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The evolutionary extortion 
game of multiple groups 
in hypernetworks
Aizhong Shen 1, Zilin Gao 2, Xiang Gao 3 & Dan Cui 4*

As a type of zero-determinant strategies, the extortion strategy was found to be an evolutionarily 
stable strategy in structural groups. However, instead of complex networks structure, this paper 
focus on a multi-group game in hypernetworks, using the framework of a gift giving game driven 
by replicator-like dynamics. We find that the extortion is evolutionarily stable in the hypernetwork 
structure. The extortion game in hypernetworks can promote the emergence of the cooperative 
behavior compared to the traditional dual-strategy game and the extortion game in complex 
networks. The results show that the cooperation behavior attracts most of the groups for the smaller 
benefit value. With the increase of benefit value, cooperators turn into defectors and extortioners, but 
cooperation behavior still survives in hypernetworks under extreme conditions. Moreover, small-scale 
groups are more conducive to cooperation.

Cooperation is a common and indispensable strategy observed in nature and social systems. The reason why 
selfish individuals sacrifice their own interests and choose cooperation is an evolutionary riddle, as it seemingly 
contradicts the fundamental Darwinian principles of natural selection. The evolutionary game theory provides 
a powerful framework to investigate the mechanisms behind the emergence of spontaneous cooperation among 
individuals engaged in repeated interactions. The evolutionary game theory has attracted considerable atten-
tion and been widely applied in various scientific  studies1–4. There are many mechanisms that try to explain 
the emergence of  cooperation5–9, such as reciprocity, kin selection, reputation, and networks. Press and Dyson 
proposed a novel class of strategies, referred to as the zero-determinant (ZD) strategies, which provided a new 
perspective for understanding the evolution of  cooperation10. As a type of ZD strategies, the extortion strategy 
( Eχ ) can unilaterally guarantee that one individual’s payoff is never smaller, but can be larger than the opponent’s 
payoff no matter what the strategy is chosen by  opponents10. Parameter χ is the extortion factor that determines 
how strongly Eχ exploits cooperators. The extortion strategy can be viewed as the classic tit-for-tat  strategy11 
when χ = 1 . Extortioners use the conditional cooperative strategy to obtain more payoffs than their opponents. 
The experimental studies showed that human successfully extort a larger payoff from their opponents only when 
extortion strategy is part of Nash  equilibrium12.

Zero-determinant strategies fundamentally changed the viewpoint on the Prisoner’s  Dilemma13 and a large 
number of tracking studies were proposed. These studies show that the zero-determinant strategies have strong 
robustness in different conditions. Chen and  Zinger14 found that the extortion strategy is extremely robust 
regardless of which evolutionary path is taken by the opponents. Hao et al.15 studied ZD strategies of the noisy 
repeated game and found that ZD strategies have high robustness to errors. However, extortion strategies are 
evolutionary unstable in a well-mixed population because extortioners gain nothing from their opponent when 
their opponents choose extortion or  defection16. Hilbe and  Nowak17 showed that an extortion strategy can be 
stable in a small population, and act as a catalyst for the emergence of cooperation in a homogeneously mixed 
population. To study the evolutionary stability of zero-determinant, the generous strategies were proposed by 
Steward and  Plotkin18. In fact, both extortion and generous strategies enforce a linear relationship between the 
payoffs of his and his opponent. Extortionists who aim to outperform their opponents, but the payoff of generous 
players never exceed their opponents. The generous strategies can form a stable cluster and the local population 
cannot be invaded by other strategies. Generous strategies are robust to being replaced by other strategies in a 
well-mixed population.
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The above studies assumed uniform interaction among individuals in the extortion game, i.e., all individuals 
in the population have game relationship with one another. The complex network theory is an effective tool to 
describe uncoupled game relationships. In a complex network, the nodes and edges are regarded as the play-
ers and game relationships among these players, respectively. Previous studies demonstrated that the network 
 structure19, game payoffs  measurement20, asymmetric  cost21,  compassion22 and  emotions23 all play important 
roles in the evolution of cooperation. The game with extortion strategy in a structured population is systemati-
cally studied. Szolnoki and  Perc24,25 considered that a stable extortion strategy can exist in structured populations 
and extortion strategy is the catalyst of unconditional cooperation. Mao et al.26 studied the roles of mutation 
mechanism for the evolution of cooperation with extortion strategies on clustered scale-free networks and found 
that small mutation rate can promote cooperation. Rong et al.27 investigated the game with generous strategies, 
extortion and unconditional defection strategies. The results showed that the proper aspiration level can promote 
the emergence of generous behaviors in a spatial prisoner’s dilemma (PD) game. Rong et al.28 studied the effect 
of the strategy-selection timescale on the evolution of extortion in the square lattices and scale-free networks. 
They observed that extortioners are able to build long-term stable relationships with cooperative neighbors, and 
the diversity of strategy-selection timescale further enhance the cooperative behavior. The scale-free networks 
may inhibit the maintenance of cooperation when the players’ payoffs are calculated as average payoffs, but the 
inhibiting effect disappears after the introduction of extortion  strategies29.

