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Emergence of coherent 
backscattering from sparse 
and finite disordered media
Nooshin M. Estakhri 1,2*, Nasim Mohammadi Estakhri 3 & Theodore B. Norris 2

Coherent backscattering (CBS) arises from complex interactions of a coherent beam with randomly 
positioned particles, which has been typically studied in media with large numbers of scatterers 
and high opacity. We develop a first-principles scattering model for scalar waves to study the CBS 
cone formation in finite-sized and sparse random media with specific geometries. The current 
study provides insights into the effects of density, volume size, and other relevant parameters on 
the angular characteristics of the CBS cone emerging from sparse and bounded random media for 
various types of illumination, with results consistent with well-known CBS studies which are typically 
based on samples with much larger number of scatterers and higher opacity. The enhancements are 
observed in scattering medium with dimensions between 10× and 40× wavelength and the number of 
particles as few as 370. This work also highlights some of the potentials and limitations of employing 
the CBS phenomenon to characterize disordered configurations. The method developed here provides 
a foundation for studies of complex electromagnetic fields beyond simple incident classical beams 
in randomized geometries, including structured wavefronts in illumination and quantized fields 
for investigating the effects of the quantum nature of light in multiple scattering, with no further 
numerical complications.

The phenomenon of coherent backscattering (CBS) is an expression of the weak localization of waves in disor-
dered media and stems from coherent effects among time-reversed scattering paths, which introduce identical 
phases in multiple  scattering1,2. The constructive interference between reciprocal scattering  paths3, leads to an 
enhancement in the average intensity of the scattered light in the backscattering direction. While scattering from 
any specific realization of disorder leads to speckle, CBS may be observed by ensemble averaging over different 
realizations, ideally exhibiting a two-fold enhancement of the intensity in the exact backscattering direction 
compared to the diffuse background at large angles. Enhanced backscattering was first considered in studies of 
the electromagnetic reflection from a turbulent medium, looking at the large-scale interference  effects4. The CBS 
effect has since been observed for multiple scattering of electromagnetic waves in several experiments including 
studies on concentrated aqueous suspension of dielectric  spheres5–7, dielectric  powders8,9, multimode optical 
 fibers10, photonic  crystals11, cold  atoms12,13, and biological  media14,15. In addition, the formation and behavior 
of this coherent effect have been studied in the presence of  nonlinearity16,17, time  variation18, and magnetic 
 biases10,19,20. In principle, reciprocity must be maintained for CBS to appear, and any perturbation inducing 
nonreciprocal behavior may alter or eliminate such localization  effects21. For instance, nonlinearity introduces 
additional phase shifts proportional to the wave intensity, which can transform CBS peak into a dip (dephasing 
and antilocalization). Additionally, CBS peaks have been studied and observed for various types of waves besides 
electromagnetic  waves22–26.

A wide variety of theoretical approaches have been taken to model light scattering in random media, employ-
ing microscopic or macroscopic descriptions of the scattering phenomena. Multiple scattering theory for discrete 
scatterers has been employed using Feynman diagrams. The backscattering enhancement, however, cannot be 
captured by using ladder terms in such analyses and it is necessary to use cyclical terms, as demonstrated in 
Ref.3. Inclusion of all ladder terms and cyclical terms becomes necessary if the optical thickness of the random 
medium becomes appreciable and for samples with high surface  reflectivity27. Classical transport theory has also 
been used to estimate the Green’s function describing light transport in a random medium, following the diffu-
sion  approximation1. This technique has allowed for the estimation of the shape and width of the backscattering 
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 cone1. Furthermore, numerical simulations such as Monte Carlo and related  approaches18,28–30, and T-Matrix 
 methods31,32 have also been used to model the multiple scattering processes in disordered media.

