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Tree species composition mapping 
with dimension reduction 
and post‑classification using very 
high‑resolution hyperspectral 
imaging
Szilárd Balázs Likó 1, László Bekő 2, Péter Burai 2, Imre J. Holb 3,4* & Szilárd Szabó 5

Tree species’ composition of forests is essential in forest management and nature conservation. We 
aimed to identify the tree species structure of a floodplain forest area using a hyperspectral image. 
We proposed an efficient novel strategy including the testing of three dimension reduction (DR) 
methods: Principal Component Analysis, Minimum Noise Fraction (MNF) and Indipendent Component 
Analysis with five machine learning (ML) algorithms (Maximum Likelihood Classifier, Support Vector 
Classification, Support Vector Machine, Random Forest and Artificial Neural Network) to find the 
most accurate outcome; altogether 300 models were calculated. Post‑classification was applied by 
combining the multiresolution segmentation and filtering. MNF was the most efficient DR technique, 
and at least 7 components were needed to gain an overall accuracy (OA) of > 75%. Forty‑five models 
had > 80% OAs; MNF was 43, and the Maximum Likelihood was 19 times among these models. Best 
classification belonged to MNF with 10 components and Maximum Likelihood classifier with the OA 
of 83.3%. Post‑classification increased the OA to 86.1%. We quantified the differences among the 
possible DR and ML methods, and found that even > 10% worse model can be found using popular 
standard procedures related to the best results. Our workflow calls the attention of careful model 
selection to gain accurate maps.

Revealing tree species of a forest is important for sustainable forest management, forest biodiversity, forest eco-
system  security1. The species composition of forest trees can be important from several aspects, such as quantita-
tive estimation of wood raw material, biomass  estimation1–3, nature  conservation4, and invasive tree  species5,6. 
Furthermore, the change of the species structure and spatial distribution of forests can be a proxy of climate 
change monitoring, this aspect makes forests one of the important research areas of the twenty-first  century6,7.

Basic method of tree species mapping is based on field observations (i.e. recognizing each tree); however, it 
is time consuming and large areas or regions of impervious dense vegetation cannot be surveyed. As an alter-
native, remote sensing provides data with different details from small scale (1000 m) to large scale (0.1 m) the 
from simple identification of forests to species level  mapping8. It corresponds the needs of modern forestry and 
functional forest management, requireing detailed information about the trees in digital format, thus, remote 
sensing can provide valuable information about the species and the  structure9. Several studies proved that satel-
lite and aerial images are efficient tools to map tree  species5,8,10,11. However, images of visible bands (red, green 
and blue, RGB, i.e. traditional color orthopohotos) are not appropriate data for semi-automatic even for forest 
classification, but having at least a near infra-red spectral band enhances the possbilities (it helps to discriminate 
the vegetetaion from other green surfaces). While multispectral sensors collect the data in 4–8 spectral bands, 
hyperspectral sensors measure the radiance in tens or hundreds of narrow spectral bands, which increases the 
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possibility to have detailed, in special cases unique, spectral profiles, which helps to distinguish materials in the 
process of image  classification12. In forest applications, hyperspectral imagery is considered a better data source 
than multispectral images ensuring more discriminated species with high  accuracies8,13.

Hyperspectral sensors can be mounted in different platforms, usually on aircrafts, but also on satellites and 
uncrewed aerial systems (UASs). Spatial resolution (ground sampling distance, GSD) also can be an important 
factor when choosing the proper platform: sensors of UASs can have a GSD of 0.1–0.5 m depending on flight 
heights; in case of aircrafts it is ~ 1–2 m, and, currently there is one hyperspectral satellite, the  PRISMA14, with 
30 m GSD. The appropriate pixel size for tree species mapping is ~ 1  m15.

Although the large number of bands provides detailed spectral profiles for surface objects, we face the issues 
of correlating bands, i.e. redundant information and overfitting in hyperspectral  imagery16,17. Thus, finding the 
predictors (i.e. bands) having the best performance distinguishing tree species is crucial. Possible solutions are 
the variable selection (feature selection) or the dimension reduction (DR, feature extraction or in statistical 
term, ordination); both can be efficient and, in this study, we focused on DR using three different techniques 
with various  efficacy18–22. DR techniques were also thoroughly studied in image processing, but a comparative 
evaluation on species level (i.e. with classes having similar spectral profiles) is missing. Accordingly, we involved 
these three DR methods using hyperspectral data.