The network game theory provides an effective analytical framework for studying the uncoupled game rela-
tionships among  individuals30,31. In complex networks, the edge can express pairwise game relationships between 
two nodes (Fig. 1a). If a player engages in a game with multiple opponents, this can be characterized by the degree 
of nodes (Fig. 1b). However, the complex network structure cannot describe multiple-group game relationships 
in a social system. Recently, the network research moved to advanced complexity theory, i.e., hypernetworks, 
to better understand the multiple relationships between the components in real systems. In the hypergraph-
based  hypernetworks32, a hyperedge can contain any number of nodes and represent a single game group. The 
hyperdegree is the number of hyperedges of nodes, which can describe an individual play a game with multiple 
groups (Fig. 1c,d). By comparing Fig. 1b and d, we know that the hypernetwork structure in our model can better 
represent the heterogeneous nature of realistic multiple groups’ game. Figure 1b expresses the hub nodes game 
with neighbors by complex networks which can’t divide the neighbors into different groups. However, Fig. 1d 
can divide the neighbors into different groups by hyperedge and the overlapping node game with neighbors 
from different groups.

Therefore, we discuss what will happen when extortion strategies are introduced into a hypernetwork struc-
ture. In this paper, we try to address this question by exploring the evolution of extortion in the framework of 
a gift giving game driven by replicator-like dynamics. However, instead of focusing on the complex network 
structure, we emphasize the multiple-group game in the uniform scale-free hypernetworks. In "Hypernetwork 
model" section, we describe the algorithm used to generate the hypernetwork with a Poisson process. In "Game 
rules" section, we describe the game rule and strategy updating method reflecting the evolution of extortion 
on the static hypernetworks. In "Model simulation and result analysis" section, we simulate the game model to 
understand the evolutionary stability of extortion, and explore the influence of the model parameters on the 
game outcomes. The results show that extortion is evolutionary stable, but cooperation can still be maintained 
under extreme conditions. The size of groups and benefit value also significantly impact the evolutionary game 
on hypernetworks.

Hypernetwork model
In this paper, we propose a uniform scale-free hypernetwork that is generated by a Poisson process and the 
evolution algorithm is as follows:

Figure 1.  Different game relationships are expressed by network structure. Nodes and edges/hyperedges 
represent players and game relationships, respectively: (a) edge of complex network represents pairwise game 
relationship between two players; (b) degree of nodes in complex network show that player play a game with 
multiple opponents; (c) hyperedge shows that players participate in single-group game in hypernetwork and 
nodes in hyperedge are fully connected; (d) hyperdegree of nodes can divide the neighbors into different groups 
to show player participates in multiple-group game. The red node is the hub node or the overlapping node 
which can show the heterogeneous nature of realistic game relationship because it has more neighbors than 
other nodes.
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1. Initial condition: The hypernetwork starts from an initial seed of m0 nodes, and a hyperedge contains these 
nodes.

2. Hypernetwork growth: A new batch of nodes joining the hypernetwork can be considered as an event. New 
node batches arrive at the hypernetwork according to a Poisson process, N(t) , with the rate � . At time t = 1 , 
a new batch of m1 nodes is added to the hypernetwork. These m1 new nodes and one old node are encircled 
by a new hyperedge, and a total of m new hyperedges are constructed with no repetitive hyperedges at each 
time step.

