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Vti1a/b support distinct aspects 
of TGN and cis‑/medial Golgi 
organization
Danique M. van Bommel 1, Ruud F. Toonen 1 & Matthijs Verhage 1,2*

Retrograde trafficking towards the trans-Golgi network (TGN) is important for dense core vesicle 
(DCV) biogenesis. Here, we used Vti1a/b deficient neurons to study the impact of disturbed 
retrograde trafficking on Golgi organization and cargo sorting. In Vti1a/b deficient neurons, staining 
intensity of cis-/medial Golgi proteins (e.g., GM130 and giantin) was increased, while the intensity 
of two recycling TGN proteins, TGN38 and TMEM87A, was decreased and the TGN-resident protein 
Golgin97 was normal. Levels and localization of DCV cargo markers, LAMP1 and KDEL were also 
altered. This phenotype was not caused by reduced Golgi size or absence of a TGN compartment. The 
phenotype was partially phenocopied by disturbing sphingolipid homeostasis, but was not rescued 
by overexpression of sphingomyelin synthases or the sphingolipid synthesis inhibitor myriocin. We 
conclude that Vti1a/b are important for distinct aspects of TGN and cis‑/medial Golgi organization. Our 
data underline the importance of retrograde trafficking for Golgi organization, DCV cargo sorting and 
the distribution of proteins of the regulated secretory pathway.

The Golgi complex is the major sorting organelle in the secretory pathway. It receives newly synthesized proteins 
from the endoplasmic reticulum and recycled cargo from other organelles, such as endosomes, by retrograde 
trafficking. In neurons, cargo leaving the Golgi apparatus can be sorted into constitutive or regulated secre-
tory vesicles. Dense core vesicles (DCVs) are the main carriers of the regulated secretory pathway and contain 
neuropeptides and neurotrophins that modulate synaptic activity and play a role in the regulation of diverse 
functions such as fear, memory and  appetite1–3. Alterations in neuropeptide/neurotrophin levels have been 
associated with pathological conditions such as anxiety, posttraumatic stress disorder and  depression4,5. DCV 
cargo is synthesized at the endoplasmic reticulum and transported via the Golgi apparatus to the trans-Golgi 
network (TGN)6. How DCV cargo is sorted into DCVs and away from other secretory pathways at the TGN is 
poorly understood. Recent studies emphasize the importance of retrograde trafficking from endosomes to the 
TGN for DCV  biogenesis7,8, but the interplay between these pathways remains elusive.

Ma et al.8 show that DCV maturation in larval salivary glands of Drosophila melanogaster requires retro-
grade transport from early endosomes. In addition, Vti1a/b, SNARE proteins involved in endosome-to-TGN 
retrograde trafficking, are necessary for DCV cargo sorting and exit from the  Golgi7. Neurons that are deficient 
in Vti1a/b contain fewer DCVs and staining intensity of DCV cargo is reduced. Further experiments show that 
DCV cargo accumulates in the Golgi and that the heterogeneous distribution of DCV cargo in the Golgi is lost. 
The Golgi apparatus is more compact and Golgi morphology in electron micrographs is abnormal: its cisternae 
are distended and vacuoles are observed in the proximity of the Golgi. While transport of DCV cargo from 
the endoplasmic reticulum to the Golgi apparatus is normal, export of regulated cargo and, to a lesser extent, 
constitutive cargo from the TGN is reduced. It was proposed that the retrograde endosome-to-TGN pathway is 
crucial for retrieval of proteins involved in DCV biogenesis to the TGN. Characterizing the Golgi defects caused 
by loss of Vti1a/b in neurons will provide insight into the requirements for DCV biogenesis.

Here, we studied the impact of disturbed retrograde trafficking on the organization of the Golgi apparatus 
and proteins involved in Golgi export. For this goal, we used primary hippocampal neurons of Vti1a/b deficient 
mice and analyzed the localization and levels of cis-/medial Golgi and TGN proteins, and DCV cargo using 
confocal microscopy. We confirmed that the Golgi of Vti1a/b deficient neurons is condensed and that DCV 
cargo accumulates in the Golgi. Staining of Golgi-localized proteins was abnormal and levels and localization 
of proteins associated with DCVs were disturbed. Staining intensity of LAMP1-positive organelles was also 
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reduced and their shapes were altered. These defects were not caused by reduced Golgi area or the absence of a 
TGN compartment. The phenotype was partially mimicked by addition of ceramide or sphingosine to neurons, 
but not rescued by overexpression of sphingomyelin synthases or treatment with myriocin. We conclude that 
Vti1a/b are required for a normal cis-/medial Golgi and TGN and for a normal distribution of proteins involved 
in regulated secretion.

Results
To study the impact of disturbed retrograde trafficking on Golgi organization and proteins involved in Golgi 
export, we used mouse hippocampal neurons from Vti1a/b double knock-out (DKO), with double heterozygous 
(DHZ) mice as a  control7. First, to confirm and extend the previously observed Golgi abnormalities, we examined 
levels and localization of two cis-/medial Golgi markers, five trans-Golgi network (TGN) proteins, two DCV 
cargoes and two proteins implicated in DCV biogenesis.

Cis‑/medial Golgi and TGN protein staining is altered in Vti1a/b DKO neurons. Previously, it 
was shown that the cis-Golgi marker GM130 stains a smaller area and its staining intensity is increased in the 
absence of Vti1a/b7. We confirmed these observations here (Fig. 1a–c). In addition, the area stained by giantin, a 
cis-/medial Golgi marker, was also smaller and its average staining intensity was higher in DKO neurons than in 
controls (Fig. 1d–f). To estimate the total amount of GM130 and giantin localized to the Golgi, we measured the 
integrated density of the markers by multiplying the mean gray value and the area of the region of interest. Even 
though the average staining intensities of GM130 and giantin were higher, the Golgi integrated densities of these 
proteins were lower (Supplementary Fig. 1a, b). These data confirm previous data and suggest that the expression 
levels of cis-/medial Golgi marker proteins are lower in the Golgi of Vti1a/b DKO neurons.