Besides isotropic samples, the nature of light scattering and transport in disordered samples with structural 
anisotropy have been the subject of multiple  numerical33–35,  theoretical36,37 and  experimental34,35,37,38 investiga-
tions. Many non-biological samples such as nematic liquid crystals, porous fibers, and porous semiconductors 
as well as biological samples such as muscle, bone, and skin tissues may exhibit such structural anisotropy, 
causing them to show non-symmetric near- and far-field scattering patterns or anisotropic transport of light. 
Transport of light in anisotropic samples is found to be adequately captured via an anisotropic diffusion  model36 
for cases where the propagation length is several times larger than the transport mean free path. Consequently, 
characterizing such diffuse transport can determine the diffusion constant, the mean free path tensor, and the 
extrapolation  length38. In addition, the multiple scattering interference phenomenon in such systems can produce 
angularly anisotropic behaviors in weak localization of light, i.e., anisotropic enhanced  backscattering39,40, which 
can be effectively captured considering enhanced backscattering models with generalized anisotropic mean free 
 paths39. In this regard the CBS phenomenon has been used as a static and accessible technique to characterize 
the optical anisotropy of biological samples such as beetle  scales41.

In this paper, we use a microscopic numerical scalar wave analysis to examine the formation of CBS peaks in 
scattering from finite-sized, wavelength-scale random media. The inherent simplicity of the calculation method 
allows us to systematically study how different parameters of the scattering object can affect the line shape of 
the backscattered enhancement, and specifically to understand the limits on the formation of the backscattering 
cone for small numbers of scatterers and sparse samples. Additionally, this approach allows a straightforward 
way to calculate the effects of density factor, sample size, absolute number of particles, and iteration factor. Here, 
we first consider scattering from small scatterers positioned within a rectangular space with different edge sizes 
ranging from 10 to 40 free-space wavelengths, with excitation in the form of a monochromatic plane wave. This 
approach allows us to easily extend the computation to the scattering of arbitrary input states of light, such 
finite-size excitation beams or other tailored  excitations14,42. In addition to the emergence of CBS, we analyze 
the ensemble-averaged specular reflection in the scattering from random samples, a feature typically overlooked 
in previous numerical studies. We then develop a method to eliminate this coherent specular contribution, and 
hence enable a clean observation of the pure CBS peak under normally incident illumination.

While a scalar analysis does not capture polarization  effects43–45 (e.g., the polarization opposition  effect43), 
it allows us to study more populated scattering volumes. Here, we analyze volumes consisting of up to 20,000 
particles, much higher than previous studies which computed exact solutions of Maxwell’s  equations46.

Formalism and modeling
To model the CBS formation, a random medium is typically approximated by a half space in order to simplify 
the  calculation1,3,47. This approximation is accurate for cases of centimeter-sized samples under external opti-
cal illumination, as the mean free path length of the wave inside such disordered media is much smaller than 
the physical size of the scattering sample. However, such models do not provide insights into the behavior and 
physics of wave scattering in the case of smaller random configurations, i.e., those with dimensions in the order 
of multiple wavelengths or comparable to the mean free path length, as we study in this work.

Figure 1 depicts a sketch of the finite-sized random media examined in this study together with the direction 
of illumination with respect to the chosen coordinate system. A total of Np isotropic small particles (scattering 
centers) are assembled inside an imaginary rectangular domain, where the center of each particle is randomly 

Figure 1.  Simulation setup composed of Np particles randomly arranged inside a rectangular region with 
dimensions Lx , Ly , and Lz . The structure is illuminated by a plane wave propagating in the xz-plane with the 
incident angle of θi . The area between the dielectric particles is filled with air and the scattering is calculated in 
the upper half plane for −π