3. Preferential attachment: The probability, 
∏

(

khiu(t)
)

 , that the m1 new nodes connect to the uth old node of 
the ith batch is proportional to the hyperdegree, khiu(t) , such that

Our hypernetwork model can degenerate to the model in ref.33. In ref.33, new nodes arrive at hypernetworks 
with equal time intervals. However, in our model, new nodes arrive at hypernetworks according to Poisson pro-
cess with the rate � . If the Poisson process rate � = 1 , our hypernetwork model is equivalent to the model in ref.33.

In hypernetworks, the circles represent hyperedges and the number of hyperedge of nodes is the hyperdergee 
of nodes. The number of nodes in hyperedge can be defined as the node-degree of hyperedges. We consider the 
extortion game in the uniform scale-free hypernetwork in which the number of nodes in each hyperedge is the 
same (Fig. 2) and the hyperdegree of nodes has the property of the “Matthew effect” (Fig. 3). In other words, 
the overlapping nodes play a game with a large number of groups, while the other nodes engage with a small 
number of groups.

(1)
∏

(

khu

)

=
khu

∑

w khw

Figure 2.  Multiple-group game relationships are represented by the uniform scale-free hypernetwork. The 
figure shows the scale of the hypernetwork N = 11 that is the total number of nodes. The node-degree of each 
hyperedge is equal to 3, which indicates that the hypernetwork is uniform and the nodes in each hyperedge can 
play a game with 2 opponents. Node i is the overlapping node with hyperdegree 4, and plays a game with 2× 4 
opponents from four hyperedges or groups. In the same hyperedge, the node plays a game with each other. For 
example, in the red node and hyperedge, nodes are well-mixed and nodes i, j , and k play a game with each other.

Figure 3.  Hyperdegree distribution of nodes is shown in the double logarithmic coordinates. The horizontal 
coordinate is hyperdegree of nodes, and the vertical coordinate is the frequencies of hyperdegree of nodes 
occurrence. This figure indicates that nodes with few number of hyperdegree have high frequency, while nodes 
with more number of hyperdegree have low frequency. The results show that the hypernetwork structure in our 
model is a scale-free hypernetwork and has the property of the “Matthew effect”.
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Specifically, in our hypernetworks model, the number of new nodes is m1 at each time step, so the number of 
nodes in each hyperedge is 1+m1 which means that each player plays with m1 opponents in one hyperedge. If 
the hyperdegree of node i is khi  , node i plays extortion game with khi  hyperedge, and the number of opponents is 
khi ·m1 . The hyperdegree of node khi  has the property of the “Matthew effect”, so each player plays with the dif-
ferent number of opponents which is determined by khi  . In the extortion game, players are located at the nodes of 
hypernetworks. The scale of hypernetworks, N, determines the total number of players. A hyperedge represents 
a game group in which the nodes are all connected and play a game with each other. The game relationships can 
be shown in Fig. 2.

In order to understand the characteristics of this hypernetworks structure, we simulate the model with dif-
ferent scales N according to the evolution algorithm above and the hyperdegree distribution of nodes is shown 
Fig. 3. It shows that the hyperdegree distribution of nodes is close to a straight line in the double logarithmic 
coordinates and is independent of scale N.

Game rules
Each node can play a special prisoner’s dilemma (PD) game, namely gift giving game, with its neighbors from 
different hyperedges. In the gift giving game, a cooperation node pays cost c to the neighbors who receive ben-
efit b (b > c > 0). The players do not pay anything if they defect, and in that case their neighbors receive 0. Thus, 
the payoff of mutual cooperation is (b − c), and that of the mutual defection is 0. If a cooperator encounters a 
defector, they receive benefits − c and b, respectively. Where the parameter b is the temptation to defect and can 
be called the benefit value. Taking extortioners with the extortion factor χ into consideration, each player can 
choose the game strategy from three strategies, including unconditional cooperation (C), unconditional defec-
tion (D), and extortion ( Eχ ). Following closely Hilbe et al.17, the long-term payoff matrix involving the three 
strategies for node i play a game with the node j can be written as Table 1. From Table 1, we know that when a 
player’s opponent chooses the extortion strategy, this player can get more payoffs by choosing the cooperation 
strategy. This suggests that cooperation is the best reply to extortion.

