both the tri- and 
tetra-hybrid admixed models. In addition, we evaluated the combination of the 5 aforementioned panels, referred 
to herein as 665AISNP; (ii) a high-density SNPs array (HDSNP), specially developed for population genetics 
studies and therefore without biased markers such as the GWAS SNP array or pharmacogenomics, and (iii) 
whole genome sequencing (WGS) data.

Results
Ancestry inference in parental population groups. The proposal of panel sets is to correctly assign 
individuals to their original continental groups, especially AISNPs. However, factors such as the number of 
markers and the set of populations used to establish allelic frequencies of the continental group may influence 
ancestry estimation accuracy. To better assess these issues, we analyzed the influence of marker number by com-
paring the inference of ancestry in our panel sets for the 4 main parental continental groups (African, European, 
East Asian, and Native American) which contributed most to the Brazilian population. For the parental popula-
tions, we used samples of the Human Genomic Diversity Panel (HGDP)46 and 1000 Genomes Project phase III 
(1KGP)24 (Supplementary Table S1).
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First, we evaluated the accuracy of the panel sets in correctly assigning pre-categorized  individuals24,46 into 
each of the 4 continental groups. Only a small proportion of samples were not assigned correctly (Z-score > |3|; 
p-value 0.01; ranging from 1.66 to 0.7% and 0.86 to 0.4% in the HGDP and 1KGP, respectively) (Supplementary 
Tables S2–S4).

Secondly, the distribution of the inferred proportion of individual ancestry for each set of panels and conti-
nental group were verified (Fig. 1). For African continent samples, all panel sets had high accuracy in inferring 
African ancestry in both datasets (median > 96%, lowest observed dispersion ancestral components inferred). 
On the other hand, for other continental samples, some panel sets displayed greater dispersion in ancestry 
inferences, showing median and average values < 90%. The 128AISNP and 446AISNP panels had the lowest 
medians (82–88% and 83–89.5%, respectively) for samples from the continental European, East Asian and Native 
American groups. Meanwhile, the HDSNP and WGS panels had the lowest dispersions in all continental groups 
with median values > 98%.

Finally, a pairwise comparison of the inferred proportion of individual ancestry was performed between 
each panel set for each continental group (Supplementary Fig. S1A–G). The 8 panel sets evaluated showed high 
correlation coefficient values  (r2 > 0.96), ranging from 0.98 to 1 for the African and European samples (Supple-
mentary Fig. S1A,B,E,F) and from 0.96 to 1 for East Asians and Native Americans (Supplementary Fig. S1C,D,G).

Ancestry inference in Brazilian populations. A common question when studying genetic ancestry of 
the Brazilian population is whether to use a tri- or tetra-hybrid admixture model, and what panel set. In order 
to explore this issue, we analyzed both the admixed models and the inference of ancestry from different panel 
sets—AIMs, HDSNP and WGS. For the parental reference populations, we selected Africans (AFR), Europeans 
(EUR), East Asians (EAS), and Native Americans (NAM) from the HGDP, only including samples with z-score 
values < |3| (Supplementary Tables S2–S4).

In general, we observed variations in ancestry inferences according to the admixed model chosen as well as 
the panel set (Fig. 2). By the tri-hybrid model, the average ancestry inferences in the Brazilian sample ranged 
from 70.02 to 74.16% for EUR ancestral component; 16.91 to 19.58% for AFR, and 8.96 to 10.59% for NAM 
(Supplementary Table S5). In the tetrahybrid model, the average ancestry inferences were: 66.33 to 73.02% 
(EUR ancestral component); 16.77 to 18–76% (AFR); 6.46 to 7.26% (NAM), and 2.90 to 8.72% (EAS) (Fig. 2; 
Supplementary Table S6).

To determine whether there are significant differences in ancestry inferences according to the tri- or tetra-
hybrid models, we adopted two analytical approaches. First, as many studies are interested in the population 
average of each ancestral component, we performed the paired t-test to compare the average obtained with the 
same panel from the tri- and tetra-hybrid models (Supplementary Table S7). The averages for the AFR ancestry 
component inferred did not differ significantly between the models. On the other hand, all panel sets showed 
significantly different averages for the NAM component (t-test > 4; p-value < 0.0025), and the 128AISNP for the 
EUR component (t-test = 4.17; p-value = 3.13–5). We subsequently performed a pairwise comparison to verify the 
correlation between the ancestry inferences obtained by the same panel from the tri- and tetra-hybrid models. 
We observed that the inferred AFR and EUR ancestral component correlation coefficient ranged from 0.97 to 
0.99, and the NAM component between 0.46 and 0.67 (Fig. 3).