/

2 ≤ θs ≤ π
/

2.
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positioned. We use uniform statistical distributions to assign all three components of the particles’ positions 
(i.e., x, y, and z); and the process is repeated Nr times to realize Nr independent random distributions. In experi-
ments, ensemble averaging of the scattered intensity, which results in a significant reduction of granular behavior 
(speckle), is typically achieved through rotating or moving the sample. This step is executed here, however, by 
computing fully independent realizations of the composition followed by ensemble averaging over the calculated 
results. The uniform distribution of the particles’ positions (which could be altered to any other distribution) is 
the only assumption made about the scattering medium, and we do not impose any assumptions on the statistical 
behavior of the response or the scattering matrix elements. It is noteworthy that since Np specifies the number 
of equations that needs to be solved at each iteration, changing the distribution of particles, their composition, 
or the domain size, does not affect the computation load and processing time. We have found that in this model, 
a typical personal computer with 32 GB RAM is capable of handling Np values in the order of up to about 104 ; 
no cloud computing or advanced computing techniques were required to obtain the results presented here. The 
structure is illuminated with a scalar electromagnetic plane wave propagating in the xz-plane, incident upon the 
structure at the angle θi , as shown in Fig. 1. The far field scattering pattern from the particle cluster for all outgo-
ing wavevectors (depicted as θs ) is then calculated. For −π

/

2 ≤ θs ≤ π
/

2 the entire upper half-plane region is 
covered, in which θs = −θi corresponds to the backscattering direction and θs = θi corresponds to the specular 
reflection of the incident wave. With the finite size of the sample, the random object also creates scattering in 
the forward direction (i.e., |θs| ≥ π

/

2 ), which is not of interest in our studies. In the back half-plane, as will be 
discussed below, the observed coherent effects in multiple scattering, which survive the ensemble averaging, are 
mainly at the specular ( θs = θi ) and the backscattering ( θs = −θi ) directions.

To calculate the scattered field, we solve for the total scalar field amplitude U(r) satisfying the general Lipp-
mann–Schwinger integral equation given in Eq. (1) and independently solved for each realization. The total field 
amplitude at r can be constructed from the incident field amplitude Ui(r) and the contributions from all scatterers, 
where G0

(

r, r′
)

 is the background Green’s  function48 and k0 is the free space wavenumber

The susceptibility parameter η(r) is defined such that it is locally related to the relative permittivity by 
εr(r) = 1+ 4πη(r)48. For a collection of discrete point-like scatterers (i.e., delta function approximation), η(r) 
may be described as a summation over the effective polarizability of particles defined at the center of each particle 
as η(r) =

∑Np

i=1 α0δ(r − ri) ,  in which α0 = r3
(

n2 − 1
)/

349.  The free space Green’s function 

G0

(

r, r′
)

= eik0|r−r
′|
/

∣

∣r − r
′
∣

∣ is utilized, following the e−iωt convention, with proper adjustments for the regular-

ized Green’s function at r = r
′50. In the final step, the scattering amplitude of the outgoing spherical wave, in the 

far field domain, is extracted and studied (See supplemental information for further details on solving the 
Lippmann–Schwinger equation and calculating the scattering amplitudes). We model Np identical dielectric 
particles (i.e., simulating commonly used SiO2 particles with refractive index n = 1.5 ) and subwavelength radius 
of r = �0

/

2π . Clearly, the most accurate solution may be attained by using the complete Mie scattering theory 
for a composition of spheres while solving for the fields using the exact Maxwell’s  equations32,51). The computa-
tion time and complexity of such analysis, however, drastically increases with increasing the number of the 
scatterers and the size of the simulation domain. On the other hand, the scalar  approximation1,6,17,47 enables us 
to capture many important underlying physical properties of the system, while avoiding unrealistically long 
simulation times.

Several physical factors must be considered in the choice of the material and the size of the scattering bod-
ies. In particular, if the scattering elements are very far off resonance (i.e., with extinction cross sections much 
smaller than the physical cross section of the particles), one might expect that millions of particles are required 
to create a meaningful scattering response, associated with large mean free path  lengths2.