To examine the TGN, we used antibodies against the recycling TGN marker TGN38, the Golgi-resident 
marker Golgin97 and three other proteins that localize to the TGN: TMEM87A, ARL1 and gamma-adaptin 
(Fig. 2a, e, i, m, q). In contrast to cis-/medial Golgi markers, the average staining intensity of TGN proteins was 
decreased in the Golgi (Fig. 2b, f, j, r) or normal (Fig. 2n). The decrease was largest for TMEM87A, for which 
the average staining intensity in the Golgi was reduced by ~ 50%, compared to control neurons. Similar to cis-/
medial Golgi proteins, Golgi integrated density of all five TGN proteins was decreased in Vti1a/b DKO neurons 
(Supplementary Fig. 1c–g). These data suggest that loss of Vti1a/b not only affects the level of cis-/medial Golgi 
proteins, but also of TGN proteins.

TGN38 shuttles between the plasma membrane and the  TGN9,10. Since Vti1a/b are required for retrograde 
trafficking to the Golgi, TGN proteins might need Vti1a/b to return to the Golgi. Loss of Vti1a/b could thus have 

Figure 1.  Staining intensity of cis-/medial Golgi proteins is increased in Vti1a/b deficient neurons. (a) 
Representative examples of neurons immunostained for GM130. (b) Decreased Golgi area based on 
GM130 staining in Vti1a/b DKO neurons (n = 66) compared to DHZ controls (n = 64). Mann Whitney test: 
****p < 0.0001. (c) GM130 normalized staining intensity in the Golgi is increased (DHZ: n = 65, DKO: n = 61). 
t-test: ****p < 0.0001. (d) Representative examples of neurons immunostained for giantin. (e) Decreased Golgi 
area based on giantin staining in Vti1a/b DKO neurons (DHZ: n = 29; DKO: n = 39). t-test: ****p < 0.0001. (f) 
Giantin normalized staining intensity in the Golgi is increased (DHZ: n = 39; DKO: n = 44). t-test: **p = 0.0017. 
Bars show mean ± SEM. Detailed statistics are shown in Supplementary Table 1. Scale bar is 2 μm.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20870  | https://doi.org/10.1038/s41598-022-25331-x

www.nature.com/scientificreports/

Figure 2.  Staining intensity of TGN proteins is decreased or not affected in Vti1a/b deficient neurons. (a) Representative examples 
of neurons immunostained for TGN38. (b–d) TGN38 normalized staining intensity is decreased in the Golgi (Mann Whitney test: 
****p < 0.0001) (b), soma (Mann Whitney test: ****p < 0.0001) (c), and soma excluding Golgi (Mann Whitney test: *p = 0.0145) 
(d) (DHZ: n = 73; DKO: n = 69). (e) Representative examples of neurons immunostained for ARL1. (f–h) ARL1 normalized 
staining intensity is decreased in the Golgi (t-test: ****p < 0.0001) (f), soma (t-test: ****p < 0.0001) (g), and soma excluding Golgi 
(t-test: *p = 0.0212) (h) (DHZ: n = 23; DKO: n = 27). (i) Representative examples of neurons immunostained for TMEM87A. (j–l) 
TMEM87A normalized staining intensity is decreased in the Golgi (t-test: ****p < 0.0001) (j) and soma (t-test: ****p < 0.0001) (k), 
but not significantly different in the soma excluding Golgi (t-test: ns, p = 0.5162) (l) (DHZ: n = 25; DKO: n = 23). (m) Representative 
examples of neurons immunostained for Golgin97. (n–p) Golgin97 normalized staining intensity is not affected in the Golgi (t-test: 
ns, p = 0.4196) (n), soma (t-test: ns, p = 0.0648) (o) or soma excluding Golgi (t-test: ns, p = 0.1673) (p) (DHZ: n = 16; DKO: n = 15). 
(q) Representative examples of neurons immunostained for gamma-adaptin. (r–t) Gamma-adaptin normalized staining intensity 
is decreased in the Golgi (t-test: **p = 0.0067) (r), not significantly different in the soma (Mann Whitney test: ns, p = 0.0568) (s), 
and increased in the soma excluding Golgi (t-test: ****p < 0.0001) (t) (DHZ: n = 15; DKO: n = 14). Bars show mean ± SEM. Detailed 
statistics are shown in Supplementary Table 1. Scale bar is 2 μm.
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resulted in altered localization of TGN proteins. The average staining intensity of TGN38, ARL1 and TMEM87A 
was lower in the whole soma of DKO neurons when compared to control neurons, and it was normal for Gol-
gin97 and gamma-adaptin (Fig. 2c, g, k, o, s). In addition, the staining intensity in the soma excluding the Golgi 
was not different for TMEM87A and Golgin97 and slightly decreased for TGN38 and ARL1 (Fig. 2d, h, l, p). 
In contrast, gamma-adaptin staining intensity in the soma excluding the Golgi was increased (Fig. 2t). Thus, 
gamma-adaptin might relocalize to the cytoplasm, but the decreased staining intensity of TGN38, ARL1 and 
TMEM87A in the Golgi of Vti1a/b DKO neurons is not caused by mislocalization to a different compartment in 
the soma. We tested antibodies for several TGN proteins to quantify total protein levels using Western blotting. 
Only Golgin97 and gamma-adaptin antibodies showed specific signals, with several unidentified smaller bands 
for gamma-adaptin (Supplementary Fig. 2, Supplementary Fig. 3). These results were in line with our observa-
tions based on immunofluorescence.