To better understand how the EAS ancestral component is being detected by the admixture models, we evalu-
ated the assignments of 33 samples in the Brazilian dataset, all of which were self-declared Asian descendants. 
In the tetra-hybrid model, all panels detected more than 85% EAS ancestral component in the samples analysed. 
We then analyzed this subset by comparing the inferences of AFR, EUR, and NAM components between the 
tri- and tetra-hybrid models. For the tetra-hybrid model, the inferences of these three ancestral components were 
close to 0, while between 20 and 66% in the tri-hydrid model. In Fig. 3, we see that in almost all comparisons, 
these samples are clustered and offset from the correspondence line. In order to assess how the EAS ancestral 
component was assigned in the other samples of the dataset, we excluded samples with > 85% Asian ancestry. The 
inferred EAS average for this subset was: 6.17% (s.d. = 8.5%) 34AISNP + PIMA; 3.69% (s.d. = 6.25%) 55AISNP; 
5.31% (s.d. = 8.5%) 128AISNP; 3.24% (s.d. = 5.17%) 170AISNP; 3.25% (s.d. = 4.73) 446AISNP; 2.27% (s.d. = 3.55%) 
665AISNP; 0.11% (s.d. = 0.36%) HDSNP, and 0.09% (s.d. = 0.33%) WGS. For HDSNP and WGS, none of the 
sample had EAS component inference above 5%, while the AIMs panels had samples with maximum observed 
values ranging from 23.9 to 55.9%.

Finally, we evaluated whether the ancestry inference from the different sets of panels differs from each other 
(Fig. 2). A pairwise comparison of the averages was performed with no significant differences (t-test) observed 
for the AFR and NAM component in both models (Supplementary Tables S8 and S9). With the tri-hybrid 
model, the inferences of the EUR ancestral component had significant differences in the comparisons of the 
34AISNP + PIMA and 55AISNP panels to HDSNP and WGS with p-values of < 0.005 and 0.007, respectively 
(Supplementary Table S8). In the tetra-hybrid model, for inferences of the EUR component, with the exception 
of the 446AISNP and 665AISNP panels, the others showed significant differences to HDSNP and WGS panels 
(p-value < 0.01). Additionally, for the EAS component, only 665AISNP had no significant difference with HDSNP 
and WGS (Table S9). We also performed correlation analysis between panels for ancestry inference for the infer-
ence of the AFR ancestral component  (r2

tri = 0.89 to 1;  r2
tetra = 0.90 to 1); EUR  (r2

tri = 0.91 to 1;  r2
tetra = 0.91 to 1); 

EAS  (r2
tetra = 0.80 to 1), and NAM component  (r2

tri = 0.76 to 1;  r2
tetra = 0.54 to 0.99) (Supplementary Figs. S3 and 

S4).

Ancestry inference in admixed American populations. To find out if this pattern observed in the 
Brazilian sample is similar in other admixed populations in America continent, we performed the same analyzes 
in the admixed populations of 1KGP: Afro-Caribbean (ACB); Afro-American (ASW); Colombian (CLM); Mexi-
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can (MXL); Peruvian (PEL), and Puerto Rican (PUR). The admixed populations evaluated herein have different 
proportions of parental ancestry, ranging from those with proportions of mostly African ancestry (ACB and 
AWS), mostly European ancestry (CLM, PUR), and mostly Native American ancestry (MXL and PEL) (Sup-
plementary Tables S5 and S6).

When comparing ancestry averages inferred by the same panel for each ancestry component with tri- or 
tetra-hybrid admixture models, nonsignificant differences were observed (except for the 128AISNP panel in 
the NAM component in the PUR sample; t-test = 3.7, p-value = 0.029) (Supplementary Table S7). On the other 
hand, the pattern of correlation coefficients is heterogeneous between the ancestry components and the 1KGP 
admixed populations (Supplementary Fig. S4F). In the comparisons of ancestry inference averages by the different 
panels in the same admixture model, we also found heterogeneous results. In the tri-hybrid model, ACB showed 
differences between the averages inferred for the EUR and NAM componentes, and MXL for the AFR compo-
nent (Supplementary Table S8). The pairwise comparison of individual ancestry inferences between the panels 
shows variation in the correlation coefficients, both between ancestry components in the admixed population, 
and between the admixed populations. In ACB, the correlation coefficient for AFR ancestry component ranged 
from  r2