Along the same line of physical reasoning, we expect to observe meaningful coherent scattering responses 
and weak localization effects from a smaller number of scatterers when the scattering amplitude is higher. Using 
Mie theory, the extinction efficiency (i.e., extinction cross section normalized to the physical cross section of the 
particle) for the dielectric spheres (scattering centers) modeled in this work is found to be 0.22, the amplitude 
of the electric dipole scattering coefficient is 0.19, and the amplitudes for all other higher order scattering coef-
ficients are smaller than 0.03. We note that the response of each single particle is still well within the off-resonant 
dipolar approximation. For the lossless configurations examined here the extinction cross section is equal to 
the scattering cross section and represents the amount of power that the object extracts from the input wave 
normalized to the incident power intensity.

In the following, we study the formation of the CBS cone from various finite-sized media based on the above 
formulation. In addition to the conventional parameters applicable in studying semi-infinite random media, such 
as density factor and angle of incidence, here we also study parameters specifically relevant to finite-sized systems 
including the absolute number of scatterers and the size of the domain. The ensemble-averaged specular reflection 
in multiple scattering and a technique to eliminate it is also discussed and the modified results are presented.

Results
We analyze several examples of random geometries (such as that depicted in Fig. 1) following the numer-
ical formulation described in the previous section. In all the examples, the random domain is a cube, i.e., 
Lx = Ly = Lz = L and density factor is the ratio of the volume of all particles to the volume of the cube, defined as

(1)U(r) = Ui(r)+ k20

∫

d3r′ G0

(

r, r′
)

η
(

r
′
)

U
(

r
′
)

.
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in which VS is the volume of each dielectric sphere. The ρ parameter is an indication of how closely the particles 
are packed. The scatterers are assumed to consist of a low-index material ( n = 1.5 ) with a radius of r = �0

/

2π . 
As discussed above, the Mie scattering analysis of individual particles shows that their response lies well within 
the single-mode dipolar scattering regime and higher order scattering modes are negligible. For all the results 
provided in Figs. 2, 3, 4, 5, 6 and 7, Nr distinct random configurations are simulated, and the results are averaged 
to reveal the coherent contributions vs. the incoherent background signals.

We first assess the effect of disorder averaging. For samples with a very large number of particles (the case 
typical of most laboratory experiments), usually tens to hundreds of measurements are sufficient for the speckle 
to average to a diffuse background allowing the CBS cone to  emerge52. This relatively low number of realizations 
is not sufficient to observe the weak localization effects in small, disordered geometries. By increasing the number 
of realizations, however, the localization effects appear for these geometries as well. This important conclusion is 
carefully examined here. Keeping all the other parameters unchanged, Fig. 2a illustrates the evolution of the aver-
aged scattering profile when Nr is increased from 20 to 10,000 in a random sample with Np = 10, 000 , L = 20�0 , 
θi = 40 (deg) ≈ 0.7 (rad) . This corresponds to a density factor of ρ = 0.021 or approximately 2% volume fraction. 
Here, �0 indicates the free space wavelength.

First, we notice that ensemble averaging over 2000 (or even smaller) number of simulations is sufficient to 
reveal the coherent scattering response in these geometries. The CBS cone is still observable for averaging over 
200 samples, however as Nr increases the response across all angles becomes less noisy. Another important 
observation is that the ensemble-averaged specular coherent reflection is present at θs = θi in averaging over 
200 realizations or more This effect is well separated from the CBS contribution under oblique incidence and no 
specular reflection is present in scattering from any single realization (Fig. 2b) or small values of Nr . Note that 
the background material here is air everywhere; thus, all the observed specular effects are the direct consequence 
of embedded coherence effects in multiple scattering, outliving the ensemble averaging step. The CBS ratio is 
slightly smaller than the theoretical value of two and does not change noticeably by increasing the number of 
realizations. The finite size of the scattering medium plays a fundamental role in establishing the width of the 
CBS cone. For finite-sized samples, such as the examined cases here, the probability of having longer scattering 
trajectories for photons severely diminishes, and thus the width of the CBS cone is anticipated to  increase53–55. 
This is consistent with our observations here (see Figs. 2, 3, 4, 5, 6, 7) where the finiteness of the samples results 
in broader CBS cones.

