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Quantum face recognition protocol 
with ghost imaging
Vahid Salari 1,2, Dilip Paneru 3, Erhan Saglamyurek 1,4, Milad Ghadimi 5, Moloud Abdar 6, 
Mohammadreza Rezaee 3, Mehdi Aslani 5, Shabir Barzanjeh 1 & Ebrahim Karimi 3,7*

Face recognition is one of the most ubiquitous examples of pattern recognition in machine learning, 
with numerous applications in security, access control, and law enforcement, among many others. 
Pattern recognition with classical algorithms requires significant computational resources, especially 
when dealing with high-resolution images in an extensive database. Quantum algorithms have 
been shown to improve the efficiency and speed of many computational tasks, and as such, they 
could also potentially improve the complexity of the face recognition process. Here, we propose a 
quantum machine learning algorithm for pattern recognition based on quantum principal component 
analysis, and quantum independent component analysis. A novel quantum algorithm for finding 
dissimilarity in the faces based on the computation of trace and determinant of a matrix (image) is also 
proposed. The overall complexity of our pattern recognition algorithm is O(N logN)—N is the image 
dimension. As an input to these pattern recognition algorithms, we consider experimental images 
obtained from quantum imaging techniques with correlated photons, e.g. “interaction-free” imaging 
or “ghost” imaging. Interfacing these imaging techniques with our quantum pattern recognition 
processor provides input images that possess a better signal-to-noise ratio, lower exposures, and 
higher resolution, thus speeding up the machine learning process further. Our fully quantum pattern 
recognition system with quantum algorithm and quantum inputs promises a much-improved image 
acquisition and identification system with potential applications extending beyond face recognition, 
e.g., in medical imaging for diagnosing sensitive tissues or biology for protein identification.

In any intelligent image processing system, there are essentially two main steps: the acquisition of the image and 
the recognition of the desired patterns. Image acquisition for any pattern recognition method can be performed 
in multiple ways. For instance, classical sources (incoherent light from thermal radiation or a coherent beam 
from a laser) or quantum sources (entangled photons obtained from down conversion or squeezed light) can be 
used to obtain the images. Classical bright field imaging techniques employing the former sources, have the dis-
advantage of high probe illumination requirement, especially while imaging sensitive samples. Additionally, they 
are also plagued by the shot noise inherent in the intensities, and the background noise from the environment. 
Quantum techniques such as quantum illumination, or ghost imaging or even interaction-free imaging, allevi-
ates the problems of background noise, and the probe illumination by utilizing quantum correlations between 
photon  pairs1,2. Furthermore, quantum sub-shot noise  imaging3 and super resolution  techniques4 enhance the 
noise sensitivity and resolution in any images beyond the classical limits.

As a second important step, pattern recognition in the acquired images is a prominent feature of any intel-
ligent imaging system. Face  recognition5,6 is one of the branches of pattern recognition, with numerous applica-
tions such as face ID verification, passport checks, entrance control, computer access control, criminal investiga-
tions, crowd surveillance, and witness face  reconstruction7, among several others. For face recognition, several 
classical machine learning algorithms  exist8, generally requiring huge computational resources especially when 
faced with the problem of identification from a large database. Quantum machine learning algorithms employing 
quantum features such as superposition and  entanglement9,9–17 promise enhancements in terms of the comput-
ing resources and the speed compared to the classical counterparts. Several experimental researches have been 
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done to implement these  algorithms18–25. In this article, we present a quantum algorithm for face recognition as 
one of the potential applications of quantum algorithms in machine learning.