TRI = 0.66 to 1 (Supplementary Fig. S11A) and in ASW from  r2
TRI = 0.88 to 1 (Supplementary Fig. S12A). In 

CLM, the correlation coefficient for the EUR ancestry component ranged from  r2
TRI = 0.78 to 1 (Supplementary 

Fig. S13B), and from from  r2
TRI = 0.74 to 1 in PUR (Supplementary Fig. S16B). Regarding MXL and PER, the 

correlation coefficient for NAM ancestry ranged from  r2
TRI = 0.87 to 1 (Supplementary Figs. S13C and S15C). A 

general trend in these comparisons is higher correlation coefficients between panels that share a greater number 
of markers (e.g. 128AISNP × 170AISNP; 446AISNP × 665AISNP and HDSNP × WGS), in addition to those with 
the highest number of markers (e.g. 446AINSP, 665AISNP, HDSNP and WGS) (Supplementary Figs. S11–S16).

Discussion
In the present study, we evaluated 8 panel sets: six AISNPs, one HDSNP and one WGS. Using tri- and tetra-hybrid 
admixture models, we compared ancestry inferences in Brazilian admixed populations and a set of admixed 
American populations.

To verify the accuracy of the panels, samples from HGDP and 1KGP datasets were used, whose geographic 
origin is known and without evidence of recent admixture. Despite the low marker overlap observed in the AIS-
NPs panels (see Supplementary Material Notes), all panels showed a high accuracy rate (error rate 0.4–1.66%; 
Supplementary Table S2) and high degree of correlation in the pairwise comparisons of the panels  (r2 > 0.96; 
Supplementary Figs. S1A–G). However, it is also possible to observe heterogeneity in the distribution of genetic 
ancestry inferred within each parental group by the different panel sets (Fig. 1). The smallest dispersion was 
observed in AFR (median values > 90%), while EUR and EAS presented the largest one (median values < 90% in 
panels such as 128AISNP and 446AISNP).

These results reveal, albeit with varying degrees of accuracy between them, that the available AISNP panels 
meet the proposed role of correctly attributing ancestry according to the continental group to which the indi-
vidual belongs. Several studies already compared the accuracy of panels and obtained similar  results18,21,47. As 
such, many authors currently argue that there is no necessity for new AIMs panels to assign the 6 biogeographic 
regions: Sub-Saharan Africa, Europe, Southwest Asia, South Asia, East Asia and the Americas. Instead, efforts 
should be directed towards building panels for global use, with greater representation of population  groups18.

Most AIMs panels use HGDP and 1KGP data as a reference population for marker selection, including 
some of those evaluated in the present  study19,42. These two public databases were essential for understanding 
the distribution of genetic diversity and affinity among human population  groups24,46,48. However, they only 
capture a portion of human population diversity. Therefore, many AIMs panels endeavoured to include more 
populations from different population groups during their development process, for example: 55  AISNP18; 128 
 AISNP43; 446  AISNP45.

Soundararajan et al.49 argued that if there is a low representation of data from reference populations, a greater 
number of markers becomes necessary for the robustness of allele frequencies for the definition of population 
groups of interest. Our results converge at this point as we observed greater correspondence in individual ancestry 
inferences between panels with a greater number of markers, in particular to those of the HDSNP and WGS data.

In the present study, we focused on Brazilian admixed populations. This population emerged in the last half-
century, especially from Native American, European, and African sources. More recently, it has also received 
contributions from other regions, including East Asia and the Middle East.

Admixed populations require a closer look in terms of ancestry inferences as their genomic particularities 
give rise to several challenges. Each admixed population has a peculiar evolutionary history, differing in parental 
sources, proportion and time of admixture. Furthermore, the admixing process produces variation at different 
levels: in ancestry between admixed populations, between individuals in the same admixed population, and 
throughout the genome of the same admixed  individual34. For this reason, a method, model or panel that cap-
tures the profile in one admixed population or admixed individual well will hardly have the same performance 
for another.

We know that the EAS contribution is less than 1% for most of the Latin American admixed populations. 
Therefore, the choice of tri- or tetra-hybrid model will depend on the admixture profile of the population. Our 
motivation to analyze the tetra-hybrid model lies in the fact that in recent decades there has been a growing 
migratory flow of East Asian populations to large urban centers in the USA and Brazil. East Asian immigration 
to Brazil began in 1908 with the Japanese and today, according to the Ministry of Foreign Affairs of Japan, more 
than 2 million Japanese descendants live in Brazil. São Paulo, the city where the Brazilian samples of the present 
study were collected, is home to one of the largest Japanese communities outside Japan. The Brazilian cohort 
has 33 samples with 100% East Asian ancestral component that are direct descendants of the first Japanese 
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 immigrants23. Data from the last Brazilian census revealed that, in 10 years, there was a 173.7% increase in the 
number of individuals who declared themselves to be of Asian descent (Japanese, Chinese and Korean)33.