DR is a common technique and, especially in hyperspectral image analysis, an important approach to work 
with fewer variables keeping the explained variance as high as possible, becuse it helps to avoid manage the 
bands of lesser information and the overfit. We aimed to quantify the efficiency of different DR techniques in 
image classification with comparing the accuracy metrics. We had the following research questions: (i) which 
classification algorithm, (ii) which DR method, and (iii) how many components of the ordinations are needed 
to achieve the highest overall accuracy. Furthermore, we investigated a post-classification segmentation method 
with object-based reclassification to improve the classification results, and also to overcome the challenge of 
output maps showing a mix of different species for single trees. We combined the pixel-based approach with the 
OBIA. Our hypothesis was that post-classification can improve the accuracy and provide clarified maps through 
easier perception.

Results
Comparison of ordinations: overall accuracies. Generally, MNF tranformation provided the best OAs 
(Fig. 1). According to the ANOVA test, differences were significant (F = 17.5, df1 = 2, df2 = 192, p < 0.001). Pair-
wise comparison revealed that MNF provided significantly higher OAs than ICA and PCA (mean diff: − 7.26 
and − 7.03, respectively; p < 0.05), while PCA components ensured only 0.233 better OAs than ICA which was 
not significant (p = 0.989).

Number of components and overall accuracies. In case of ICA the Neural Network (NN) provided 
the best accuracy (79.3%) but it was 4% worse than it was possible to get with the MCs, and it was only the 50th 
from the total 300 models. Besides, the (Maximum Likelihood) ML classifier with the ICs had 78.8% OA, which 

Figure 1.  Model accuracies of different dimension reduction techniques. ICA Independent Component 
Analysis, PCA Principal Component Analysis, MNF Minimum Noise Fraction, OA overall accuracy.
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was 0.5% worse than of NN. Ideal number of ICs were above 7 to get at least 75% OAs. Usually, Random Forest 
(RF) was the worse and the ML the best classifier, while the NN’s judgement was ambiguous as the best and the 
worst OA belonged to it, too (Fig. 2a), therefore, it has the risk that in other cases provides very good or unus-
able accuracy.

Best accuracies belonged to the MNF transformation with 83.3% OAs (and it was gained with 10, 12, 13, 14 
and 21 components, Fig. 2b), and the first 9 models, from the total of 300, were conducted with MNF components 
and the ML classifier. Even the 9th model of the accuracy rank had an OA of 82.98, even just 0.32% worse than 
the best one. Model performance improved with higher number of components: from 42% (2 components) to 
83.3%, and 7–8 components were the minimum to get better (> 75%) accuracies. The ML had the best perfor-
mance and considering larger number of components (> 10) generally the RF, in absolute term the NN was the 
worst (59%) model.

PCA provided better model performance, the maximum OA was gained by the ML classifier (82.98%) with 
11 bands (Fig. 2c). In this case, the NN had the worst OAs and the RF was slightly better. The NN, similarly to 
the experiment with the ICs, had varying performance with worse values, but the best was 7% below the ML’s 
best model.

Multivariate statistical evaluation of the overall accuracies. GLM provided a significant model, 
with an adjusted  R2 of 0.568. All factors were significant (p < 0.001), but from interactions, only the one with the 
classification algorithms and the number of components was significant (Table 1). According to the effect sizes, 
largest effect belonged to the number of components (0.468), only the one third was the effect for the trans-
formation type and the classification algorithm (0.169 and 0.148, respectively). Interacdotion of classification 
algorithms and the number of components had the effect size of 0.08, the half of transformation type’s effect.