The problem of identification of faces from any images generally constitutes different steps (shown in Fig. 1): 
creating a database of faces consisting of training and test images, feature extraction using principal component 
analysis (PCA), linear discriminant analysis (LDA) or independent component analysis (ICA), feature matching 
using dissimilarity measures, and  recognition26. PCA extracts the eigenstates (or eigenfaces) of the covariance 
matrix of the images in the database, including information like average face, gender (male or female), face 
direction, brightness, shadows, etc. ICA, however, extracts the independent elements such as eyes, eyebrows, 
mouth, nose, etc. in a face. Quantum algorithms which provide speedup for PCA and ICA have already been 
 proposed9,27. Here, we focus on three main steps: (1) Quantum Principle Component Analysis (QPCA)9, (2) 
Quantum Independent Component Analysis (QICA)27, and (3) Dissimilarity measures (i.e., face matching), to 
develop a quantum algorithm for face recognition. In what follows, we present a quantum algorithm for dis-
similarity measures for face matching with speedup. This is based on a quantum algorithm to compute the log 
determinant divergence using both the determinant and the trace of a matrix. Our algorithm combined with 
the inputs obtained from quantum imaging techniques provides a fully intelligent pattern identification system, 
with the joint benefit of the low-dose and higher resolution of quantum imaging methods, and the speedup and 
efficiency of the quantum algorithms. Figure 1 shows the flowchart of the quantum algorithm for the pattern 
identification.

Quantum face recognition
Classical algorithms are unable to process quantum data directly. During the conversion of the quantum states 
(qubits) to classical data (bits), most of the information is lost in the measurement process, due to the “collapse” of 
the wavefunction. Although techniques such as quantum state tomography implemented on unlimited ensemble 
of the states can be used to fully reconstruct the quantum states from classical projections, these processes are 
generally complex and expensive. Therefore, the optimal input to our quantum algorithms, would be the quantum 
states directly obtained from quantum processes, for example, quantum imaging methods, or from a quantum 
memory, without performing a strong measurement on the wavefunction.

Photonic quantum  memories28, allowing storage and on-demand retrieval of quantum states of light, is one of 
the key components for the realization of quantum optical pattern-recognition technology. Quantum memories 
essentially form a quantum database for the matching stage in the recognition process. With the state-of-art 
quantum memories, the possibility of storing hundreds of spatial modes has already been shown in experimental 
studies using atomic-cold  gases29,30. Furthermore, using solid-state atomic memories, it is possible to simultane-
ously store hundreds of photonic quantum states in distinct temporal modes, thus allowing us to store patterns 

Figure 1.  Flowchart of the quantum algorithm for face recognition. The quantum algorithm is proposed to 
be performed in a quantum processor, which we call it quantum pattern recognition processor (QPRP). First 
the image is converted into matrix form, on which feature extraction algorithms such as quantum principal 
component analysis (QPCA) or quantum independent component analysis (QICA) are applied. QPCA extracts 
the eigenstates (or eigenfaces) of the covariance matrix of the images in the database. The eigenfaces include 
information like average face, gender (male, female), face direction, brightness, shadows, etc. QICA extracts 
the independent elements such as eyes, eyebrows, mouth, nose, etc. in a face. The complexity of this stage is 
O(logN)—N is the dimension of th image. Then, the given faces are compared with the faces in the database by 
using dissimilarity measure based on the log determinant divergence, and the best match among the faces in the 
database is identified.
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scanned at separate  times31,32. In addition, optically accessible spin-states of certain atomic systems can reach 
several hours of coherence  time33. A very recent experimental demonstration reports one-hour memory lifetime 
for light storage, showing the feasibility of long-lived photonic quantum memory  devices34. Atomic memory 
approaches have also been shown to reach high retrieval efficiencies up to 92%35 and high fidelities above 99%36. 
However, an implementation with all of the aforementioned properties still remains as a challenge in developing 
a practical quantum database memory.