In the evolutionary game, individuals play the game with neighbors from different groups (Fig. 2) and tend 
to adopt the neighbors’ strategies with high payoff. For game round n , the player i obtains accumulated payoff 
Ui(n) by playing gift giving game with the neighbors from different groups. The accumulated payoff of this round 
under pins the choice of strategy to be adopted by node i in the next round. The accumulated payoff of node i 
in game round n can be expressed as,

where �i is the set of neighbors of node i and π
(

si,sj
)

 is payoff in the strategy combination 
(

si,sj
)

.
As the game plays out, node i calculates the accumulated payoff according to Eq. (2) and updates its behavior 

from the current round to the next. Node i randomly selects a neighbor j to compare the accumulated payoff. 
If the accumulated payoff of node i is greater than that of neighbor j , the strategy of node i does not change. If 
the accumulated payoff of node i is less than that of node j , the node i will adjust its strategy from the current 
strategy si to the strategy of node j ( sj ) with probability Pi . This behavior represents the replicator-like dynamics 
 rule34. Probability Pi can be expressed as,

where Ui and Uj are the accumulated payoffs of node i and j in the current game round, respectively. The denomi-
nator of Eq. (3) is to ensure that the probability Pi ∈ [0, 1] . Term (b+ c) is the difference between the maximum 
and minimum of the payoff parameters shown in Table 1. Terms khi  and khj  represent the hyperdegree of nodes 
i and j , respectively, and max

(

khi , k
h
j

)

.m1 is the total number of opponents of the player with the greater hyper-
degree. Below we investigate how individual strategies evolve for different parameters in hypernetworks 
system.

(2)Ui(n) =
∑

j=�i

π
(

si,sj
)

(3)Pi
(

si ← sj
)

=
Uj − Ui

(b+ c)max
(

khi , k
h
j

)

.m1

Table 1.  Long-term payoff matrix of gift giving game involving extortion strategy.

Node j

C D Eχ

Node i

C (b− c, b− c) (−c, b)
(

(b2−c2)
(bχ+c)

,
(b2−c2)χ
(bχ+c)

)

D (b,−c) (0, 0) (0, 0)

Eχ

(

(b2−c2)χ
(bχ+c)

,
(b2−c2)
(bχ+c)

)

(0, 0) (0, 0)
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Model simulation and result analysis
We simulate a uniform hypernetwork model which is described above with 2000 nodes, and study the extortion 
game in hypernetworks by changing the relevant game variables. Suppose that at the game time t ∈ (0, 1, 2, . . .) , 
the frequencies of the three evolutionary strategies are fC(t), fD(t), and fEχ(t) , respectively. In the initial state 
t = 0 , individuals can randomly choose unconditional cooperation (C), unconditional defection (D), or extor-
tion ( Eχ ) as their initial strategy. The initial strategy satisfies that fC(0) = fD(0) = fEχ(0) . All players (nodes) 
obtain accumulated payoff by playing the gift giving game with their neighbors from different groups and update 
their strategies according to the replicator-like dynamics rule. The equilibrium frequencies of the strategies are 
obtained by averaging 3000 final generations after discarding 22,000 initial generations. A total 30 independent 
simulations are run to reduce the randomness.

Stability of extortion evolution. The extortion strategy is evolutionarily unstable in the well-mixed 
 populations16, but it can coexist with other strategies and be stable in structured  populations17. In order to study 
the stability of extortion strategies in hypernetworks. We simulate the evolution of the three strategies for differ-
ent values of χ and the results are shown in Fig. 4a,b.

Figure 4 shows that the extortion strategy coexists with cooperation (C) and defection (D), and became a 
long-term stable relationship with neighbors in hypernetworks. During the stable phase, the frequency of defec-
tion (D) is the highest (red line) and cooperation (C) (black line) occupies a large proportion of nodes. Initially, 
the three strategies have the same frequencies and players study their opponents’ strategies with the determined 
probability (Eq. 3) which depends on the game payoff of the previous game round. From Table 1, we know that 
the defection or extortion strategies can yield higher payoffs than the cooperation strategy. The cooperative 
individuals constantly learn the successful strategy according to Eq. (3).