Based on this scenario, using WGS data from 1171 Brazilian individuals, we evaluated how different admixed 
models and sets of panels behave to infer ancestry in the Brazilian population. First, we checked for differences in 
the inferences of each ancestral component according to the tri- or tetra-hybrid admixture model. The popula-
tion average inferred by either admixed model only differed for the NAM ancestral component (Supplementary 
Table S7). Similarly, the NAM ancestral component is the one with the lowest degree of correlation between 
the two admixture models (Supplementary Fig. S3). These results suggest that the chosen admixture model can 
influence the inference of the average NAM ancestral component in this Brazilian sample. In Figs. 2 and 3, it is 
also possible to observe a trend of greater proportions in the inference of the NAM ancestral component in the 
tri-hybrid model than in the tetra-hybrid model, both in terms of the population average and the individual. In 
order to better understand this trend, it is necessary to evaluate the assignment of the EAS ancestral component 
in these samples.

Once we had self-declared individuals of Asian descent in this Brazilian cohort, we verified how the tri- and 
tetra-hybrid models assigned ancestry. For these individuals, the tri-hybrid model, the HDSNP and WGS panels 
assigned: ~ 63% to NAM, ~ 32% to EUR, and ~ 5% to the AFR ancestral components. There are more ranges of 
inferred percentage for the AIMs panels (Fig. 3). The panels with the highest number of markers (446AISNP and 
665AISNP) were closer to the inferences of high-density panels of SNPs, while those with the lowest number 
of markers (34AISNP + PIMA, 55AISNP, 128AISNP and 170AISNP) had large ranges, in some cases including 
the assignment of proportions for the African ancestral component > 40%. This result shows a redistribution of 
the EAS component, mostly to the NAM component, followed by the EUR component, and to an even smaller 
proportion, the AFR component. As the NAM ancestral component is a minority in the Brazilian cohort (< 8%), 
this may constitute to the increase of the NAM ancestral component in the average population discussed in the 
previous paragraph.

Given the recent migratory flow from East Asia to Brazil and the fact that the samples from the Brazilian 
cohort were collected in 2010 and had individuals > 60 years old (71.86 ± 7.94) at the time of collection (details 
 in23), it was unexpected to visualize individuals with this ancestral component as a minority in their genome. 
Thus, we evaluated the remaining 1138 samples as probably not possessing the EAS ancestral component. Our 
results showed that for the tetra-hybrid model, especially for the AIMs panels, there was more noise in the EAS 
component inference (Fig. 2), while for the HDSNP and WGS panels, the inferences had less noise (no individual 
with > 5%). These results suggest that the two high-density marker panels are able to better assign ancestral 
components in the tetrahybrid model. In turn, in the trihybrid model, samples with some proportion of the EAS 
ancestral component in the tetrahybrid model, showed an increase in the NAM and EUR ancestral components. 
This observation can be seen as another factor contributing to the differences in the inferred Native American 
ancestral component between the admixed models.

We also compared the tri- and tetra-hybrid models in other admixed populations in America (1KGP) for 
which there are no historical records of large migratory flows from EAS (except for Peru). Therefore, it is unusual 
to analyze the tetra-hybrid model in this dataset and we only performed it in order to better explore the pat-
terns. Unlike the Brazilian cohort, we did not observe significant differences in the population averages of the 
components between the admixed models. However, Figs. S5–S10 clearly show noise with the inference of the 
EAS ancestral component in populations for which it is not part of the parental source.

Therefore, choosing an admixed model is not a simple decision, as each model has advantages and disadvan-
tages in each population. The decision of which model to apply will depend on the question the investigator wants 
to ask and whether there is interest in the population average or ancestry of each individual in the sample. If it 
is to decipher specific admixture components, for example to learn about an individual’s family migratory pat-
terns, then all possible parental populations involved should be included. If they are simply trying to determine 
the major ancestral component, for example exclusion purposes, then a smaller model with the key continental 
groups may suffice.