Quantum techniques such as quantum ghost  imaging37, quantum  lithography38, or quantum  sensing39, when 
appropriately interfaced with photonic quantum processors, for example an array of optical fibers connected to 
an integrated quantum photonic circuit, can also act as inputs to our algorithms (see Fig. 2). Here for the case of 
our face recognition algorithm, we assume that the input images are acquired by quantum ghost  imaging37. Ghost 
imaging exploits the spatial correlations between photon pairs generated through a nonlinear process called 
spontaneous parametric down-conversion (SPDC). Since the images are obtained by triggering the shutter in 
order to capture only the “coincident” photon pairs, the level of background noise is significantly reduced, along 
with a reduction in probe illumination. In a variation of this technique using non degenerate photon pairs, the 
image detection and sample interaction can happen at different wavelengths, which can be useful when imaging 
sensitive tissues when limited in detection  technologies40. Combining quantum detection techniques such as 
interaction-free measurement with ghost imaging, the illumination level required for the same levels of Signal 
to Noise ratio (SNR) in  images41 is further reduced significantly. Figure 3 shows some of the images of human 
faces obtained in a quantum ghost imaging setup, where spatially correlated photon pairs (namely signal and 
idler), are generated by pumping a BiBO crystal with pump photons. Phase holograms placed in a Spatial Light 
Modulator, a liquid crystal device, created by superimposing the human faces with a diffraction grating acts 
as an object for the signal photon, while the idler photon passes to the Intensified Charged Coupled Devices 
(ICCD) camera via a delaSupplementary Informationy line. The images are obtained by triggering the ICCD 
shutter with the signal photons detected through a Single Photon Avalanche Diode (SPAD) detector—see  (SI) 
for the detail of the experimental setup.

Figure 2.  Intelligent pattern recognition in quantum imaging. Data from quantum imaging methods such as 
(a) interaction free imaging and (b) ghost imaging act as an input to (c) quantum pattern recognition processor 
(QPRP). The latter, i.e., QPRP, applies quantum machine learning to find the patterns in the database.

Figure 3.  Face recognition in ghost images. (a) Images of the original human faces (top) and the corresponding 
experimental ghost images (bottom) obtained in a ghost imaging setup. A femtosecond laser is used to 
generate spatially entangled photon pairs. One of the photons illuminates a spatial light modulator, which 
imprints different images onto the photon, and can act as a trigger for the other photon that was detected by an 
intensified CCD camera. Each of the images was obtained by the accumulation of 300 frames with an exposure 
time of 0.5s, which translates to a run time of 150s. (b) Quantum Independent Component Analysis (QICA), 
and Quantum Principal Component Analysis (QPCA), of the faces to detect the independent components, 
and principal features in the faces. (c) Dissimilarity measure between the ghost images with the images in the 
database for their identification. As per the copyright policies of the journal, in this illustration we use artificially 
generated faces (the first and the third) from the website https:// www. thisp erson doesn otexi st. com. For the 
second figure, the coauthor provided the required consent for both the experiment and use in the manuscript.

https://www.thispersondoesnotexist.com
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Quantum principal component analysis (QPCA). We have now the input images either retrieved from 
a quantum memory or directly as outputs from a quantum imaging setup. The pattern recognition processor 
applies Quantum Principal Component Analysis (QPCA)9,42 to extract the principal eigenvectors of the covari-
ance matrix CX , formed by the set of the training images.

Let us consider a set of N-dimensional training images (or faces), {|x(1)�, . . . , |x(M)�} . Here, |x(i)� is the i-th 
training image, which is given by,

where x(i)q  are the components, and |ψ(i)
q � are the basis kets. The covariance matrix CX can be formed as a sum 

over M training  faces42,

The next step is to exponentiate the covariance matrix CX , so that we can use the Quantum Phase Estimation 
(QPE) subroutine for finding the eigenvectors and eigenvalues. It has been shown that the exponentiation of the 
covariance matrix, i.e., e−iCX t , can be performed in O(logN)  time9.

In QPCA algorithm, for the phase estimation subroutine, we apply the operator U = e−iCX t on CX
42. The 

action of U on one of the states |x(i)� in CX is:

where |φj� ’s are the eigenvectors of CX , and cij = e−i�̃
(j)
c t�φj|x(i)� in which �̃(j)c =

(

2π�
(j)
c t

)

/2n where �(j)c  ’s are the 
corresponding estimated eigenvalues of CX with precision n9,42.