For the relatively fair extortioner with χ = 2 (Fig. 4a), the cooperators learn strategies from their neighbors 
and turned into defectors to obtain higher payoff. The frequency of defection is stable at a high level in the early 
phase. As the game progressed, the extortion strategy changes to cooperation, which dramatically increases the 
frequency of cooperation and stabilizes the frequency of extortion at a low level. When encouraged by a higher 
extortion factor ( χ = 4 ), some cooperators become extortioners and defectors in the early phase of the game. 
Since a larger χ means that cooperators are more severely exploited by extortioners, the unfair extortioners 
force cooperators to adopt the exploitative behavior. However, the extortioners tend to make significant adjust-
ments and develop into cooperators with the progress of the evolutionary game. The defection strategy has an 
absolute advantage and extortioners turn into cooperators as the game progressed. Figure 4a,b show that the 
positive feedback of the node pairs C− Eχ are the important role in boosting and sustaining cooperation in 
hypernetworks, but the unfair extortioners reduce the frequency of cooperation and increase the frequency of 
extortion in the stable state.

In addition, the three strategies quickly reach a stable state, especially the defection strategy. This indicates 
that the game relationships represented by the hypernetwork structure can improve the speed of strategy learn-
ing for individuals. In the hypernetwork, individuals play a game with khi ·m1 opponents. For the network of the 
same size N , the hub nodes of hypernetworks have more opponents than that of complex networks. Once the 
hub nodes choose the defection strategy, their opponents learn to adopt extortion or defection which provides 
higher payoffs than cooperation. The resource advantages of hub nodes and the full connectivity of nodes in 
the same hyperedge accelerate the strategy propagation speed. In the process of strategies learning, individuals 
can adjust to their neighbors’ strategies, but the defection strategy lack room for adjustment and quickly settle 
into a stable state.

Evolution of cooperation. In a traditional network game with only cooperation and defection  strategies35, 
the heterogeneous scale-free networks and the accumulated payoff promote the emergence of cooperation. 
In the scale-free networks, the high-degree hubs have more neighbors than low-degree nodes, implying that 
high-degree hubs can obtain more payoffs than low-degree individuals. Once the hub nodes choose coopera-
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Figure 4.  The extortion game in hypernetworks. We assume that the parameters m1 = 2, b = 2 , and c = 1 . 
Stability of cooperation (C), defection (D), and extortion ( Eχ ) strategies: (a) relatively fair extortioner ( χ = 2 ); 
(b) relatively unfair extortioner ( χ = 4).
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tive behavior, their neighbors also tend to choose the same behavior. The influence of the extortion strategy on 
the cooperation behavior in complex networks was discussed in the existing literature. Extortions can promote 
cooperation if the strategy updating is governed by the myopic best  response24,28 or the replicator-like strategy 
updating  rule36,37. Here we continue to investigate how the extortion strategy affects the evolution of cooperation 
by the replicator-like dynamics rule, but instead of the complex network structure, we focus on the game rela-
tionships represented by hypernetworks. We compare the frequencies of cooperation with and without extor-
tion. The frequencies of cooperation for different χ are shown in Fig. 5a,b.

Figure 5a,b show that the frequencies of cooperation in the hypernetwork depend on parameter b for differ-
ent values of χ . Compared with the evolution of extortion, the traditional dual-strategy version of the PD game 
lead to the disappearance of cooperation when the value of benefit factor is smaller than 2. As depicted in Fig. 5 
(red lines), the frequency of cooperation tend to zero. In the dual-strategy game in hypernetworks, the hubs with 
more hyperedges interact with more neighbors and can find that choosing defection yield higher payoffs than 
cooperation. In the replicator dynamics rule of hypernetworks, the rational individuals with a low hyperdegree 
tend to study defection, and defection will bring about a mutual punishment situation. However, when b > 2 
induce a small number of nodes may choose cooperation and the frequency of cooperation have a slight increase.