Figure 2.  Overall accuracies (OA) and components of Minimum Noise Fraction (a), Independent Component 
Analysis (b) and Principal Component Analysis (c) by classification algorithms. MCs MNF components, ICs 
ICA components, PCs PCA principal components, Alg algorithms, ML Maximum Likelihood, SVM Support 
Vector Machine, SVC Linear type of SVM, RF Random Forest, NN Neural Network.
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Multicriteria evaluation of the models revealed that the NN and RF classifiers were not efficient, but using > 10 
components the SVC, the ML, and the SVM provided > 80% OAs with the MCs of the MNF transformation 
(Fig. 3). The ML classifier had the best model performance in absolute terms, and also regarding the one with the 
fewer components: 10 components, 83.3% OA. Regarding the classifiers and the DR types in the models having 
at least 80% OA, we found the following results: 45 models out of the 300 had > 80% OA; from this 45 model ML 
was found 19, SCV 11, NN 8 and SVM 7 times (as classification algorithms); furthermore, MNF was present 43, 
and PCA 2 times (as DR techniques).

Post‑classification with segmentation. Post-classification was conducted in the most accurate classi-
fied image, which was the one produced with the ML classifier using 10 MCs as predictors (Fig. 4). Best result 
was gained with the L3 level (27.6  m2 average area and 86.1% OA), which was a 2.8% increase in the OA. At 

Table 1.  Summary of GLM performed with overall accuracies erosion as target variable. Ord dimension 
reduction type, Alg classification algorithms, NC number of components, SS Sum of Squares, df degree of 
freedom, F F-statistic, p significance, ω2p effect size; × : statistical interactions. p < 0.001 is highlighted with 
bold.

Source of variation SS df F p ω2p

Model 24,565 59 7.663  < 0.001 0.567

Ord 3396 2 30.867  < 0.001 0.169

Alg 2647 4 12.032  < 0.001 0.144

NC 14,644 3 88.745  < 0.001 0.468

Ord × Alg 323 8 0.734 0.661 − 0.005

Ord × NC 372 6 1.127 0.347 0.002

Alg × NC 2317 12 3.511  < 0.001 0.082

Ord × Alg × NC 866 24 0.656 0.891 − 0.028

Residuals 13,201 240

Total 1.48e+6 300

Figure 3.  Overall accuracies (OA) of 300 models by the number of components, classification algorithms 
and dimension reduction types. Dashed line: 80% accuracy benchmark, Ord dimension reduction type, MNF 
Minimum Noise Fraction, PCA Principal Component Analysis, ICA Independent Component Analysis, ML 
Maximum Likelihood, SVM Support Vector Machine, SVC Linear type of SVM, FR Random Forest, NN Neural 
Net.
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higher segmentation levels, L3.5 and L4 the decrease was minimal, but above L4 (50  m2 average segement size) 
there was a breakpoint in the OAs decreasing to 82.3% from 85.8%, and reached 73.5 at L10 (310  m2 average 
segment size).

Analysis of tree species revealed that increasing segmentation level had different effect on the area change 
by classes: while POPA’s area increased by 18%, WW and BP decreased by 58 and 53%, POPB had 30%, and 
BOXM had 18% decrease, and the rest of the species’ (POPP, POPW and EO) are changed only ± 2–3% (Fig. 5). 
However, there was no direct relationship between the class level accuracy metrics (UA and PA) and the level of 
segmentation: class areas, UA and PA values had no relationship, correlation was 0.002 (p = 0.982). Generally, 
UAs were 15% larger than PAs on average, and the t-test indicated significant difference (t = 5.13, p < 0.001). In 
case of segmentation, differences were low and not significant (F = 0.29, p = 0.99).

UA and PA relevantly differed by the segment levels and usually the change was decrease except in case of 
BOXM at PA values where it increased with 10.7%. Largest accuracies could be achieved at L3–L4, and similarly 
to OAs, most species had worse accuracy values with larger segment levels (Fig. 6). Despite the good spectral 
separability POPB–POPA and POPW–POPA showed the greatest mixting, which is also due to the fact that its 
occupied area has been increasing the most, thus overclassifying its own area. This also points out one of the 
problems with the MRS technique, as the area of the class occupying the largest area increases the most.