Performing a statistical analysis over multiple implementations of the random medium provides insight into 
the coherent wave effects inside the random structure; at the same time, it is also insightful to investigate the 
scattering response for individual realizations. Here, to emphasize the effect of ensemble averaging, the angular 
distribution of scattering intensity for two sample realizations (i.e., Nr = 1 ) is shown in Fig. 2b. These curves 
demonstrate the speckle patterns in the far field domain, originating from interference of waves due to multiple 
scattering paths.

Next, we investigate the effect of the angle of incidence on the emergence of weak localization and the degree 
of enhancement as well as the evolution of the specular fraction of the coherent scattering. A particularly inter-
esting case is when θi = 0 (deg) , in which the backscattering and specular directions overlap. This is shown 
in Fig. 3 where we examine four incident angles, θi = (60, 40, 20, 0) (deg) covering from near-grazing angles 
to exact normal incidence. Physical properties of the sample are unchanged compared to the results in Fig. 2 

(2)ρ = Np
VS

L3
,

Figure 2.  (a) Normalized ensemble-averaged scattering intensity for configurations with Np = 10, 000 , 
L = 20�0 , θi = 40 [deg] ≈ 0.7 [rad] , and ρ = 0.021 . Results are averaged over Nr = (20; 200; 2, 000; 10, 000) 
distinct realizations of the disorder, with darker colors corresponding to smaller Nr . The maximum of all curves 
is normalized to two and for the sake of better visualization, each curve is moved one unit up compared to the 
previous one. (b) Angular dependance of scattered intensities (speckle patterns) for two sample realizations.
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Figure 3.  Normalized ensemble-averaged scattering intensity for random samples with Np = 10, 000 , 
L = 20�0 , and ρ = 0.021 . Results are averaged over Nr = (1, 000; 2, 000; 5, 000; 10, 000) different simulations, 
with darker colors corresponding to smaller Nr in each case. The maximum averaged intensity in each curve is 
normalized to two, and for better visualization each curve is moved one unit up compared to the previous one. 
The angle of incidence is set at (a) θi = 60 (deg) , (b) θi = 40 (deg) , (c) θi = 20 (deg) , and (d) θi = 0 (deg).

Figure 4.  Elimination of specular reflection from ensemble-averaged scattered intensity. Random samples 
are similar with those used in Fig. 3, where an artificial random surface is added on top of the medium 
shown in Fig. 1. The angle of incidence is set at θi = (60, 40, 20, 0) (deg) (different colors). The darker colors 
corresponding to higher incidence angles. Nr = 2, 000 and the maximum value (CBS peak) of all curves are 
normalized to two. Each curve is moved one unit up compared to the previous one for better visualization.
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and ensemble averaging over Nr = (1, 000; 2, 000; 5, 000; 10, 000) simulations are performed for each oblique/
normal illumination.

Examining the results in Fig. 3, the width of the CBS cone and the enhancement ratio is approximately 
independent of the angle of the incidence except for the case of normal incidence. The fact that the width of the 
peak only depends on the properties of the sample is consistent with previous studies indicating a direct relation 
between the width of the CBS cone and the mean free path length inside the disordered  medium1,14,56. We also 
note that the width of the cone may be slightly overestimated for smaller values of Nr . Interestingly, for the case 
of normal incidence, we notice that both the line shape and width of the CBS cones deviate from the results for 
oblique incidence. This is due to the superimposition of the specular reflection and the coherent backscattering 
at this angle, which makes it difficult to accurately estimate the line shape and width of the CBS cones.

Indeed, an interesting observation in all the numerical results presented so far is the occurrence of specular 
reflection arising in scattering from the random samples. Experimentally, to avoid the specular reflection, ran-
dom samples are typically tilted off axis and ensemble averaging over these angles are not of  interest6. However, 
here, we closely examine the evolution of averaged intensity over these angles and devise a technique to explic-
itly eliminate averaged specular peaks while maintaining the localization contributions unchanged. Numerical 
results in Fig. 3 also indicate that quite contrary to the CBS, specular intensities are very sensitive to the angle of 
incidence. For near-grazing angles, both the intensity and width of the specular reflection are more pronounced 
compared to normal illumination.