After adding the extortion strategy, the frequency of cooperation was improved significantly for the different 
parameters b and χ , as illustrated in Fig. 5b (black lines). The results show that extortion provides an evolution-
ary “escape hatch” for cooperators to survive in the most adverse conditions ( b = 3 and χ = 4 ). Although the 
introduction of extortioners will increase the number of those who exploit cooperators, the C− Eχ node pairs 
can achieve better results than D− D or D− Eχ node pairs. Therefore, the extortion strategy can act as catalysts 
for the dissemination of cooperative behavior in the evolutionary process, which leads to the dominance of coop-
erative behavior in the populations under steady state for small value of b. However, for large value of b, more 
nodes may choose defection strategy and C− Eχ node pairs are difficult to exist, which lead to the decreasing 
frequency of cooperation. In addition, compare to the extortion game in scale-free  networks37, the cooperative 
behavior in hypernetworks can survive and further improve.

The influence of benefit value b on the game. The benefit value b is the payoff obtained by defectors 
at no cost. In order to explore the influence of b on the evolution of the three strategies in hypernetworks, we 
simulate our model and the frequencies of the three strategies for different χ are shown in Fig. 6.

We first study the frequencies of the three strategies as a function of the benefit factor b in hypernetworks with 
a small extortion factor ( χ = 1.5 ). This factor entails extortioners inclined to share payoff with their neighbors 
fairly. Figure 6a indicates that the benefit value b has significant influence on the frequencies of the three strate-
gies. The frequency of the cooperation strategy decreases with b , whereas those of the extortion and defection 
strategies increases with b.

Figure 6a shows that when extortion evolves with cooperation and defection in hypernetworks, extortioners 
earn more but still offer positive payoff to their cooperative neighbors. With the help of extortion, the coopera-
tion strategy dominates in the populations, but the defection and extortion strategies became extinct for b ≤ 1.4 . 
This is similar to the results in Barabási-Albert scale-free networks, but it is different from the results based on 
the square lattice where a cooperation strategy rapidly became extinct for very small b36. In the evolution process 
of the game, the individuals learn the strategies of neighbors with high payoffs through the replicator dynamics 
rule. The overlapping nodes have more hyperedges and interact with more neighbors, thus they learn to choose 
defection or extortion to obtain higher accumulated payoff. If the overlapping nodes chose the defection or 
extortion strategy, the D− D or D− Eχ node pairs dominant the hyperedge, but the cooperative nodes still gain 
more accumulated payoffs from C− Eχ . It means that the positive feedback of C− Eχ node pairs encourages 
more nodes to become cooperators for more accumulated payoff in the evolution process. Finally, cooperation 
flourished in hypernetworks in the stable state.
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Figure 5.  Comparison of cooperation evolution with and without extortion strategies for the different χ : 
(a) cooperation frequencies for χ = 1.5 , (b) cooperation frequencies for χ = 4 . In the simulations, the game 
parameters are m1 = 3, and c = 1.
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For the high values of b, such as b > 1.4 , defection quickly spreads across the hypernetwork in the evolu-
tion process. As a result, defection occupy most nodes, the positive feedback of C− Eχ disappears, which lead 
to the cooperation remain at a low frequency in the stable state. When b is greater than 2.1, it start to have less 
influence on the frequencies of the three strategies. The results indicate that extortioners coexist with coopera-
tors and defectors with high values of b in hypernetworks. Compared to Fig. 6a,b, it can be concluded that the 
frequencies of the three strategies are similar for the different extortion factors, but the larger extortion factor 
χ = 3 can increase the frequency of extortion and decrease that of defection.

The influence of extortion factors χ on the game. Extortion factors determine how strongly extor-
tioners exploit cooperators. We investigate the influence of the extortion factors χ on the game for the values 
of b = 1.2 and b = 2.4 in hypernetworks. The results are shown in Fig. 7. For the small b = 1.2 , the extortion 
factor χ has slight influence on the frequencies of the three strategies and the cooperators dominate almost all 
nodes. The large extortion factor leads to a slight variation in cooperation and defection strategies. However, 
for the large b = 2.4 , the extortion factor χ has greater influence on the frequencies of defection and extortion 
strategies. As the increases of the extortion factor χ , defectors are replaced by extortioner and the frequency of 
defection strategy is monotonically decreasing. It is worth mentioning that the frequency of cooperation is not 
affected by the extortion factor χ and still survives in hypernetworks under extreme conditions with large χ and 
b.