We compared the UA and PA values by tree species and found that WW, BP, EO, POP had PA above 90%, 
POPW and BOXM had 61–71%, and POPB had the lowest with 22%. UAs were usually larger, even the lowest 
value was 70% (POPA) and all other species were above 89% (Fig. 7a). POPB’s 100% UA and 22% PA indicated 
its possible overrepresention in the final map. None of the tree species had decreasing accuracy values after the 
object-based reclassification; however, it did not show increasing in all cases. F1-scores also showed increase 

Figure 4.  Relationship of segmentation levels, average segment areas (ASA), and overall accuracies (OA).

Figure 5.  Area of tree species in the function of segmentation level. WW White willow, POPA Poplar 
(Agathe-F), BP Black pine, POPW White poplar, BOXM Boxelder maple, POPP Pannonia poplar, POPB Black 
poplar, EO English oak.
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after the post-classification at each species (Fig. 7b), and the difference was significant according to the Wilcoxon 
test (W = 36, z = 2.52,  pM-C = 0.007).

Pixel-based classification resulted in a map having several misclassified single pixels within tree crowns, 
which was almost eliminated during the post-classification (Fig. 8). Individual trees and tree groups were also 
better separated.

Figure 6.  User’s accuracy (UA) and Producer’s Accuracy (PA) of tree species by segment levels. WW White 
willow, POPA Poplar (Agathe-F), BP Black pine, POPW White poplar, BOXM Boxelder maple, POPP Pannonia 
poplar, POPB Black poplar, EO English oak.

Figure 7.  User’s accuracy (UA) and Producer’s accuracy (PA) of the species level classification (a) and F1-scores 
by species (b). 10 MCs and ML classifier and the post-classified image with L3 segments; O object-based post-
classification, P pixel-based classification; WW White willow, POPA Poplar (Agathe-F), BP Black pine, POPW 
White poplar, BOXM Boxelder maple, POPP Pannonia poplar, POPB Black poplar, EO English oak; dashed line: 
80% accuracy benchmark.
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Discussion
DR is an important preliminary step for hyperspectral image processing to handle the Hughes effect. Beside the 
most popular PCA and MNF, we involved the lesser-known ICA, as well. MNF performed better in the light of 
OAs than the other two techniques: median of the models had been run with MNF components was 78.2% OA, 
72.6% with ICs and 72.8% with PCs. Hamada et al.19 and Priyadarshini et al.22 also found that MNF was the most 
efficient technique; however, Arslan et al.23 reported no significant difference among different DR methods, and 
Dabiri and  Lang21 found ICA components better as input data. This latter research was similar to our current 
work (tree species classification with DR), but their method relied on super-pixel segmentation as a first step, 
while we used the segmentation (the MRS technique) only at the post-classification phase. Wang and  Chang18 
also came to the conclusion that ICA provides the best results, in their study they examined the same three dif-
ferent types of DR techniques. Ibarrola-Ulzurrun et al.20 also examined the three DR method, and their findings 
coincided with our result, MNF was the best, although, they examined land-cover classes, not specifically tree 
species with higher pixel value similarity among the classes. All DR techniques are based on the given dataset, 
and this seemingly contradicting results only highlights the varying efficiency of the methods depending on the 
data and target objects. Even the most popular and usually well performing techniques can be less effective than 
others under specific circumstances. In our case the MNF was the best, but it was the occasional consequence of 
the data charactersitics, which is, however, often occurs when it comes to hyperspectral data  processing24. There 
are results on cases when PCA was not successful, and the DR was not reasonable technique to gain the best 
accuracies (e.g. Schlosser et al.25). Instead of using only one type of DR  technique8,15, we revealed that there can be 
even 6% difference in the gained accuracies, thus, it may worth to compare the different ordinations as input data.

We found that ML outperformed the robust machine learning algorithms being considered more usable or 
efficient in other  studies26–29. Our results justify that ML still has its role in image classification regardless the 
fact that machine learning and deep learning algortihms often outperforms it. If there are sufficient training 
pixels related to the number of bands, and the distributions are close to normal in the classes, ML can provide 
excellent outcomes. Accordingly, ML is not ideal with hyperspectral data, but DR is a good tool as a preliminary 
step to produce better inputs.