Reduced staining intensity of TGN38, TMEM87A and ARL1 could also be the result of epitope masking. To 
examine this possibility, TGN38-GFP was overexpressed in Vti1a/b DKO and control neurons and GFP fluores-
cence intensity in the Golgi was measured. The decrease in intensity of TGN38-GFP was similar to endogenous 
TGN38 (Supplementary Fig. 4, Fig. 2b). This rules out epitope masking as an explanation of reduced TGN38 
staining intensity. Taken together, total levels of all analyzed Golgi proteins are decreased in the Golgi of Vti1a/b 
DKO neurons. While staining intensity of cis-/medial Golgi proteins is increased, the staining intensity of TGN 
proteins is decreased or not affected.

Levels and localization of DCV markers are altered in Vti1a/b DKO neurons. We continued by 
analyzing proteins associated with DCVs. CgB and NPY-SEP are established endogenous and heterologous 
DCV markers,  respectively11,12. As shown before, NPY-SEP intensity in the Golgi was not significantly different 
in the absence of Vti1a/b (DHZ vs DKO, p = 0.0567; Fig. 3m, n)7. In contrast, CgB staining intensity in the Golgi 
was increased (Fig. 3a, b).

The increased CgB staining intensity suggests that endogenous DCV cargo accumulated in the Golgi. How-
ever, the total Golgi area was smaller in Vti1a/b DKO neurons (Fig. 1). Indeed, the integrated density (mean 
gray value multiplied by the total Golgi area) of both proteins was reduced (Supplementary Fig. 1h, i). Hence, 
although CgB staining intensity was higher, the total amount of CgB staining (and NPY fluorescence) in the Golgi 
was in fact lower, arguing against cargo accumulation in the Golgi. In the soma (in general, and specifically the 
soma excluding the Golgi) NPY-SEP intensity was lower in Vti1a/b DKO neurons (Fig. 3o, p), while CgB stain-
ing intensity was higher (Fig. 3c, d). This shows that Golgi levels of DCV cargo are decreased in the absence of 
Vti1a/b, but that the effects on localization are different for CgB and NPY-SEP.

HID1 and CCDC186 play a role in the biogenesis/maturation of  DCVs13,14. Similar to most TGN proteins, 
HID1 Golgi staining intensity was decreased in the Golgi, and in the whole soma (Fig. 3e–h). CCDC186 stain-
ing intensity was not different in the Golgi, while it was decreased in the whole soma (Fig. 3i–l). The integrated 
density of both proteins in the Golgi was reduced (Supplementary Fig. 1j, k). For CCDC186, Western blot results 
were in line with these observations (Supplementary Fig. 2, Supplementary Fig. 3). Taken together, the levels 
and localization of proteins associated with DCVs are all altered by the absence of Vti1a/b, but the effects are 
different for different proteins.

LAMP1 carrier and KDEL staining are altered in Vti1a/b deficient neurons. Since the whole Golgi 
is disturbed by loss of Vti1a/b, we hypothesized that abnormal staining patterns are not restricted to DCVs and 
also exist for other types of vesicles, such as LAMP1 carriers. Indeed, compared to control neurons, Vti1a/b DKO 
neurons showed lower levels of LAMP1 staining intensity and the shape of these carriers was different (Fig. 4a, 
b). Control neurons contained characteristic oval shapes, while DKO neurons contained significantly fewer ovals 
(Large ovals DHZ vs DKO, p < 0.0001, Total ovals DHZ vs DKO, p < 0.0001; Fig. 4c, d). These results indicate that 
Vti1a/b are required for normal LAMP1 localization and levels. In addition, staining intensity of the ER marker 
KDEL was decreased (Supplementary Fig. 5). Taken together, loss of Vti1a/b does not only affect the Golgi appa-
ratus and DCVs, but also LAMP1 carriers and the ER.

Golgi abnormalities in Vti1a/b DKO neurons are not caused by reduced Golgi area or absence 
of a TGN compartment. Next, we investigated how loss of Vti1a/b causes disorganization of the ER, Golgi 
apparatus, DCVs and LAMP1 carriers. We hypothesized that the absence of Vti1a/b leads to a smaller Golgi, 
which is not large enough to achieve normal Golgi function. In wildtype neurons, the Golgi grows significantly 
between DIV2 and  DIV315. Therefore, if Golgi size is the main cause of the Vti1a/b DKO phenotype, control 
neurons at DIV2 should show a similar phenotype to Vti1a/b DKO neurons. As expected, at DIV2, the Golgi 
area of control neurons was smaller than at DIV8 (Supplementary Fig. 6a, b, Fig. 1b, e). The difference between 
control and DKO Golgi area at DIV2 was much smaller than the difference at DIV8. However, Golgi staining 
intensities of DKO neurons were affected similar to DIV8 neurons, when compared to controls (Supplementary 
Fig. 6, Figs. 1, 2). This excludes Golgi size as a plausible cause for the Vti1a/b DKO phenotype.