The emergence of the specular reflection from statistical averaging can be interpreted as the direct conse-
quence of the “artificial interface” present at z = Lz . This artificial interface is built by restricting the z position 
of all particles to be inside the cube. For finite-sized samples, as is the case here, we observe comparable specular 

Figure 5.  Numerically calculated normalized ensemble-averaged scattering intensity for Np = 10, 000 , 
L = 20�0 , and ρ = 0.021 for Nr = 10, 000 (dark curve) and theoretical fit (Eq. 3) with le used as fitting 
parameter (light color). Note that le value is normalized to the free-space wavelength.

Figure 6.  Normalized ensemble-averaged scattering intensity for random samples composed of Np = 10, 000 
particles, where the size of the random media is increased from L = 10�0 to L = 40�0 in equal steps of 10�0 
(darker colors correspond to smaller boxes). Angle of incidence is fixed at θi = 40 (deg) in all cases and the 
maximum of all curves is normalized to two. For clarity, each curved is moved one unit up compared to 
the previous one. The ensemble averaging is performed over (a) Nr = 1, 000 and (b) Nr = 10, 000 distinct 
realizations.
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and CBS intensities. To eliminate the specular peak, the artificial interface (on top of the block) is replaced by 
an effective “random surface” stretching over a finite thickness around z = Lz . Note that this “imaginary” inter-
face, in planar or random form, has a real existence with respect to the average field which is often considered 
in theoretical studies of the  system1. The local position of the artificial random surface at each point in space is 
determined using semi-Fourier series functions constructed using trigonometric functions. As the result, the 
new random medium is uneven at the top interface and the coherent properties at the specular angle are expected 
to diminish. This is indeed the case as shown in Fig. 4, for random samples with Np = 10, 000 , L = 20�0 , and 
Nr = 2, 000 examined under various illumination angles. Compared with Fig. 3, the specular wave is clearly sup-
pressed and is totally undetectable. Notably, the CBS cone under the normal incidence is now wider (comparing 
Figs. 3d and 4) and the observed cone width is consistent with the widths under oblique illumination as well. Also, 
the degree of enhancement for normal incident wave modifies to a value slightly below 2 in the new simulation, 
consistent with the ratios observed at oblique incidence, as expected. Therefore, this approach makes it possible 
to accurately characterize the coherent backscattering effect, even at normal incident angles.

We next examine the line shape of the CBS cones observed for the finite-sized, wavelength-scale geometries, 
and compare these intensity profiles with theoretical predictions traditionally made assuming large configura-
tions. In the case of a semi-infinite scattering medium, the backscattering cone follows a triangular shape (i.e., 
linear behavior near the backscattering direction). When the medium is of finite size or finite thickness, the tri-
angular line shape becomes rounded due to the omission of the higher-order multiple  scatterings1,53. The theory 
of the CBS from finite slabs was first proposed in using a scalar wave  theory6,53 and has been also studied in more 
recent  works41. Generally, the line shape of the backscattering cone depends on the wavelength and the mean free 
path length inside the random  media1,2,5. In view of the fact that the CBS enhancement effect is present in the case 
of finite sparse random geometries with the intensity profile behavior similar to semi-infinite configurations, it 
is important to examine this similarity more closely. Specifically, we study if the predicted enhancement profile 
for large configurations can still adequately captures the enhancement line shape for small sparse configurations. 
To this end, we compare the profile of the localization here with the theoretical model devised by Akkermans 
and  Montambaux2 with the correction for finite-sized random domains

Here, b = L
/

le , where L is the thickness of the sample and le is the mean free path length used here as a fitting 
parameter. k⊥ is the amplitude of the transverse projection of the vector ki + ks on the xy plane, in which ki and 
ks are incident and scattering wavevectors,  respectively2.