The second objective of our study was to compare ancestry inferences with different sets of panels (AISNP, 
HDSNP and WGS). In the Brazilian sample, we observed significant differences for the EUR ancestral compo-
nent averages in the tri-hybrid model (34AISNP + PIMA and 55AISNP × HDSNP and WGS) (Supplementary 
Table S8) and for the EUR (34AISNP + PIMA, 55AISNP, 128AISNP and 170 AISNP × HDSNP and WGS) and 
EAS (all panels, except 665AISNP × HDSNP GWS) in the tetra-hybrid model (Supplementary Table S9). These 
results are possibly related to what was observed for the parental populations, where there is greater dispersion 
in the distribution of EUR, EAS and NAM ancestry (Fig. 1), indicating a variation in the accuracy of correctly 
assigning this ancestral component. On the other hand, we did not observe differences in the population averages 
inferred by the sets of panels for the AFR and NAM ancestral components. Although, in the pairwise analyses, 
the smallest correlations between panels occurred in inferences from the NAM ancestral component (Supple-
mentary Figs. S2C and S3C). This result suggests that although the population average inference of the NAM 
ancestral component is similar between the panels, there are differences in the inferences on the individual level.

The analysis involving admixed populations of the 1KGP showed heterogeneous results. In paired compari-
sons of individual ancestry inference between panels (Supplementary Figs. S11–S16), we observed variation 
correlation coefficients both between ancestry components within the same admixed population and between 
admixed populations. The inconsistencies observed in the ancestry inferences between the panels were even more 
evident for the minority ancestry components of the individuals in our results (e.g. Supplementary Figs. S14A, 
S15A and S16C). This probably occurred because the genome of an admixed individual is a mosaic composed 
of segments from different parental sources. Over generations, due to the process of meiotic recombination, 
the components of distinct ancestry are shuffled between homologous  chromosomes36,50. Thus, the greater the 
number of generations since admixture onset, the smaller the size of the genomic segments of the ancestry will 
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be. In addition, the greater the proportion of an ancestral component, the greater the size of its segments in the 
genome, while conversely, the smaller the proportion of the ancestral component, the smaller the segments in 
the  genome50. In this scenario, due to lower density and genomic coverage, AISNP tends to be less accurate data 
than higher SNP density and higher genomic coverage.

The NAM component had the lowest correspondence in ancestry inferences between the panels (Supple-
mentary Figs. S3C and S16D). It is widely recognized that the Native American populations, due to their recent 
bottleneck history, are the most differentiated in the  world48 having the lowest number of representatives in 
the reference panels. Panels were developed with the aim of enriching the NAM  component18,43,45, however, 
they do not always capture this component well in all admixed populations. Thus, the underrepesentation of 
Native American sources, in addition to the minority NAM ancestral component in PUR and Brazilian sample, 
may be contributing to the observed differences in ancestral inference between the panel sets for this ancestral 
component.

Through the present study, we verified that there are differences in the inferences of the ancestral components 
according to the panel chosen. There is greater correspondence of inference between panels that share a greater 
number of markers (128AISNP and 170AISNP; 446AISNP and 665AISNP; HDSNP and WGS), and among those 
with the highest number of markers (446AISNP, 665AISNP, HDSNP and WGS). Again, it is important to point 
out that the choice of panel will depend on the purpose and needs of the study. For example, in forensic genet-
ics, sometimes samples with quantity and quality are not available, which limits the genotyping  methodology51. 
Meanwhile, in clinical or genetic association studies, accurate genomic ancestry is essential. Furthermore, it is 
often necessary to go a step beyond the genomic average and make inferences about ancestry in specific genomic 
 segments52,53.

The admixed populations of America are being increasingly studied in terms of population history, clinical 
and forensic studies. Therefore, nowadays, it is essential to discuss and understand how methodological advances, 
both in genotyping and in analysis, help to improve the inference of genetic ancestry in admixed populations. 
In the present study, we analysed data from WGS, HDSNP and AIMs in a Brazilian samples, through different 
admixture models and compared with other admixed populations of the American continent. We showed that 
heterogeneity within and between admixed populations still poses methodological challenges. Therefore, it is 
fundamental when defining the research question, to be aware of the advantages and limitations of each admix-
ture model and set of panels for the populations of interest.

Materials and methods
Datasets. Samples from 3 datasets were analyzed: (i) Human Genomic Diversity Panel (HGDP)46; (ii) 1000 
Genomes Project phase III (1KGP)24, and (iii) Brazilian Cohort of Health, Well-being and Aging (Saúde e Bem 
Estar—SABE)23.