Subsequently, we tested whether TGN38 reaches the TGN in Vti1a/b DKO neurons. To test this, we over-
expressed TGN38-GFP and stained for cis-Golgi marker GM130 and TGN protein TMEM87A. Line scans 
showed that the peak of intensity of TGN38-GFP was well separated from the peak of GM130 and close to the 
peak of TMEM87A (Fig. 5). No significant difference between control and Vti1a/b DKO neurons was observed 
(DHZ GM130 vs DKO GM130, p = 0.3769, DHZ TMEM87A vs DKO TMEM87A, p = 0.9976). This suggests 
that TGN38-GFP can reach a TGN compartment in absence of Vti1a/b. Taken together, Golgi abnormalities in 
Vti1a/b DKO neurons are not caused by reduced Golgi size or the absence of a TGN compartment.
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Vti1a/b DKO Golgi abnormalities are partially phenocopied by disturbing membrane homeo-
stasis. Having ruled out reduced Golgi size as an explanation for the Vti1a/b DKO phenotype, we hypoth-
esized that membrane homeostasis is disturbed in Vti1a/b DKO neurons. Previous research showed that addi-
tion of C6-Ceramide to HeLa cells and NRK cells results in distended Golgi cisternae, similar to what was 
observed in Vti1a/b DKO  neurons7,16,17. Further experiments showed that sphingosine, a metabolite of cera-
mide, causes these  effects16. We mimicked disturbed membrane homeostasis by addition of C6-Ceramide or 
l-Erythro-Sphingosine to wildtype neurons. C6-Ceramide can be metabolized, while l-Erythro-Sphingosine is 
a nonmetabolizable stereoisomer. After 4 h incubation with C6-Ceramide or l-Erythro-Sphingosine, the Golgi 
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Figure 3.  Levels and localization of DCV proteins are affected in Vti1a/b DKO neurons. (a) Representative 
examples of neurons immunostained for CgB. (b–d) CgB normalized staining intensity is increased in the Golgi 
(Mann Whitney test: **p = 0.0024) (b), not significantly different in the soma (t-test: ns, p = 0.1142) (c), and 
increased in the soma excluding Golgi (t-test: **p = 0.0056) (d) (DHZ: n = 22; DKO: n = 19). (e) Representative 
examples of neurons immunostained for HID1. (f–h) HID1 normalized staining intensity is decreased in the 
Golgi (t-test: ****p < 0.0001) (f), soma (Mann Whitney test: ****p < 0.0001) (g), and soma excluding Golgi 
(Mann Whitney test: ***p = 0.0001) (h) (DHZ: n = 32; DKO: n = 35). (i) Representative examples of neurons 
immunostained for CCDC186. (j–l) CCDC186 normalized staining intensity is not significantly different in the 
Golgi (t-test: ns, p = 0.2927) (j), but decreased in the soma (t-test: ****p < 0.0001) (k), and soma excluding Golgi 
(t-test: ***p = 0.0006) (l) (DHZ: n = 28; DKO: n = 27). (m) Representative examples of neurons expressing NPY-
SEP. (n–p) NPY-SEP normalized fluorescence intensity is not significantly different in the Golgi (Mann Whitney 
test: ns, p = 0.0567) (n), but decreased in the soma (Mann Whitney test: **p = 0.0016) (o), and soma excluding 
Golgi (Mann Whitney test: *p = 0.0111) (p) (DHZ: n = 67; DKO: n = 64). Bars show mean ± SEM. Detailed 
statistics are shown in Supplementary Table 1. Scale bar is 2 μm.
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was fragmented (Fig. 6a, b). Staining intensity for cis-Golgi marker GM130 was normal, but was decreased for 
both TGN proteins TGN38 and TMEM87A (Fig. 6). Since Golgi fragmentation was not observed in Vti1a/b 
DKO neurons, we conclude that disturbed membrane homeostasis cannot fully explain the Vti1a/b DKO phe-
notype, despite the fact that GM130, TMEM87A and TGN38 were similarly affected in Vti1a/b DKO neurons as 
in neurons treated with L-Erythro-Sphingosine or C6-Ceramide.

Vti1a/b DKO Golgi abnormalities are not rescued by overexpression of sphingomyelin syn-
thases or addition of myriocin. Similar to Vti1a/b DKO, deficiency of any of the components of the 
Conserved Oligomeric Golgi (COG) complex impacts retrograde trafficking, and morphology and function of 
the  Golgi18,19. Experiments in COG KD cells showed mislocalization of sphingomyelin synthase 1 (SMS1), the 
enzyme that converts ceramide into  sphingomyelin20. It is conceivable that Vti1a/b are required for recycling of 
SMS1 to the Golgi. Two commercially available antibodies failed to produce reliable immunocytochemical stain-
ings, precluding the analysis of endogenous SMS1 distribution in the absence of Vti1a/b. In addition to SMS1, 
which is mainly localized to the Golgi, sphingomyelin synthase 2 (SMS2) is found on the plasma membrane and 
in the  Golgi21,22. To visualize SMS1 and SMS2 in Vti1a/b DKO neurons, we tagged both with GFP. Similar to 
other TGN proteins, the intensity of SMS1-GFP and SMS2-GFP was lower in the Golgi of Vti1a/b DKO neurons 
as compared to Vti1a/b neurons, but no additional abnormalities were identified (Supplementary Fig. 7). If the 
Golgi phenotype in Vti1a/b deficient neurons was the result of mislocalization of SMS1 or SMS2, overexpression 
of these proteins could rescue the phenotype. However, while SMS1-GFP and SMS2-GFP were correctly targeted 
to the TGN, the Golgi area remained small and TMEM87A intensity remained low (Supplementary Fig. 7). 
Thus, overexpression of SMS1-GFP or SMS2-GFP does not rescue the Vti1a/b DKO phenotype.