Figure 5 compares the numerically calculated line shape with a theoretical fit using Eq. (3) for a sample with 
10,000 particles and box size of L = 20�0 . The multiple scattering is happening here in the weakly disordered 
regime above the Ioffe–Regel  criterion57 for the appearance of Anderson localization. We note that the shape 
of the backscattering cone for this finite, wavelength-scale geometry using the scalar wave analysis can still be 
closely captured by those analytical predictions (see supplemental information for further discussions).

(3)
αd(L) =

3

8π

(

1− e−2b
)

(

1−
tanh

(

b
/

2
)

b
/

2

)

αc(k⊥, L) =
3

8π

1− e−2b

(1− k⊥le)
2

[

1+
2k⊥le

(1+ k⊥le)
2

1− cosh (b(1+ k⊥le))

sinh (b) sinh (bk⊥le)

]

·

Figure 7.  Normalized ensemble-averaged scattering intensity for two different density factors ρ while the 
number of particles and the size of the enclosing box are changed. Curves correspond to (a) ρ = 0.0063 , 
L = (10, 15, 20, 30, 34.3)�0 , and (b) ρ = 0.021 , L = (10, 15, 20, 22.9, 25.2)�0 with darker colors corresponding to 
smaller boxes and smaller number of particles. Ensemble averaging is performed over Nr = 5, 000 realizations 
and the angle of incidence is fixed at θi = 40 (deg) . In all cases the maximum value is normalized to two and for 
clarity, each curved is moved one unit up compared to the previous one.
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To better understand the effects of sample size, number of particles, and density factor on the shape of the 
cone, in the following we investigate two specific cases where we fix the density factor while changing the box 
size (Fig. 6), and number of particles (Fig. 7).

Figure 6 illustrates the combined effects of density factor and sample size on the characteristics of the CBS 
cone. The number of particles is set at a reasonably high value of 10,000, while the box size is gradually increased 
from 10�0 to 40�0 . This is associated with decreasing the density factor from approximately 17 to 0.26% and we 
conduct the simulations for 1000 (Fig. 6a) and 10,000 (Fig. 6b) independent realizations. Figure 7 shows the 
combined effects of the absolute number of particles (i.e., Np ) and sample size, for two fixed density factors. In 
Fig. 7a, density factor is fixed at 0.63% and the box size is gradually increased from L = 10�0 to L = 34.3�0 , 
corresponding to samples with very few particles (i.e., Np = 370 ) to very large number of particle numbers (i.e., 
Np = 15, 000 ), respectively. In Fig. 7b, the density factor is set at 2% and the box size is changed from L = 10�0 
to L = 25.2�0.

Several interesting observations can be made from the results presented in Figs. 6 and 7. First, samples with 
lower density factor are more sensitive to ensemble averaging, so a higher number of independent realizations 
is required to retrieve the embedded coherent effects. In addition, the width of CBS cone is slightly overesti-
mated for smaller Nr , also more evident for sparse samples. Second, the intensity of the specular reflection is 
directly related to the density factor, as expected. At the studied size range (between L = 10�0 to L = 34.3�0 ) 
the width of the specular reflection is slightly dependent on the size of the sample, and we observe narrower 
specular reflections for larger boxes. This width, however, is significantly decreased for sparse samples (Fig. 6). 
Third, we notice that the coherent contributions in the backscattering, i.e., both CBS and specular reflection, 
still emerge for even as few as a few hundred particles (Fig. 7a), corresponding to very sparse random samples 
with densities as small as ρ = 0.0063 . To capture such coherent features, ensemble averaging on many different 
samples may be required. Fourth, the width of the CBS cone is strongly proportional to the density factor with a 
slight inverse dependence on the absolute number of particles for these samples. This is consistent with previous 
studies on the role of mean free path length on the shape of the cone, FWHM ∝ 1

/

le
14,56, indicating longer path 

lengths for more sparse samples as long as the sample size is much larger than le . Fifth, the enhancement ratio 
is closer to the theoretical limit of two for samples with higher density factor, consistent with previous analysis 
of electromagnetically large random  samples5,27,54. In the case of constant density factor, increasing the sample 
volume (i.e., more particles) also significantly increases the enhancement ratio (Fig. 7).