All classifiers were sensitive to the input number of bands (i.e. components), all algorithms performed differ-
ently. The NN and partly the RF were different from the others, because higher number of input bands resulted 
in lower OAs. The reason was that involving the higher number components caused bias in the trained model 
and were lesser useful, and NN and RF were the ones where optimization was crucial. However, usually both 
NN and RF provided the best OAs in the comparisons. We also revealed that there can be even 6% difference 

Figure 8.  The comparison of pixel-based classification image (A) and object-based reclassified classification 
image (B). WW White willow, POPA Poplar (Agathe-F), BP Black pine, POPW White poplar, BOXM Boxelder 
maple, POPP Pannonia poplar, POPB Black poplar and EO English oak.
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in the gained accuracies regarding the highest values depending on the number of the input components, so it 
may worth to compare the different type of classifiers depending on the study area.

Post-classification is not a new procedure in remote sensing, but there are no standard methods to perform 
it. While some authors suggested using textural information, spectral indices, ancillary data, visual interpreta-
tion, or  smoothing30–32, we applied an object-based method, the MRS combined with a majority filter. It helped 
to overcome the misclassified pixels caused by the pixel-based classification (salt and pepper error), i.e.  noise33. 
Segmentation parameters, especially the scale parameter relevantly affected the results, thus, testing of MRS is 
essential to achieve the highest accuracy, since the difference in OA values can be resulted in more than 10% 
among segmentation levels. Although post-classification did not result in outstandingly better accuracy (only 
2–3%), but the class level accuracies were significantly better than the pixel-based method; furthermore, the 
procedure improved the quality and the readability of the final map.

The investigated area of the ‘Gemenc forest’ contains various plant species with a diverse flora which holds a 
rich fauna with a wide range of species and unique  individuals34,35. Thus, classifications were tested in a diverse 
floodplain forest area; therefore, our results can be relevant not only for floodplain forest areas in the temperate 
zones, but the proposed approach (DR—classification—post-classification with comparative model selection) 
have also a great potential for any diverse forest conditions.

One of the major forest management aspects of our results can be associated the fact that several tree species, 
typical for temperate zone floodplain forests, were involved in this study. In the studied area, tree vegetation is 
determined by the river Danube: the characteristic trees belong to e.g. willow trees settled in the lower terrains, 
while e.g. poplar species in the higher  terrains36,37. The selected tree species showed significant morphological 
and growth differences: e.g. willow is a hanging voluminous tree type, oaks grow slowly and is spacious, while 
poplar, maple and pine grow more quickly and  higher38,39. In addition, the crown color intensity of these species 
also shows significant variability e.g. willow and poplar are lighter than the other  species38,39. Under these condi-
tions, the used classifiers combined with careful selection of DR and post-classification approaches showed 10% 
better OA than in previous  studies40,41 providing a valuable practical option in the mapping of forest trees where 
there are populations of mixed tree species. Aerial imaging ensures tree composition maps with high accuracy 
and helps to monitor easily, quickly and more accurately the changes both spatially and temporally; especially 
in those areas were ground surveys can be difficult to conduct such as in floodplain forest  areas8,10,11.

Of course, the approach provided in this study still needs improvements, but it shows a possible direction 
of more accurate data collections for understanding forest environmental conditions and for establishing more 
successful afforestation plans.

Conclusions
Our aim was to propose an efficient novel strategy including the testing of DR technique, peformed on hyper-
spectral image, provides the best input data for tree-species classification algorithms, and if the post-classification 
was a useful step in gaining the final map. We found that MNF provided the best input data for the classifica-
tions, medians of OAs were 6% better than ICA and PCA, and this difference was significant. PCA’s and ICA’s 
components resulted in similar accuracies (72.2 and 72.8% OAs), which is also supported by the professional. 
7–8 components were needed to get the highest OAs regarding all DR technique. ML classifier had the best 
OA combined with 8 MNF components (83.3). Finding the right combination of DR technique and classifier is 
important, it can cause more than a 10% change in the OAs, considering only the average differences. RF and 
NN were sensitive to higher number of components and their performance were uncertain having varying, and 
often lower OAs than SVC, SVM and ML. During post-classification, we determined the optimal segment size, 
gained by MRS, based on the OAs, and also found that class level metrics, i.e. UAs and PAs had the largest values 
with this area extent, too. We identified species can distinghuished with high accuracy (BP, EO, WW, POPP) and 
found that POPB is often misclassified with high commission errors. Post-classification improved the best OA 
with 3%; furthermore, eliminated most of the salt-and-pepper error of the pixel-based classification. We proved 
that traditional classifiers, such as ML, are able to gain high accuracies over the robust machine learning ones, the 
careful selection of DR, the number of components and a post-classification help to reach even 10% better accu-
racies. These results can be implemented in forest management or natue conservation helping them to uncover 
the structure and to maintain an economically and ecologically sustainable plantation or seminature forest.