Deficiency of subunits of the GARP (Golgi-associated retrograde protein) complex also leads to retrograde 
trafficking defects and distended Golgi  cisternae23,24, resembling Golgi abnormalities in Vti1a/b DKO neu-
rons. Myriocin is an inhibitor of sphingolipid synthesis and was shown to rescue GARP deficiency in vitro and 
in vivo25,26. We tested whether myriocin rescued Golgi abnormalities in Vti1a/b DKO neurons. Application of 
myriocin led to a trend towards an increased Golgi area at DIV7 (p = 0.159), and did not rescue the decreased 
TMEM87A staining intensity in Vti1a/b DKO neurons (Figs. 1, 7). Hence myriocin does not rescue the Vti1a/b 
DKO phenotype.

Discussion
We investigated the role of retrograde trafficking in the organization of the Golgi apparatus and proteins involved 
in Golgi export. We showed that cis-/medial Golgi and TGN are affected differentially by the loss of Vti1a/b. This 
phenotype could not be explained by reduced Golgi size or absence of (one of) the TGN compartment(s), but 

Figure 4.  LAMP1 staining intensity and shape are abnormal in Vti1a/b deficient neurons. (a) Representative 
examples of neurons immunostained for LAMP1. (b) Normalized staining intensity of LAMP1 is decreased 
in Vti1a/b DKO neurons compared to DHZ neurons (DHZ: n = 16; DKO: n = 18). Mann Whitney test: 
****p < 0.0001. (c) Number of large, clear oval LAMP1 shapes is decreased in Vti1a/b deficient neurons (DHZ: 
n = 16; DKO: n = 18). Mann Whitney test: ****p < 0.0001. (d) Total number of oval LAMP1 shapes (including less 
distinguished ovals) is decreased in Vti1a/b deficient neurons (DHZ: n = 16; DKO: n = 18). Mann Whitney test: 
****p < 0.0001. Bars show mean ± SEM. Detailed statistics are shown in Supplementary Table 1. Scale bar is 2 μm.
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was partially mimicked by addition of C6-Ceramide or L-Erythro-Sphingosine. The phenotype was not rescued 
by overexpression of sphingomyelin synthases or myriocin treatment.

Loss of Vti1a/b results in reduced Golgi area in  neurons7. For cis-/medial Golgi proteins, the integrated den-
sity (total area multiplied by the average staining intensity) was decreased, while at the same time the average 
intensity was increased. This suggests that the total protein level is lower, but the proteins that are present, are in 
a smaller area, causing a relative increase in intensity. TGN proteins showed lower integrated density and lower 
or similar average intensity in the Golgi. This indicates that total protein expression levels are decreased and this 
cannot be fully explained by a smaller Golgi area. Western blotting results for gamma-adaptin and Golgin97 
were in line with these observations. Golgin97 was the only TGN protein for which the average Golgi intensity 
was not affected in Vti1a/b DKO neurons, while Golgi intensity was reduced for TGN38, TMEM87A, ARL1 and 
gamma-adaptin. This suggests that Golgin97 is differentially affected by loss of Vti1a/b than the other four TGN 
proteins. Golgin97 is one of the Golgins that is recruited to the Golgi by  ARL127. Since ARL1 Golgi intensity was 
decreased (but not absent) the residual ARL1 might be enough to recruit Golgin97 to the Golgi. Taken together, 
TGN proteins are more severely affected by loss of Vti1a/b than cis-/medial Golgi proteins.

Figure 5.  TGN38-GFP can reach the TGN compartment in Vti1a/b DKO neurons. (a) Representative examples 
of neurons overexpressing TGN38-GFP immunostained for GM130. (Brightness and contrast have been 
adjusted for visualization). (b) Representative examples of neurons overexpressing TGN38-GFP immunostained 
for TMEM87A. (Brightness and contrast have been adjusted for visualization). (c) Intensity profiles of TGN38-
GFP and GM130/TMEM87A. Location of lines is represented as a yellow line in merged images. Intensities 
were normalized and smoothed before plotting. (d) The distance between intensity peaks of TGN38-GFP and 
GM130 is larger than the distance between peaks of TGN38-GFP and TMEM87A in both Vti1a/b DHZ and 
DKO neurons, measured by line scans through the Golgi (DHZ GM130: n = 15; DKO GM130: n = 15; DHZ 
TMEM87A: n = 15; DKO TMEM87A: n = 15). One way ANOVA with Tukey’s multiple comparisons test: DHZ 
GM130 vs DHZ TMEM87A, DHZ GM130 vs DKO TMEM87A, DKO GM130 vs DHZ TMEM87A and DKO 
GM130 vs DKO TMEM87A: ****p < 0.0001, DHZ GM130 vs DKO GM130 and DHZ TMEM87A vs DKO 
TMEM87A: non-significant (ns). Bars show mean ± SEM. Detailed statistics are shown in Supplementary 
Table 1. Scale bar is 2 μm.
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The differential effect between cis-/medial Golgi and TGN proteins may be explained assuming that defec-
tive retrograde trafficking to the TGN affects TGN proteins more directly than cis-/medial Golgi proteins. If 
TGN proteins do not return to the TGN, they are expected to accumulate outside the Golgi. By measuring the 
staining intensity in the rest of the soma, we ruled out that TGN38, TMEM87A and ARL1 were accumulating 
there. Only gamma-adaptin was redistributed to the cytoplasm. It is possible that TGN38, TMEM87A and ARL1 