In order to obtain the principal eigenfaces (the eigenvectors of the covariance matrix with larger eigenvalues), 
we define a score s(ij) , which is the projection of an eigenvector |φ(j)� on a training vector |x(i)�,

where φ(j)
n  are the components of the eigenvector |φj� . The eigenvectors corresponding to the r highest scores 

are the principal components (or eigenfaces). Each face can be expanded in terms of the r eigenfaces (principal 
components) but with different weights ω′

j s as follows

The “mean image” is the eigenface corresponding to the largest eigenvalue of CX . The QPCA algorithm is efficient 
for the case r ≪ N42.

Quantum independent component analysis (QICA). In classical machine learning, Independ-
ent Component Analysis (ICA) is performed to decompose an observed signal into a linear combination of 
unknown independent  signals26. Similar to the PCA, the ICA finds a new basis to represent the data, however 
with a different goal. We assume that there is a data set of faces s ∈ Rd that is a collection of d independent 
elements in the face such as nose, eye, eyebrow, mouth, etc. Each image observed through a camera can be 
expressed as x = F · s , where F is a mixing matrix of the independent face elements. Repeated observation gives 
us a dataset x as {x(i), . . . , x(M)} , and ICA estimates the independent sources s(i) that had generated the face. We 
let W = F−1 which is the unmixing matrix and solve the linear systems of equations s(i) = W x(i) for estimat-
ing the independent elements of the face. We should note here that s(i) is a d-dimensional vector and s(i)j  is the 
data of element j. Similarly, x(i) is an d-dimensional vector, and x(i)j  is the observed (or recorded) element j by 
camera. The ICA can be exponentially speedup via a quantum algorithm for sparse matrices, with the Harrow-
Hassidim-Lloyd (HHL)  algorithm27, which is used to solve linear systems of equations optimally with O(logN) . 
For comparison, classically it takes a time O(N3) to be solved via the Gauss elimination, and approximately 
O(N

√
κ) via iterative  methods27 for a sparse matrix of size N × N , with κ being the ratio between the greatest 

and the smallest eigenvalue.

Pattern matching: comparing faces. As important details of a face are obtained either by using QPCA 
or QICA, each face is represented in the form of a sparse matrix in which non-important elements are set to 
zero. The last and important step of the algorithm is comparing the face patterns to recognize the target face. 
Pattern matching algorithms investigate exact matches in the input with pre-existing patterns in the database. In 
fact, the problem here is comparing matrices with each other. The evaluation of matching between matrices (or 
face patterns) can be done by using “dissimilarity”43 measures that calculate the “distance” between the matrices. 
The lower the values of the dissimilarity/distance measures, more similar the matrices, with the fully matched 

(1)|x(i)� =
N
∑

q=1

x(i)q |ψ(i)
q �,

(2)CX =
1

M

M
∑

i=1

|x(i)��x(i)|.

(3)e−iCX t |x(i)� →
M
∑

j=1

c(ij)|φj�,

(4)s(ij) = �xi|φj� =
N
∑

q=1

x(i)q φ
(j)
q ,

(5)|Face(i)� =
r

∑

j=1

ωj|φj�.
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matrices having a zero distance. One such distance measure used to compare two matrices X and Y is called the 
“Log-determinant divergence”43,44 defined as,

where N is the dimension of the matrices. When D = 0 , the matrices X and Y are completely matched, and higher 
the distance value the more different are the matrices. The least value among the all distance values identifies the 
best match and consequently recognizes the face. As it is seen in the distance formula, it is a benefit to be able 
to calculate the trace and the determinants of matrices with speedup to expedite the distance calculation. In the 
following, we propose quantum algorithms for computation of the determinant and the trace of a sparse matrix.