Materials and methods
Study area. The study area, a part of the ’Gemenc forest’, was located in Hungary, near Baja city by the 
river Danube (46° 13′ 8.04″ N, 18° 54′ 0.04″ E) with the extent of 70 ha (Fig. 9). The area is a floodplain and 
was formed in the last 5000 years by the meandering  Danube36. Danube is a primary factor in determining the 
flora and fauna along its course. During floods, 1–2 times a year, the river inundates the floodplain for weeks 
and forms a specific soil (Luvisol) and a habitat for plant and animal species of nature conservation. Regarding 
forestry, gallery forests with old natural trees and new plantations are the main elements of the land cover; thus, 
the favourable species distribution made possible the wood production and efficient forest  management36.

Different tree species create various environments (e.g., sunlight conditions, nutrient and water availability) 
in the near-ground layer providing a wide range of flora and fauna of the given area (e.g. Nambiar and  Sands42; 
Mayoral et al.43). This effect can be even more complex for micro and macro flora/fauna in floodplain  forests44 
such as in the investigated ‘Gemenc forest’ area having a various mixture of different trees (dominant tree species 
are summarized in Table 2) and plants and form a complex living community (e.g. Schöll et al.34; Ágoston-Szabó 
et al.35). Thus, knowing the compostion and distribution of trees, we also gain indirect information on the living 
communities and the species biodiversity (e.g. Vorster et al.3; Dyderski and  Jagodzinski45; Dyderski and  Pawlik6).
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Hyperspectral data. The hyperspectral data were collected on 12 September, 2018, with an Asia Kestrel 10 
sensor placed on a piloted aircraft, in the spectral range of 400–1000 nm in 178 spectral bands with a GSD of 
1 m. Raw hyperspectral data were preprocessed with CaliGeoPRO for geometric and radiometric corrections. 
Noisy bands were removed based on visual selection. Majority of the noisy bands were at lower wavelength, thus, 
all bands < 470 nm were removed to avoid the bias in the statistical evaluation, which can reduce classification 
 efficiancy46. The survey was a one-flight-lane; thus, the applied atmospheric correction method was the empiri-
cal line model, which provided an alternative to radiative transfer modelling  approaches47.

Reference dataset. Eight tree species were distinguished based on field observations and the visual ana-
lyzis of the aerial image where we checked that each observed tree crown was visible (Table 2). Reference data 
(1272 pixels) were recorded as polygons of tree individuals (areas covering the canopy of the identified individu-
als). Next, we randomly split the reference polygons into training and testing datasets in 60:40 ratios.

We used the Jeffries–Matusita (JM) distance to test the statistical spectral separability of the classes. JM dis-
tance is usually used in remote sensing and is similar to Bhattacharrya distance in the classical statistics; however, 
it enhances more the pairs of low  separability48. JM distance values are close to 2 when signatures are completely 
different, and 0 indicates identical signatures. JM values indicated good separaibility.

Image processing. Image processing had three steps: feuture extraction, classification with machine learn-
ing algorithms and post-classification (Fig. 10).

Dimension reduction. Basic concept of all ordinations are to create a new feature space with artificial 
variables (i.e. components) keeping the maximum explained variance. One of the most popular DR techniques 
is the Principal Component Analysis (PCA), which projects the large number of variables (such as bands of 
hyperspectral images) into orthogonal principal components (PCs; non-correlating variables)26,49. We emphe-
size that not all datasets are suitable to perform a successful PCA, due to assumptions of normal distribution, 

Figure 9.  Location of the study area, the ‘Gemenc forest’, Hungary.