Figure 6.  Addition of C6-Ceramide (Cer) or l-Erythro-Sphingosine (SP) to wildtype neurons does not 
affect staining intensity of cis-Golgi protein GM130, while TGN protein staining intensity is decreased. (a) 
Representative examples of neurons immunostained for GM130, after 4 h treatment with 0.1% DMSO, 20 μM 
C6-Ceramide or 8 μM l-Erythro-Sphingosine. (b) GM130 normalized staining intensity is not affected by 
C6-Ceramide or l-Erythro-Sphingosine treatment (DMSO: n = 22; Cer: n = 16; SP: n = 10). One-way ANOVA 
(ns, p = 0.8834). (c) Representative examples of neurons immunostained for TMEM87A, after 4 h treatment 
with 0.1% DMSO, 20 μM C6-Ceramide or 8 μM l-Erythro-Sphingosine. (d) TMEM87A normalized staining 
intensity is decreased after C6-Ceramide or l-Erythro-Sphingosine treatment (DMSO: n = 14; Cer: n = 10; 
SP: n = 10). One-way ANOVA with Tukey’s multiple comparisons test: DMSO vs Cer: ***p = 0.0002, DMSO 
vs SP: ****p < 0.0001, Cer vs SP: ns, p = 0.1312. (e) Representative examples of neurons immunostained for 
TGN38, after 4 h treatment with 0.1% DMSO, 20 μM C6-Ceramide or 8 μM l-Erythro-Sphingosine. (f) 
TGN38 normalized staining intensity is decreased after C6-Ceramide or l-Erythro-Sphingosine treatment 
(DMSO: n = 13; Cer: n = 7; SP: n = 10). One-way ANOVA with Tukey’s multiple comparisons test: DMSO vs Cer: 
*p = 0.0186, DMSO vs SP: ***p = 0.0002, Cer vs SP: ns, p = 0.4809. Bars show mean ± SEM. Detailed statistics are 
shown in Supplementary Table 1. Scale bar is 3 μm.

Figure 7.  Addition of myriocin (MYR) to Vti1a/b DKO neurons does not rescue Golgi area or TGN staining 
intensity. (a) Representative examples of neurons immunostained for GM130 and TMEM87A, after 1 week 
treatment with 0.1% DMSO or 50 μM Myriocin. (b) Golgi area based on GM130 is not affected by myriocin 
treatment (DMSO: n = 44; MYR: n = 37). Mann Whitney test: ns, p = 0.1593. (c) TMEM87A normalized staining 
intensity is not affected by myriocin treatment (DMSO: n = 35; MYR: n = 27). Mann Whitney test: ns, p = 0.8546. 
Bars show mean ± SEM. Detailed statistics are shown in Supplementary Table 1. Scale bar is 3 μm.
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are degraded when they cannot return to the Golgi, resulting in decreased protein levels. Western blot analysis 
detected smaller fragments of gamma-adaptin in Vti1a/b DKO neurons, suggesting it is being degraded. Thus, it 
is possible that proteins that cannot be recruited or returned to the Golgi are partially degraded, resulting in lower 
protein levels in the Golgi. Alternatively, epitope masking might explain decreased levels of four TGN proteins. 
For example, a defect in protein maturation could result in the antibody not binding its epitope. Since overex-
pressed TGN38-GFP intensity was decreased to the same extent as endogenous TGN38, we excluded epitope 
masking as an explanation, at least for TGN38. In addition, the TGN38 antibody used in this study also detected 
overexpressed TGN38-GFP in Vti1a/b DKO neurons, indicating that the epitope is available in mutant neurons. 
Several gene inactivation experiments or treatments are known to disturb Golgi morphology, similar but not 
identical to the observed effects in Vti1A/B DKO neurons. For example, brefeldin A (BFA) causes redistribution 
of Golgi proteins to the ER and induces tubulation of the  TGN28. However, BFA leads to reduced staining inten-
sity of cis-/medial Golgi proteins, while it was increased in Vti1a/b DKO and no TGN tubulation was observed. 
Rab30 deficiency also causes dispersal of TGN proteins, but causes only a mild perturbation of cis-Golgi protein 
 GM13029. Furthermore, ARL1 is important for maintenance of Golgi  morphology30. It recruits Golgins to the 
Golgi and is required for a normal TGN  structure27. Overexpression of dominant negative ARL1 leads to reduced 
levels of cis-Golgi protein GS28, but has no effect on  GM13030–32. Since intensity of cis-/medial Golgi proteins 
is increased in Vti1a/b DKO neurons, loss of ARL1 cannot fully explain the Vti1a/b DKO phenotype. Finally, 
Chia et al. performed an RNAi screen in HeLa cells for perturbations of Golgi  morphology33. They identified 
many genes of which depletion resulted in diffuse signals for trans-Golgi proteins, but in those cases cis-Golgi 
proteins were also affected to a similar extent. We are not aware of studies describing other gene depletions or 
treatments that result in reduced or normal TGN staining but increased, condensed cis-/medial Golgi staining.

All proteins associated with DCVs showed decreased integrated density in the Golgi in absence of Vti1a/b, 
indicating that the levels of these proteins were reduced. As previously reported, the average intensity of NPY-
SEP in the Golgi was not affected by loss of Vti1a/b, although a trend towards an increase was  observed7. Golgi 
intensity of the endogenous DCV protein CgB was increased in the Golgi. Since protein levels were lower, this 
increase in average intensity was not caused by accumulation of CgB in the Golgi, but by reduction of Golgi size. 
While the intensity outside the Golgi apparatus was decreased for NPY-SEP, the intensity of CgB outside the Golgi 
increased. This could be explained by CgB being an endogenous and NPY-SEP a heterologous DCV marker, 
or it could be a difference between two DCV cargoes. It has been shown that CgB not only localizes to DCVs, 
but also to the nucleus in several cell types, including neuroendocrine cells, and plays a role in  transcription34. 
Golgi stress in Vti1a/b DKO neurons could target CgB to the nucleus to induce changes in transcription. HID1 
is thought to regulate DCV biogenesis in the TGN or DCV maturation by facilitating homotypic  fusion13,35. 
Like other TGN proteins, HID1 intensity inside and outside the Golgi was lower in Vti1a/b DKO neurons. This 
suggests that HID1 is indeed localized to the TGN. CCDC186 Golgi intensity was not affected, but the intensity 
outside the Golgi was decreased. This is in line with our finding that loss of Vti1a/b differentially affected dif-
ferent compartments of the Golgi apparatus. Taken together, while the Golgi levels of proteins associated with 
DCVs were reduced in Vti1a/b deficient neurons, the impact on average staining intensities was different for 
each protein. This suggests that these proteins do not depend on Vti1a/b in the same way.