We note that our approach to study the emergence of the CBS cone in small random samples may be utilized 
to investigate other forms of scalar wave interaction with disordered structures (besides CBS). As an example, 
illumination with structured profiles, such as those generated using spatial light modulators, can be implemented 
with no additional numerical complications. We also provide a quantitative study of the behavior of CBS cone 
emergence, information that is valuable in experimental studies. The number of realizations sufficient to con-
verge the enhancement and the behavior of convergence is not a quantity accessible through techniques relying 
solely on averaged quantities. Additionally, the fact that the CBS enhancement is present for very small samples 
and for very low densities suggest the possibility of characterizing such samples using CBS measurements. This 
technique is already widely in use for characterizing optically thick samples mostly with large opacity, and our 
results indicate the possibility of extending this technique to study other structures such as thin films (which 
are among widely used platforms in scientific and industrial communities for various applications). The level 
of disorder or porosity of such films can degrade the performance of the device or on occasion be utilized to 
gain a benefit, and thus must be carefully characterized. Studies of such samples with finite illumination and 
collection apertures is effectively equivalent to studying sparse and small structures (in all three dimensions). 
Therefore, our studies on CBS cone for finite-sized geometries suggest a useful technique to characterize the 
spatial inhomogeneity of samples.

Conclusions
In this work we have provided a comprehensive study of the coherent backscattering from finite-sized sparse 
scattering medium based on a scalar wave analysis. Relying on a simplified form of Maxwell’s equations in a 
multi-scattering medium, we investigated the effect of density factor, number of particles, and size of the scatter-
ing medium on different characteristics of the CBS line shape. The density factor was shown to be the prominent 
factor in determining the width of CBS cone, while both the density factor and the number of particles influence 
the degree of enhancement in the backscattering direction. The angular distribution and the enhancement fac-
tor of the scattering intensity hold valuable information to characterize random samples. The cone shapes are 
found to be in very good agreement with previous theoretical calculations. Finally, we have devised a technique 
to exclusively eliminate the specular reflection component from the ensemble-averaged backscattered intensities, 
enabling the observation of pure CBS line shapes even for normal illuminations of the structure.

While the results of this work are entirely consistent with the known properties of CBS in various systems, it 
is valuable in designing and interpreting experiments on practical, finite-size systems to be able to compute the 
detailed scattered field and observe the emergence of the main features of the CBS light. A relevant situation is that 
of coherent backscattering enhancement in single scattering phenomenon. This effect has been recently  studied58 
by making connections between the solution of Maxwell’s equations in scattering from single particles and an 
order-of-scattering formalism. Interference effects, analogous to the ones discussed here, between the conjugate 
pairs of sequences result in enhancements. It has been shown that the angular width of coherent backscattering 
enhancement-induced peak is significantly dependent on the particle size and is inversely proportional to this 
parameter. Similar behavior has been observed in our work (see Fig. 6). To make the connection, a finite-size 
sparse medium captures some of the important behaviors of a single large scattering object, including the behav-
ior of coherent backscattering enhancement in single scattering. Also, the approach and results developed here 
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may be most useful as a foundation for the study of multiple scattering in random media when the incident field 
is more complex, such as highly structured classical light fields or fields with various types of quantum correla-
tions. Given that the scalar fields are calculated for each realization and the statistical averaging is performed 
through direct ensemble averaging, as opposed to finding statistically averaged fields, it is now possible to study 
such geometries in the context of quantum optics. Specifically, the spatial profile of the scattering can be fully 
studied classically while the quantum nature of the studies can be captured in the creation and annihilation of 
the photons and the photon number distributions.

Data availability
Data that supports the findings of this study are available from the corresponding author upon reasonable request.
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