Table 2.  Scientific name, common name and abbreviation of eight tree species (cultivars) assessed in the study 
area (Gemenc, Hungary, 2018).

Scientific name Common name Abbreviations

Salix alba White willow WW

Populus × euramericana cv. Agathe-F Poplar (Agathe-F) POPA

Pinus nigra Black pine BP

Populus alba White poplar POPW

Acer negundo Boxelder maple BOXM

P. x euramericana ’Pannónia’ Pannonia poplar POPP

Populus nigra Black poplar POPB

Quercus robur English oak EO
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linearity, and variables have to be correlated, hyperspectral images usually meet the preconditions. Number of 
PCs equal to the number of variables (i.e., bands), but the useful information is concentrated in the first 10–20 
PCs. Eigenvectors define the multidimensional space, and eigenvalues reflect their relevance: according to the 
Kaiser’s  rule50, PCs of eigenvalues > 1 were considered as input data. Number of useful PCs differs by the studied 
areas, and the images.

An extension of PCA, the Independent Component Analysis (ICA) decorrelates the signals (2nd order statis-
tics) and reduces higher-order statistical dependencies, and finally transforms the original variables to independ-
ent components (ICs)51–53. ICA transformation does not require normal distribution for the variables. The main 
assumption is that of variables can be decomposed into non-Gaussian and statistically independent subgroups. 
While PCA compresses the information providing uncorrelated components (PCs), ICA separates the ordination 
space into independent components (ICs)54.

In remote sensing, Minimum Noise Fraction (MNF) transformation is the most popular technique for  DR13,22. 
The MNF transformation consists of two PCAs, the first estimates the spectral noise using the covariance matrix, 
and the second rotation uses the decorrelated and rescaled components, and gives priority to the higher, eigen-
values, which have large explained  variance19. The outcome is a set of MNF-components (MCs). MNF is widely 
used because usually provides the best input data for  classifications19.

Classification algorithms. We investigated the efficiency of five classification algorithms: Maximum Like-
lihood (ML), Random Forest (RF), Neural Net (NN), Support Vector Machine (SVM) with Radial Basis Func-
tion (RBF), and the linear Support Vector Classifier (SVC).

The ML algorithm uses the standard deviation and the covariance matrix for each specific class during clas-
sification to calculate the chance of the data falling into those  groups27. However, the ’Hughes phenomenon’ limits 
the application of this classifier with hyperspectral data when the training dataset is small related to high number 
of spectral  bands12,27. Thus, dimensional reduction was an essential step, given that the training datasets were 
not sufficent to run the classifier on the original 178 bands of the image. Due to the use of the variance–covari-
ance matrix within the class distributions, it can achieve better results on normally distributed data than other 
parametrized  classifications55. Scale factor was set to 1.

SVC and SVM classifiers use a multidimensional “hyperplane” to separate the pixels of the data and create 
the classes, the hyperplane is positioned to maximize the distance between the nearest training data and the 
separation  plane56. Since the separation planes are linear in all cases, the non-linear boundaries cause errors in 
the classification (the SVC uses this linear planes), and in several cases the border cannot be delineated with a 
linear plane, the SVM model uses the “kernel-trick” parameterization to overcome the  issue56. We applied two 
types of parameterizations: (i) SVM with the radial basis function (SVM), and (ii) SVM with linear regulariza-
tion parameter (SVC). Recently, the SVM classification had become popular, as it often provides outstanding 
classification  accuracy28. Hyperparameters are the gamma (for RBF kernel) and C (penalty parameter) and was 
determined by grid search. Gamma was chosen using a search between 0.05 and 0.5 based on the inverse of the 
number of involved bands, and the C was set to 100 after tested on a logarithmic scale of 0.001–1000 with the 
increment of magnitude (0.001, 0.01. 0.1, 1, 10, 100 and 1000). The SVC was conducted with the same testing 
of the C parameter.
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RF is a non-parametric classification algorithm based on decision trees; each tree is built on a random partion 
of data taken from the reference dataset with bootstrapping. 36.7% of the training data is left out of this process, 
randomly by decision trees, which is kept to calculate the out-of-bag (OOB) error: the model also classifies the 
OOB data and evaluates the overall accuracy. Number of decision trees and variables can be defined by the user, 
whereas we applied 10 decision trees and also calculated the OOBs. RF’s performance, similarly to ML, is sensi-
tive to small cases in the training  dataset29.