The effects of Vti1a/b DKO are not specific for DCVs, since LAMP1 staining patterns were also disturbed in 
Vti1a/b deficient neurons. This is not surprising, considering that many different Golgi proteins and the ER are 
impacted by loss of Vti1a/b. Even though there is no significant difference in Golgi export of constitutive cargo 
in Vti1a/b DKO neurons at a late timepoint, the export is initially  slower7. Thus, loss of Vti1a/b affects more 
cellular trafficking routes than regulated secretion. This suggests that defective retrograde trafficking impacts 
multiple secretory pathways. In line with this suggestion, disturbing retrograde trafficking by knocking out any 
of the four subunits of the GARP complex also disrupts anterograde trafficking and affects Golgi  morphology24,36. 
In addition, knockout or knockdown of any of the components of the COG complex similarly affects Golgi 
morphology and function and causes changes to the endolysosomal  system18,19. Therefore, we conclude that 
disturbed retrograde trafficking affects Golgi morphology and function and thereby likely impacts many more 
Golgi-dependent processes than Golgi export of regulated cargo.

Disturbing membrane homeostasis by addition of ceramide or sphingosine produced similar Golgi abnor-
malities as observed in the absence of Vti1a/b. Disturbed membrane homeostasis can affect Golgi organization 
in different ways, for example by disrupting lipid rafts or by altering membrane  permeability37–39. Since Vti1a/b 
are required for retrograde trafficking, Vti1a/b deficiency may directly affect recycling of membrane compo-
nents to the Golgi apparatus, but Golgi abnormalities may also be an indirect effect of impaired recycling of 
membrane-processing enzymes. We focused on sphingomyelin synthases because it was shown that retrograde 
trafficking defects cause mislocalization of  SMS120. In addition, SMS1 and SMS2 are required for normal traf-
ficking and secretion of insulin and vesicular stomatitis virus G protein tagged with GFP (VSVG-GFP)40. We 
did not observe abnormalities in localization of SMS1/2-GFP and SMS1/2 did not rescue Golgi abnormalities 
in Vti1a/b DKO neurons, nor did inhibition of de novo ceramide synthesis by myriocin application. This sug-
gests that mislocalization of sphingomyelin synthases does not underly the defects in Vti1a/b deficient neurons. 
Since cells have many different ways to regulate ceramide  levels41, we cannot exclude that the Vti1a/b DKO Golgi 
phenotype is the result of defects in other aspects of lipid metabolism, but clear leads, as in the case of SMS1/2 
and myriocin, are lacking, to our knowledge. Altogether, we have shown that Vti1a/b are important for different 
aspects of TGN and cis-/medial Golgi organization.
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Methods
Laboratory animals and primary cultures. Animal experiments were approved by the animal ethi-
cal committee of the VU University/VU University Medical Centre (license number: FGA 11-03). Animals 
were bred and housed according to Institutional and Dutch governmental guidelines. All experiments were 
conducted in compliance with ARRIVE guidelines. Embryonic day (E) 18.5 Vti1a/b DKO, Vti1a/b DHZ and 
C57BL/6 mouse embryos were used for primary hippocampal or cortical culture. Vti1a/b DKO and DHZ mice 
have been described  previously7,42. In total 70 litters of Vti1a/b mice were genotyped. DHZ were used as controls 
because of the low probability to obtain DKO and double-WT within one litter. If multiple pups in a litter were 
of the same genotype, their neurons were pooled. For experiments in wildtype neurons, 3 wildtype pups were 
used. Mouse hippocampi or cortices were dissected in Hanks’ balanced salt solution (Sigma), supplemented 
with 10 mM HEPES (Gibco) and were digested with 0.25% trypsin (Gibco) in Hanks’ + HEPES for 15 min at 
37 °C. Hippocampi and cortices were washed three times with Hanks’ + HEPES, once with DMEM complete 
(DMEM + Glutamax (Gibco), supplemented with 10% FCS (Gibco), 1% NEAA (Sigma) and 1% penicillin/strep-
tomycin (Sigma)) and triturated with fire-polished Pasteur pipettes. Dissociated cells were spun down and resus-
pended in Neurobasal medium (Gibco) supplemented with 2% B-27 (Gibco), 1.8% HEPES, 0.25% Glutamax 
(Gibco) and 0.1% penicillin/streptomycin. Continental cultures were created by plating WT and Vti1a/b DHZ 
hippocampal neurons at 25 K/well and Vti1a/b DKO hippocampal neurons at 50 K/well. Neurons were seeded 
on pre-grown rat glia on 18 mm glass coverslips in 12 well plates. For Western Blot experiments, Vti1a/b DHZ 
and Vti1a/b DKO cortical neurons were plated at 300 k/well and 600 k/well, respectively, on 6 well plates coated 
with 0.0005% poly-l-ornithine (Sigma) and 2.5 μg/ml laminin (Sigma).