Quantum computation of sparse matrix determinants and trace. To obtain a measure of dissimilarity between 
two matrices we need to calculate the determinant and the trace of the sparse matrix A = X · Y−1 . First we 
calculate Y−1 using the HHL  algorithm27 and obtain A by multiplying it with X. We then apply the Quantum 
Phase Estimation (QPE) subroutine, which consists of a quantum Fourier transform (QFT) followed by a con-
trolled Unitary ( CU ) operation, with U = e−iA t , and a inverse quantum Fourier transform. We then apply a 
controlled Rotation operation followed by the inverse Quantum Phase Estimation (QPE) subroutine. At the end 
we have a multiplication operator � which finally gives us the product of the eigenvalues—the algorithm steps 
are explained in more detail in the Supplementary Information. The running time of the algorithm up to the 
third step, i.e. applying the controlled-U operator, is O(logN(s2κ2/ǫ))27, where s is the sparsity, κ is the ratio of 
largest eigenvalue to the smallest eigenvalue of A, and ǫ is the acceptable error. Additionally, the multiplication 
operation in the last step can be performed in time O(logN) and the algorithm should run N times. Therefore, 
the overall complexity of the algorithm is O

(

N logN(1+ s2κ2/ǫ)
)

 , which is much faster than the classical ones 
(see Table 1).

In order to compute the trace of the matrix A, an adder quantum  algorithm48 can speedup the computation. 
The adder operation between two diagonal elements is mainly based on the quantum Fourier transform (QFT), 
i.e. |�(a)� := QFT |a� = 1√

N

∑N−1
k=0 ei

2πak
N |k� and the inverse QFT, i.e., QFT−1|�(a)� = |a� . By continuation of 

this method sequentially for the all diagonal elements, one can obtain the trace of the matrix. The detail of the 
adder algorithm and the quantum circuit for the computation of trace is discussed in the Supplementary Infor-
mation (Fig. S2 shows the corresponding quantum circuit). The whole process which is based on QFT and QFT−1 
has a complexity of O(logN) (Table 2).

QPCA and QICA both have logarithmic complexities, i.e., O(logN) . For the calculation of the log determi-
nant divergence, the computation of trace has a complexity of O(logN) , while the determinant has complexity 
of O(N logN) ). Hence, the overall complexity of the whole algorithm is O(N logN) . Table 2 shows a summary 
of estimated complexities along with the complexity of the general quantum face recognition algorithm.

Discussion
Here, we have shown that classically the best pattern recognition algorithm based on ICA and PCA would take 
at least O(N2LogN) steps while our algorithm only takes O(NLogN) steps, which is an order of magnitude 
faster—N is the dimension of images (see Table 3 for some estimates). We should note here that our protocol is 
not compared with neural networks approaches, for instance, we did not compare our quantum protocol with a 

(6)D(X,Y) = Tr
(

X · Y−1
)

− log det
(

X · Y−1
)

− N ,

Table 1.  A Comparison of complexities between the classical approaches and our quantum approach, current 
work (CW), for the computation of determinant.

Approach Method Complexity References

Classic Laplace N
3 45

Classic Gaussian N
3 45

Classic Coppersmith–Winogard N
2.373 46

Classic Wiedemann N
2 logN 47

Quantum Our method N logN CW

Table 2.  Summary of estimated complexities in quantum face recognition algorithm.

Method Output Complexity References

QPCA Eigenfaces logN 9

QICA & HHL Face components logN 27

HHL Matrix inversion logN 27

Our method Determinant calculation N logN CW

Our method Trace calculation logN CW

Log-det divergence Face matching N logN CW

Our method (General) Face recognition N logN CW
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classical deep learning model. In fact, the protocol suggested in our paper is only a comparison with its classical 
counterparts based on classical PCA, ICA, and Distance. There are other quantum models which are robust versus 
their classical counterparts, for example, using QPCA and quantum neural networks show advantages over the 
best classical  approaches49,50, or training deep quantum neural networks give a fast optimization and a striking 
robustness to noisy training  data51. It has been shown that a quantum convolutional neural network uses only 
O(LogN) variational parameters for input sizes of N qubits, allowing for its efficient training and implementation 
on realistic, near-term quantum  devices52.