Evolutionary games with different group sizes. The node degree of hyperedge is the number of nodes 
in each hyperedge, which represents the size of each game group in hypernetworks. In this paper, the hypernet-
work is uniform, i.e., each hyperedge has the same number of nodes. The size of each game group is 1+m1 . If 
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Figure 6.  Frequencies of cooperation (C), defection (D), and extortion (E) as functions of benefit factor b for 
different value of extortion factor in steady state: (a) relatively fair extortioner ( χ = 1.5 ); (b) relatively unfair 
extortioner ( χ = 3.). The game parameters b ∈ (1, 3] , m1 = 2 , and c = 1.
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Figure 7.  Frequencies of cooperation (C), defection (D), and extortion (E) as functions of extortion factor 
χ for different value of benefit factor b = 1.2 and b = 2.4 . In the simulations, the game parameters are 
m1 = 2, and c = 1.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20953  | https://doi.org/10.1038/s41598-022-25294-z

www.nature.com/scientificreports/

individual i plays the game with khi  groups, it plays with khi ·m1 opponents. The group size is known to affect sig-
nificantly the direct reciprocity and conditional cooperation in complex networks. In this paper, the node-degree 
of a hyperedge expresses the sizes of groups which can be adjusted by parameter m1 . Different value of 1+m1 are 
simulated and the evolution of the three strategies for different values of χ are shown in Fig. 8.

Figure 8 shows that the different effects of the group size 1+m1 on the evolutionary game. As shown in 
Fig. 8a–c, the effects of group size on cooperation and extortion are stronger than that on defection for χ = 1.5 . 
With the increase in m1 , the frequency of cooperation decreased, while that of extortion increased when the evo-
lutionary game reach the stable state. When the group size m1 increases, cooperators turn into extortioners and 
the majority of nodes adopt defection. For the larger extortion factor χ = 3 , the influence of group size exhibits 
the same trend. The results show that small-scale groups are more conducive to the emergence of cooperation, 
while larger groups increase the frequency of extortion in the evolutionary game.

Conclusions
As a type of zero-determinant strategies, the extortion strategy is evolutionary unstable in a well-mixed 
 population16, but it was found to be an evolutionarily stable strategy in structural population when the game 
relationships are expressed by complex networks, such as scale free  networks26,27 and regular lattice  networks36. 
Games between groups exist widely in society. However, complex networks structure cannot describe the game 
relationships between multiple groups. The hyperedge of hypernetworks can divide opponents of players into 
different groups. In this paper, we study an evolutionary game with extortion strategy by using the scale free 
hypernetworks to represent the game relationships between groups. We show that extortion strategies are stable 
and improve the level of cooperation in hypernetworks. Moreover, the smaller benefit value b and the small group 
sizes are more conducive to the emergence of cooperative behaviors.

How cooperation emerges and evolves are important research question. Game theory provides an effective 
theoretical framework to explore the emergence mechanism of spontaneous cooperation. The zero-determinant 
strategies elevate the understanding of evolutionary games and provide a new perspective for explaining the 
evolution of cooperation. The game in complex networks can help us to study non-uniform game relation in 
society. The early works about the extortion game in complex networks are of great significance for understanding 
cooperative  behavior26–29 and decision-making mechanisms among  individuals38. However, the study of evo-
lutionary games in hypernetworks can better reveal the dynamic processes among groups. This paper provides 
effective theoretical framework for studying evolutionary games of multiple groups.

Now that game dynamics on hypernetworks are in the exploratory stage, many questions highlighted in this 
paper need to be further explored. Compared with complex networks, hypernetworks are more complex and 
derive many different statistical indicators, such as the overlapping nodes, the high clustering coefficient of nodes 
and the group size. These statistical indicators also have an important effect on behavior of groups. A possible 
path for future research is to study public goods game in hypernetworks. Complex networks structure can only 
represent the game relationship of single group. Public goods game is a typical game relationship with multiple 
groups. Hypernetworks can provide theoretical tools for public goods games among multiple groups and reveal 
the mechanism behind the emergence of cooperation among groups.
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Figure 8.  Evolutionary game with different group size m1 = 2, 3, and 5 : (a)–(c) evolution of three strategies for 
b = 2 and χ = 1.5 ; (d)–(e) evolution of three strategies for b = 2 and χ = 3.
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