The design of Artificial Neural Networks (NN) uses non-linear processing units; i.e. neurons. Neurons have 
three layers: at least one input, at least one hidden, and an output layer. Between the neurons there is a weight-
derived network, which complexity depends on the applied algorithm and input data  structure57. We applied a 
nonlinear layer feed-forward model with standard dissemination for supervised learning with 1 hidden layer 
and 10,000 training iterations. Furthermore, the training threshold contribution was 0.9, the training rate 0.2, 
and training momentum was 0.9 with 0.1 RMS exit  criteria24.

Each classifier had been run with the 2–20 components of the three DR techniques (PCA, ICA, and MNF) 
in order to find the most accurate tree species map. DRs and classifications were conducted in the Exelis Envi 
5.1 and QGIS 3.6 with EnMAP-Box 3 extension (www. l3har risge ospat ial. com, www. qgis. org, plugins.qgis.org/
plugins/enmapboxplugin/).

Post‑classification. Object-based Image Analysis (OBIA), i.e. segmentation, is an important alternative 
over the pixel-based solutions in vegetation mapping  research58. Images are divided into small homogenous 
regions (segments) based on the pixel-homogeneity in one or more  dimensions59. One of the most efficient 
procedure is the multiresolution segmentation (MRS): using the scale, shape, and compactness parameters, the 
algorithm determines segments from the pixels in an iterative process. Many studies used the MRS on forest 
areas as the basis of  OBIA15,60,61.

We applied the MRS technique on the classified image (Fig. 2). The scale parameter was tested from 1 to 10 
(L1–L10 Levels) to find highest overall accuracy (OA). Visual interpretation was applied to select the optimal 
shape and compactness parameters (i.e. finding the suitable shapes for tree crowns), and finally we found the 
0.5 compactness and 0.3 shape values the most reasonable parameters. We then reclassified the image with the 
majority pixel value of the inner area of each object to filter out the misclassified pixels. Reclassification was 
carried out on the pixel-based classified image using a 16-bit greyscale image, each class got its value from 1 to 8 
(i.e., the codes of the tree species); thus, segmentation succesfully built the objects, i.e. integrated the strikingly 
different pixels. The reclassification aimed to eliminate the obviously misclassified pixels in each segment; the 
most frequent value of the class that covered the largest area within the object was extended to each segment.

Accuracy assessment. Classifications were evaluated with thematic accuracy indicators to examine the 
results of our results after classifications: overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA), 
and the errors of commission and  omission62,63. F1-scores were also calculated as a harmonic mean of UA and 
 PA64.

Statistical evaluation of the classification results. Accuracy measures were evaluated with statistical 
tests. Normal distribution of the dependent variable (OA, UA, PA) was checked with the Shapiro–Wilk test. We 
applied General Linear Model (GLM), in this case a 3-way ANOVA, to reveal the importance of DR techniques, 
number of components and the classifiers (H0: means had no difference in the seven combinations of the three 
factors, H1: means were not equal). Model parameters, and the effect sizes were reported, the latter expressed as 
partial ω2p, which indicated the contribution of the variables and the interaction of the factorial variables as a 
standardized  metric65. Effect can be very small (ω2p < 0.01), small (0.01 > ω2p > 0.06), medium (0.06 > ω2p > 0.14), 
and large (ω2p > 0.14). We also applied t-test and ANOVA using 9999 Monte-Carlo permutation using class level 
accuracies as dependent variables, and the type of accuracy metric (User’s Accuracy, Producer’s Accuracy) and 
the level of segmentation were the independent variables, respectively. Pearson correlation was used to analyze 
the relationship between the average segment areas and overall accuracies in the post-classification. Change in 
F1-scores was studied by the Wilcoxon test with Monte-Carlo permutation (n = 9999); H0 was that medians of 
F1-values were equal both for the pixel-based and the post-classified approaches. Statistical analysis had been 
conducted with R 4.166 with the gamlj  package67.

Data availability
The datasets used during the current study available from the corresponding author on reasonable request.
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