Apart from these, our protocol would also benefit from the quantum nature of the image acquisition, namely 
lower sample exposure, background acquisition, and resolution enhancement. From the acquisition point of view, 
to have an image with a desirable resolution the images were accumulated for 300 frames with an exposure time 
of 0.5 s, hence, to obtain a single image it takes roughly 150 s, i.e. independent from the image processing side 
(see Table 4). Classical or direct imaging offers much faster image acquisition times, however here we are relying 
on the entangled photon pairs, the production rate of which is less than 1% of the total power of the pump beam, 
hence we have much less photons interacting with the sample (or face) and hence the need for longer exposure 
times. In fact, it is not the speed that is the improvement in the imaging part. With higher pump power and 
efficient crystals this process can also be improved further however the state of the art on this would not match 
the acquisition speed of classical methods. The advantage of this is that we achieve a better SNR if we compare 
the images with classical acquisition with a similar number of photons interacting with the sample.

Depending on the database, compared to the best classical pattern recognition algorithm, the proposed 
quantum algorithm will be N times faster. Both the QPCA and QICA can be used for face recognition in clas-
sical images as well, as it can perform the pattern identification on any matrix. Run on a quantum processor, it 
would provide a speedup in the process compared to the traditional recognition methods. At the moment, due to 
the image size, no quantum computers are yet available that can successfully implement the quantum protocol. 
However, this is indeed a possible future step once such devices are available.

Conclusion
In summary, we propose a new concept of a quantum protocol for 2D face recognition, combining the benefits 
of quantum imaging in image acquisition with the speedup from the quantum machine learning algorithms. In 
this concept, we consider images to be obtained via a ghost imaging protocol either as inputs to the quantum 
memories or as a hardware encoding of quantum information for the photonic pattern recognition processor. 
Feeding the “images” directly from a quantum protocol also eliminates the need for the conversion of classical 
data to quantum inputs for the processor saving valuable computational resources. The quantum pattern recogni-
tion processor then runs an algorithm composed of three main subroutines: (1) quantum principal components 
analysis (QPCA), (2) quantum independent component analysis (QICA), and (3) quantum dissimilarity meas-
ures for comparing faces. For the QPCA and QICA, we propose slight modifications in the existing algorithms, 
whereas for finding the dissimilarity measure, we propose a novel algorithm for obtaining the distance between 
two matrices based upon a metric called log-determinant divergence. Our algorithm obtains the determinant and 
the trace of the two matrices in O(N logN) time—N is the dimension of the matrix. Complexity analysis shows 
that all of the three parts have speedup as compared to their classical counterparts, with the overall complexity 
given by O(N logN) . Our conceptual protocol provides a framework for an intelligent and fully quantum image 
recognition system with quantum inputs and a quantum machine learning processor. The joint benefits of the 
quantum image acquisition and quantum machine learning promises exciting technological developments in 
the field of image recognition systems.

Table 3.  Numerical estimates of the time complexities (in arbitrary units) for the classical and the quantum 
protocol for different input image dimensions along with the corresponding number of qubits required for 
encoding.

Image dimensions Encoding qubits Classical processing time (in a.u.) Quantum processingtime (in a.u.)

64× 64 6 7398.1 115.5

128× 128 7 34524.5 269.7

256× 256 8 157826.4 616.5

512× 512 9 710218.8 1387.1

1024× 1024 10 3156528.2 3082.5

2028× 2028 11 13888724.4 6781.6
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Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials. Additional data related to this paper may be requested from V.S.(vahid.salari1@ucalgary.ca) or E.K. 
(ekarimi@uottawa.ca).
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