Based on the American admixture history, analyses were performed with parental samples from African, 
European, East Asian and Native American populations of HGDP (543 individuals) and 1KGP (1511 individu-
als) as described in Table S1. We also analyzed the 504 samples from the 6 admixed populations from the 1KGP, 
and the 1,171 Brazilian samples from the SABE cohort (Supplementary Table S1).

All samples were genotyped by WGS and are publicly available (https:// www. inter natio nalge nome. org/ data—
HGDP and 1KGP; https:// ega- archi ve. org/ studi es/ EGAS0 00010 05052—SABE). All individuals enrolled in the 
SABE cohort signed written consent forms to participate in this study approved by local and national institutional 
review boards: COEP/FSP/USP OF.COEP/23/10, CONEP 2044/2014, and CEP HIAE 1263-10.

Ancestry informative markers SNPs panel (AISNP panel). Due to availability in the 3 datasets, we 
evaluated only SNPs as AIM. Based on this criterion, we selected 5 AIMs panels frequently used in studies with 
Latin American populations:  34AISNP42 +  PIMA19;  55AISNP18; 128  AISNP43; 170  AISNP44; 446  AISNP45. In 
addition, we also evaluated the combination of the 6 panels, which we named 672 AISNP. The SNPs of the AIMs 
panels used in the present study are described in Supplementary Table S2.

High-density SNP chip array (HDSNPs panel). Axiom™ Genome-Wide Human Origins (~ 600  K 
SNPs—ThermoFisher Scientific) was selected as a representative of high-density SNP arrays. This genotyp-
ing panel was optimized for population genetic studies and developed from genomic markers identified in 11 
human populations: France, China, Papua New Guinea, San, Yoruba, Mbuti pygmies, Karitiana, Italy-Sardinia, 
Melanesia, Cambodia, and Mongolia, avoiding confounding biases introduced using GWAS SNP arrays.

Merge datasets. Based on the WGS data from the 3 datasets, the following sets of SNPs were selected: 
(i) AISNP panels: 672 SNPs comprise the 6 AISNP panels selected for the present study. Of these, 5 SNPs 
(rs12402499; rs17287498; rs1321333; rs10954737; rs10071261) are not detected in all datasets (Supplemen-
tary Table S9), of which, 3 SNPs are informative of Native American ancestry and 2 of African ancestry; (ii) 
HDSNPs panel: ~ 600,000 SNPs that comprise the Axiom Human Origins array. The overlap between the 3 data-
sets was 555,168 SNPs, and (iii) WGS data: the original datasets with more than 60 million variants described. 
For the present study, we excluded SNPs: (a) MAF < 1%; (b) missing data per SNP > 1%; (c) Hardy–Weinberg 
p-value < 1 ×  10–8, and (d) filter for LD coefficient  (r2 = 0.1—see “Supplementary Material” section for more 
details). The final dataset contains 2,018,023 SNPs. For each set of markers, the 3 datasets (HGDP, 1KGP, SABE) 
were merged using vcftools v.0.1.1554 and plink v.1.955. To validate these merge data, a PCA analysis was per-
formed (Supplementary Fig. S17). Throughout the text we refer to AISNP, HDSNP and WGS as "panel sets".

https://www.internationalgenome.org/data
https://ega-archive.org/studies/EGAS00001005052
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Data analysis. Allelic frequency inferences, Hardy–Weinberg and Fisher’s exact test was performed using 
the PLINK v.1.9  software55. Correction for multiple testing was made according to Bonferroni correction.

Genetic ancestry inference. ADMIXTURE v.1.356 was used to perform global ancestry inference. Analy-
ses were performed in an unsupervised manner when considering only parental populations, and in a super-
vised manner when considering admixed populations. Parameters used: 4 clusters (K = 4) and 2000 bootstrap 
replicates. Each analysis was repeated 10 runs and the results combined using the CLUMP software (v.1.222)57.

Information redundancy may occur in high-density SNP data (HDSNP and WGS). Therefore, to minimize 
and evaluate background linkage disequilibrium in the analyses, we also tested some disequilibrium linkage coef-
ficients  (r2 = 0.01, 0.05, 0.1, 0.3 and 0.5), assuming a distance not closer than 200 Kb between adjacent  markers55,56.

Comparisons of ancestry inference were performed by correlation analysis and z-score test by R scripts using 
package stats v.4.1.158.

 Data availability
The datasets reported in this article are publicly available (https:// www. inter natio nalge nome. org/ data—
HGDP and 1KGP; European Genome-phenome Archive (EGA), under EGA Study accession number 
EGAS00001005052—SABE).
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