Immunocytochemistry. Neurons were fixed at DIV2 or DIV7/DIV8 in freshly prepared 3.7% paraform-
aldehyde (EMS) for 10 min at room temperature and permeabilized with 0.1% Triton X-100 (Fisher Scientific) 
for 10 min. In case only goat secondary antibodies were used, neurons were blocked with 5% normal goat serum 
(Life Technologies) for 30  min. Incubation with primary and secondary antibodies was done at room tem-
perature for 1 h. All solutions were in PBS (composition in mM: 137 NaCl, 2.7 KCl, 10  Na2HPO4, 1.8  KH2PO4; 
pH = 7.4). Coverslips were mounted in Mowiol (Sigma). In case donkey anti-sheep and goat antibodies were 
combined, secondary antibody incubation was split into two steps to prevent cross-reaction: donkey anti-sheep 
antibodies were incubated for 1 h and after thorough washing and blocking with 5% normal goat serum, goat 
secondary antibodies were incubated for 1 h.

Primary antibodies used for immunocytochemistry: GM130 (1:500, BD, 610822), giantin (1:200, BioLegend, 
909701), TGN38 (1:100, BioRad, AHP499G), TMEM87A (1:100, Novus Biologicals, NBP1-90532), ARL1 (1:50, 
Santa Cruz, sc-393785), HID1 (1:100, Novus Biologicals, NBP2-02667), CCDC186 (1:200, Novus Biologicals, 
NBP1-90440), CgB (1:500, Synaptic Systems, 259 103), LAMP1 (1:500, Abcam, ab25245), Golgin97 (1:50, Santa 
Cruz, sc-59820), KDEL (1:100, Enzo, ADI-SPA-827), gamma-adaptin (1:250, BD, 610385). Secondary antibodies 
were AlexaFluor-conjugated (1:500, Invitrogen) or STAR GREEN-, STAR580- or STAR635p-conjugated (1:100, 
Abberior).

For ceramide and sphingosine experiments, DIV7 neurons were treated with 20 μM C6-Ceramide (Cayman 
Chemical), 8 μM l-Erythro-Sphingosine (Cayman Chemical) or 0.1% DMSO (Sigma) for 4 h. For myriocin 
experiments, 50 μM myriocin (Cayman Chemical) or 0.1% DMSO was added to neurons 4 h after plating and 
neurons were fixed at DIV8.

Confocal imaging was performed on a Leica TCS SP8 STED 3× microscope (Leica Microsystems) with LAS 
X acquisition software, using a 100× oil objective (NA = 1.4). A pulsed white light laser was used to excite the 
samples. The signal was detected using a gated hybrid detector (HyD) (Leica Microsystems) in photon-counting 
mode.

Images were analyzed in Fiji  software43. The BAR plugin was used to plot multichannel profiles in order to 
analyze the distance between peaks of Golgi  proteins44.

Western blot. Neurons were lysed in Laemmli buffer (2% SDS, 10% glycerol, 500 mM DTT, 62.5 mM Tris–
HCl, and 0.01% Bromophenol Blue; pH 6.8) at DIV7. Samples were separated on SDS–polyacrylamide gels 
or 4–20% gradient gel (Biorad, #4568094) and transferred to nitrocellulose or PVDF membranes. Blots were 
blocked in 2.5% bovine serum albumin (BSA) for 1 h at 4 °C and incubated with primary antibodies at 4 °C over-
night (gamma-adaptin (1:500), Golgin97 (1:200) and CCDC186 (1:1000)). Secondary antibodies were incubated 
for 1 h at RT. Blots were scanned using a Fuji Film FLA 5000. Blocking and antibody solutions were prepared in 
PBS containing 0.1% Tween-20. Total protein levels were measured using 2,2,2-Trichloroethanol.

Plasmids. NPY-SEP plasmid has been described  before45. TGN38-GFP, SMS1-GFP and SMS2-GFP were 
generated by amplifying TGN38, SMS1 and SMS2 from a mouse cDNA library and tagging them with eGFP 
at the C-terminus. The following primers were used for amplification of TGN38: gctcaccatgatcccaagctttag-
gttcaaacgttgg and cggtaccgcgggcccatgcggttccaggttgcg; SMS1: ggactcagatctcgaatgttgtctgccaggaccatgaaggaag 
and gaagcttgagctcgattatgtgtcgtttaccagccggctatatttaacttgcctactaaggt; SMS2: ggactcagatctcgaatggatatcatagagaca-
gcaaaacttgaaggtcacttgg and gaagcttgagctcgatcaggtagacttctcattatcctccccgatcttctgg) These plasmids were cloned 
into lentiviral vectors under human Synapsin promoter and viral particles were delivered to neurons at DIV3 or 
DIV4 for NPY-SEP and TGN38-GFP and DIV0 for SMS1-GFP and SMS2-GFP.

Statistical analysis. Statistical analysis and graphing were performed using GraphPad Prism 7. Shapiro–
Wilk was used to test distribution normality. When assumption of normality was met, parametric tests were 
used: two-tailed t-test or ANOVA (with Tukey’s multiple comparisons test). Otherwise, non-parametric tests 
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were used: two-tailed Mann Whitney or Kruskall-Wallis (with Dunn’s multiple comparisons test). Significance 
was accepted at p < 0.05. Each data point represents one cell and bars show mean ± SEM. All data and statistical 
tests used are summarized in Supplementary Table 1. No sample size calculation was performed. No randomi-
zation or blinding was performed. Neurons were excluded from analysis if neuronal Golgi area could not be 
determined, for example because it was overlapping with glial Golgi.

Data availability
The data generated and analyzed during the current study are included in this published article and its supple-
mentary information files. Datasets are available from the corresponding author on request.
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